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Ambiguity and invariance: two fundamental challenges for visual
processing
Nicole C Rust and Alan A Stocker

The visual system is tasked with extracting stimulus content

(e.g. the identity of an object) from the spatiotemporal light

pattern falling on the retina. However, visual information can be

ambiguous with regard to content (e.g. an object when viewed

from far away), requiring the system to also consider contextual

information. Additionally, visual information originating from the

same content can differ (e.g. the same object viewed from

different angles), requiring the system to extract content

invariant to these differences. In this review, we explore these

challenges from experimental and theoretical perspectives,

and motivate the need to incorporate solutions for both

ambiguity and invariance into hierarchical models of visual

processing.
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Imagine you are in the park and about to meet your friend
Suzie. As you look around, your visual system must
identify Suzie within the rich environment that surrounds
you. How does the visual system accomplish this feat?
Visual processing is known to occur along an extended
cascade of cortical processing stages [1] and thus the
process of converting a stimulus into behavior is imple-
mented across many different neural structures and brain
areas (denoted by the small arrows; Figure 1). As a
simplification, vision is often described as a two-stage
encoding/decoding process. Encoding refers to the map-
ping of some stimulus variable, x (e.g. the identity of a
person) onto the responses of one or more neurons, r.
Conversely, decoding is the process that inverts the
mapping, and thus arrives at an estimate x̂ of the variable
x given the neural response pattern r (e.g. inferring the
identity of a person from the population response of
neurons in a high-level visual area). Finally, the estimate

x̂ of the stimulus variable is used to direct a behavior y
(e.g. calling out Suzie’s name).

An elaboration of the encoding/decoding framework pro-
vides important insight into why visual processing is so
challenging. At the initial sensory transduction stage,
spatiotemporal patterns of light falling on the retina
(the ‘‘retinal image’’, I(x); Figure 1) are converted into
neural signals by the photoreceptor array; the challenges
of visual processing emerge from the fact that the value of
nearly any stimulus variable x is only indirectly accessible
via this representation. Specifically, identifying your
friend Suzie requires your visual system to combine
information across different points in the retinal image.
Two computational challenges emerge from this basic
requirement. The first, which we refer to as the ‘‘ambi-
guity challenge’’, results when different values of x pro-
duce identical or similar retinal images I(x). For example,
when viewed from a far distance, many individuals may
produce a retinal image that is similar to the one produced
by Suzie (Figure 2, left). To solve the ambiguity chal-
lenge, the visual systemmust make use of other sources of
information. The second, which we refer to as the ‘‘invar-
iance challenge’’, results when the same value of x
produces different retinal images I(x). For example, view-
ing Suzie in different positions and poses will produced
very different I(x) (Figure 2, right). To solve the invar-
iance challenge, the visual system must associate the
retinal images that contain the same value of x (e.g. Suzie)
and differentiate these from the retinal images that con-
tain different values of x (e.g. Layla or Lucy).

The problems of ambiguity and invariance are not unique
to the task of identifying a person, but are encountered
whenever the visual system attempts to estimate the
value of a particular stimulus variable x from the environ-
ment. For example, when attempting to estimate motion
direction, ambiguity can arise when two gratings, viewed
through a small window, move in different directions but
produce the same spatiotemporal light pattern (the ‘‘aper-
ture problem’’), or when viewing conditions are noisy
(e.g. driving in the fog). Estimation of motion direction
also requires that direction be extracted in a manner
invariant to the particular moving object or pattern. In
other words, the natural and intrinsic goal of the visual
system is not to provide a faithful account of the retinal
image (like a camera) but rather to infer a (discrete or
continuous) stimulus variable despite ambiguity and vari-
ation [2]. Below we review our current understanding of
how the visual system deals with these two challenges.
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The ‘‘ambiguity challenge’’
Perceptual scientists have long noted that the visual
system considers sources of information beyond its visual
input in order to unambiguously interpret the world.
Helmholtz proposed that a percept is the visual system’s
‘‘best guess’’ based on both prior knowledge and the
visual information at hand [3]. For example, viewing a
person in the park from far away may not provide suffi-
cient visual information to unambiguously identify the
person (Figure 2, left). However, knowing that you are
about to meet Suzie in the park can lead to a reasonable
guess of who that person could be [4!]. Note that we refer
to ambiguity in a general sense, as uncertainty induced by
a lack of information. This includes conditions where part
of otherwise reliable information is missing (e.g. Suzie

wearing sunglasses and a large hat that partially cover her
face), as well as conditions where visual information is
either degraded by noise or by a reduction in resolution.

