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1 Introduction

Recently the ambiguity effect (Ellsberg, 1961) has received a great deal of atten-
tion from psychologists and philosophers interested in decision theory (Einhorn
& Hogarth, 1985; Frisch & Baron, 1988; Grdenfors & Sahlin, 1982; Heath &
Tversky, 1991). The original ambiguity effect was the finding that people often
prefer to bet on gambles with a known chance of winning as opposed to those
where the chance of winning is unknown. For example, consider the following
two gambles:

Gamble 1: A marble will be drawn from an urn containing 50
black marbles and 50 white marbles. You win $100 if the marble is
black. (Or, you can pick a color and you win if that color is drawn.)

Gamble 2: An urn contains 100 marbles. Between 0 and 100 are
black and the rest are white. A marble will be selected at random
from the urn. You win $100 if the marble is black. (Or, you can
pick a color and you win if that color is drawn.)

From the perspective of expected-utility theory, as we shall explain, these
two gambles are equivalent. There