Helmholtz’s hypothesis can be naturally expressed in a
probabilistic description within the encoding/decoding
framework, which we refer to as the ‘‘Bayesian observer
model’’ (see Box). A fundamental role of this model is to
provide a quantitative description of how the visual
system should combine noisy and ambiguous visual infor-
mation with prior knowledge to produce an estimate of a
stimulus variable (see [5] for a collection of early work).
One example is a Bayesian observer model of speed
estimation for moving patterns of different contrasts
[6]. At low contrast, visual information is weak and
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Figure 1

The encoding/decoding framework applied to visual processing. While the transformation of a stimulus variable x to a behavioral response y is
implemented along a cascade of stages (denoted by the small arrows), visual processing is often simplified as a two-step encoding/decoding process.
Encoding describes the mapping of x onto a neural response r whereas decoding describes the process of generating an estimate of the stimulus
variable, x̂, from r. Two fundamental challenges for vision, ambiguity and invariance, arise because x is only indirectly accessible via the spatiotemporal
pattern of light intensity falling on the retina, I(x) (the ‘‘retinal image’’).

Figure 2

Examples of ambiguity and invariance. Ambiguity: Many different individuals, when viewed from afar, can generate a similar retinal image, resulting in
visual information that is ambiguous with regard to the individual’s identity. Invariance: The same individual can generate many different retinal images
under different conditions and the visual system must associate retinal images with the same content invariant to these differences.
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unreliable, and thus the uncertainty in determining speed
based solely on the sensory information is high. Yet not all
speeds occur equally often in the world; slow speeds are
predominant [7]. A Bayesian observer model of speed
estimation is a mathematical formulation of how sensory
information (the likelihood function) and knowledge
about the distribution of speeds in the word (the prior)
should be optimally combined to determine the prob-
ability of all possible pattern speeds (the posterior).
Selecting the most probable speed, this observer model
predicts that moving patterns presented at low contrast
should appear to move more slowly than they actually are
moving, and this prediction is consistent with human
perception [8]. The Bayesian observer model describes
precisely how strongly prior knowledge should influence
a percept at different levels of sensory uncertainty, and is
a prediction of what a rational observer should do under
these conditions.

Bayesian observer models have gained increasing support
from the results of a variety of vision (or vision related)
experiments including motion estimation [9], color per-
ception [10], slant estimation [11], cue integration (e.g.
[12–14]), visual search [15] and sensory-motor learning
(e.g. [16]). Recent extensions to the Bayesian observer
model have made it possible to reconstruct subjects’ prior
beliefs as well as their sensory uncertainty from beha-
vioral data [9]. Such developments allow for important,
quantitative tests, such as determining the extent to
which subjects generalize their priors across different
tasks.

The current popularity of the Bayesian observer model is
due in part to the fact that it provides a simple and rational
explanation for perceptual behavior under conditions of
sensory uncertainty. The simplicity, however, comes with
a price. In particular, two issues plague most of the
Bayesian observer models proposed to date. First, encod-
ing is often assumed to be a simplistic and abstract
mapping between a stimulus variable x and population
response r, to obtain a simple and tractable likelihood
function (i.e. the generative model). One popular choice
assumes that r is a direct mapping of x with additive
Gaussian noise. Such simple encoding neglects the com-
plexity of visual processing involved in mapping x to r
through the retinal image I(x) (described in more detail
below). This leads us to a second issue: establishing a
direct physiological implementation of a Bayesian obser-
ver model is difficult. A number of studies have proposed
potential neural descriptions of how likelihood functions
are explicitly (e.g. [17,18]) or implicitly (e.g. [19,20])
formed; how prior probabilities can be represented
[21]; how likelihood functions can be multiplied (i.e.
for cue integration) [19]; and how a percept x̂ can be
inferred [17]. Verifying these physiological models is
likely to prove challenging [22]. Specifically, the Bayesian
observer model is one instantiation of the abstract encod-

ing/decoding framework introduced in the beginning of
this review. As such, it is formulated for a specific encod-
ing/decoding boundary, i.e. Bayesian inference is applied
to a specific neural population r. However, such a
boundary does not exist for the visual system, rather,
visual processing takes place along a cascade of many
processing stages. If the system as a whole performs
Bayesian inference, it seems unlikely that any one stage
in this cascade represents a single component of the
Bayesian model (e.g. the prior) or performs one of the
mathematical operations in isolation (e.g. multiplying the
prior and the likelihood). Rather, one would expect that
these operations and representations are distributed along
the cascade, where neural and not mathematical con-
straints will determine their specific instantiations [23].

The ‘‘invariance challenge’’
Because the same stimulus content (e.g. object identity or
motion direction) can exist in the world under conditions
that produce very different retinal images, the visual
system must find a means of associating retinal images
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Box — Bayesian observer model

Neural noise and the uncertainty and ambiguity of the retinal image
I(x) with regard to the value of x motivate a probabilistic description
of the encoding/decoding framework. Encoding can be charac-
terized as the conditional probability distribution p(rjx), describing
the probability of observing a particular neural firing pattern r for a
given value of the stimulus variable x. The response to each
individual stimulus presentation is a sample of this probability
distribution. Similarly, decoding can be described as the process
that computes the probabilities for each value of x that this value
has led to the observed firing pattern r, and then selects a value x̂
appropriately. A decoder can directly compute these probabilities
if it has full access to the conditional probability distribution p(rjx),
by essentially inverting the encoding process i.e. by considering
p(rjx) as a function of the stimulus variable x. This constitutes the
likelihood function. The maximum likelihood decoder, i.e. the
decoder that selects the estimate x̂ with highest likelihood, is a
popular decoder under conditions of minimal assumptions.

More powerful, however, is a decoder that also takes into account that
different values of x do not necessarily occur with same probability, but
rather follow some ‘‘prior’’ probability distribution p(x). If the decoder
knows (or believes to know) this distribution, it could refine an estimate
it otherwise would have performed based on the likelihood function
alone, by computing the probability of a particular value of the stimulus
variable x given the observed response r, written as the conditional
distribution p(xjr). Bayes’ identity p(xjr) = 1/p(r)p(rjx)p(x) tells us that
this conditional probability distribution (called the ‘‘posterior’’) is
exactly given by the normalized product between the likelihood
function p(rjx) and the prior probability p(x). Decoding is completed by
choosing an appropriate value x̂. Again, popular choices are estimates
x̂ that have maximal probability (MAP, maximum a posteriori), or
reflect the posterior mean. In general, the specific choice depends on
how the overall estimation errors are weighted (loss function). We refer
to this decoder as the Bayesian observer model, which is a simple
description of a rational observer that correctly combines sensory and
prior information when performing an estimate.

Note that the Bayesian observer model, although it is typically
referred to as a ‘‘decoding model’’, contains full information about
the encoding process via the likelihood function.
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that contain the same content (despite their differences).
In contrast to the ambiguity challenge, which has largely
been studied by psychophysicists, the invariance chal-
lenge has largely been addressed by the physiology and
computer vision communities. One likely reason for the
separation is that the encoding/decoding framework pre-
sented in Figure 1, and implicitly assumed by most
psychophysical models, has not proven useful for describ-
ing how the visual system deals with invariance. To
understand why, it is important to recognize that any
encoding description that simply maps a stimulus variable
x directly onto the responses of an invariant neural popu-
lation r does not address the invariance challenge. For
example, a model that describes a direct mapping from
different moving patterns parameterized by their motion
direction to the directionally selective responses of
neurons in MT need not describe how motion direction
was extracted from the specific spatiotemporal patterns of
light. Thus any model that addresses the invariance
challenge must include a description of how an estimate
of a stimulus variable x̂ is extracted from a retinal image
I(x). More subtly, some have argued that attempting to
describe the highly complex mapping from I(x) to the
stimulus estimate x̂ with a two-stage encoding/decoding
framework may be possible in theory but not feasible in
practice; one example is the highly nonlinear transform-
ation of a light-intensity based retinal image into a
representation of object identity invariant to changes in
an object’s position, size, background and pose [24,25!!].
As described below, models that address the invariance
challenge are often motivated by the multi-stage struc-
ture of the visual system and thus extend the encoding/
decoding framework to include a cascade of gradual,
simpler operations.

Neurons implicated in invariant representations are much
better described as ‘‘tolerant’’ than ‘‘invariant’’ in that
these neurons do not tend to perfectly maintain their
firing rate responses to different stimuli across conditions
(e.g. changes in position), rather, they tend to maintain
their relative preferences for particular stimulus variables
across these changes. Under this definition, solutions to
several invariance problems have been identified in the
responses of visual neurons: V1 complex cells respond to
an oriented bar in a manner largely independent of
whether it is bright or dark [26]; a subset of MT neurons
are tuned for motion direction in a manner largely inde-
pendent of the particular moving pattern [27]; a subset of
V2 and V4 neurons signal the relative depths of two
surfaces at least somewhat independent of absolute depth
[28,29]; a subset of MT neurons maintain their prefer-
ences for the orientation of a 3-dimensional surface (‘tilt’)
in a manner largely independent of changes in absolute
depth [30]; V4 neurons tend to maintain their selectivity
for curvature over a range spatial positions [31]; and many
IT cells maintain their selectivity for objects across
changes in an object’s position and size [32,33]. Recent

theoretical work supports the idea that within some
limitations, these tolerances, measured in individual
neurons, can combine to form neural populations that
robustly support the estimation of a particular stimulus
variable in the face of other variation [34!].

How does the visual system produce neural responses
that preserve their relative selectivity for stimulus vari-
ables tolerant to other variation? Hubel and Wiesel’s
initial descriptions of V1 complex cells proposed that a
complex cell might extract orientation invariant to bar
polarity by combining input from simple cell subunits
with the same orientation preference but different bar
polarity sensitivities ([26], formalized in the ‘‘Energy
Model’’ [35]). While the anatomical validity of this hy-
pothesis continues to be a topic of debate [36], this
formulation continues to be a useful functional (i.e.
mathematical) description of the response properties in
these cells (e.g. [37]). Recently, similar ideas have been
extended to describe invariant computation in visual
areas beyond V1. All of these models include an initial
stage of processing that converts the retinal image into the
responses of a V1 population, followed by an invariant
computation in a higher visual area. For example, one
recent reported accounted for the preservation of V4
curvature selectivity over changes in position using a
model in which curvature-tuned units were first produced
by combining V1 complex cells with different spatial
position and orientation preferences. This was followed
by the combination of units with similar curvature tuning
but different position preferences to confer units with
position-tolerant, curvature-tuned responses [38].
Another recent study captured the invariance of
relative-depth tuned V2 neurons across changes in
absolute depth with a model that combined V1 units
tuned for absolute depth in a manner similar to the
‘‘Energy Model’’ description of a V1 complex cell [28].
Yet another recent report described how MT neurons
extract motion direction invariant to the particular pattern
of the moving stimulus (i.e. gratings versus plaids) using a
cascaded framework [39!,40]. In the first stage of this
model, spatiotemporal motion patterns were converted
into the responses of a V1 directionally selective popu-
lation. The second stage of the model applied a simple
linear (excitatory and inhibitory) weighting profile to the
V1 input, configured to produce a matched direction
preference invariant to the particular moving pattern.

These models are consistent with the notion that each
visual area may implement a similar ‘‘canonical’’ compu-
tation albeit upon different inputs to produce an increas-
ingly complex representation as signals propagate along
the visual system [41,42,43!!,44]. Notably, many success-
ful models that describe the transformation of pixel
intensity into an invariant representation of object iden-
tity (e.g. across position, size, background and pose)
incorporate a relatively simple, canonical, feed-forward
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framework (e.g. [42,45–48]). Intuitively, each stage of
processing in these models implements a small amount
of increased ‘‘selectivity’’ for conjunctions of simpler
features (e.g. tuning for bars becomes tuning for contours)
as well as a small amount of ‘‘invariance’’ for other
variations (e.g. in the specific position of the con-
tour)[43!!]. The end-product of these successive stages
is a population representation (e.g. in IT) in which simple
neural machinery (such as a linear weighting function)
can be applied to the population representation to extract
object identity despite other stimulus variation [25!!].
Recent experiments verify that such representations exist
in IT [49].

Addressing both ambiguity and invariance
Thus far, we have treated ambiguity and invariance as if
they were distinct challenges, i.e. as if at any onemoment,
the visual system has to deal with either one or the other.
In reality, it seemsmore likely that the visual system faces
both challenges simultaneously: while the invariance
challenge is essentially synonymous with the task of
recognition, the visual information required for recog-
nition is often incomplete or missing. Thus it is often
advantageous for the visual system to use contextual,
prior information when solving a recognition task. In fact,
behavioral evidence suggests that the visual system con-
sistently relies on prior information to improve recog-
nition performance even under conditions in which the
visual information alone is sufficient for recognition. For
example, several studies have demonstrated that humans
recognize objects more quickly when presented in an
expected as compared to an unexpected context (see [50]
for a review). Similarly, the prior expectation for slow
visual speeds biases the percept of moving objects toward
slower speeds even under high contrast conditions [9].

Given that the visual system simultaneously deals with
ambiguity and invariance under natural viewing con-
ditions, a complete understanding of visual processing
requires models that incorporate solutions for both com-
putational challenges. The simplest instantiation of this
modeling effort would be to address invariance and
ambiguity in two sequential steps, i.e. a multi-stage
model that describes the conversion of I(x) into an invar-
iant representation r of the stimulus variable x, followed
by a Bayesian observer model to explain how the brain
considers prior information when arriving at an estimate x̂.
In such model, contextual information could only be
applied to the highest level of representation (e.g. to
the identity of a person but not to the low-level statistics
of the world).

As a more sophisticated approach, ‘‘Hierarchical Bayesian
models’’ extend the Bayesian observer model to incorp-
orate prior information at each level of a multi-stage
processing hierarchy [51]. Invariant recognition could
be achieved with feed-forward computation in such a

model where priors reflect the overall statistical distri-
butions of the stimulus features represented at each level.
For example, prior information about the distributions of
orientation and spatial frequency in natural scenes could
be incorporated into the tuning characteristics and distri-
butions of neurons in area V1. The ‘‘Efficient coding’’
hypothesis suggests that the tuning of sensory neurons
should be distributed in a manner that efficiently
represents image statistics [52]. However, how an effi-
cient representation of image statistics relates to a resol-
ution of ambiguity in the Bayesian framework remains
little understood.

In addition to feed-forward computation, feedback oper-
ations in these hierarchical Bayesian models can provide a
means to incorporate statistical dependencies between
stimulus representations at different levels of abstraction.
For example, the task of identifying a person from a
retinal image can be mapped to a hierarchical Bayesian
model where the lowest level represents simple image
features like edges, that are then combined into increas-
ingly complex subparts, up to the highest level that
represents identity [53–55]. The feedback connections
can be understood as a prediction of the higher level
representation for what is expected at lower levels (e.g.
‘‘If the person is Suzie, then the eyes are likely to be
brown’’). The lower level then uses this prediction as
prior information and combines it with input from an
earlier stage [56]. Furthermore, feedback connections
provide a way to model how the visual system could
propagate perceptual decisions down the hierarchy,
explaining, for example, some of the reported perceptual
biases in estimating motion direction contingent on an
earlier decision about motion category [57!].

In sum,Hierarchical Bayesianmodels provide a potential
framework for understanding how the visual system
simultaneously deals with ambiguity and invariance.
Some recent studies have begun to explore how humans
can learn [58!!] and perform inference [59,60] in hier-
archical representations. How these models might be
implemented in the neural architecture of the visual
system is an issue that we are just beginning to address
[61!,62].

Conclusions
We began this discussion by simplifying visual processing
as a two-stage encoding/decoding process. We have
demonstrated how two fundamental challenges of visual
processing, ambiguity and invariance, can be formulated in
this framework and we have described how multi-stage
extensions of this model might incorporate both prior
knowledge to resolve ambiguity as well as invariance to
extract stimulus content. Notably, the ambiguity problem
has primarily been emphasized by the theoretical and
psychophysical communities whereas the invariance pro-
blem has primarily been emphasized by the communities
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studying computer vision and physiology. Future progress
in our understanding of visual processing will undoubtedly
benefit from discussions and collaborative efforts between
these subfields.
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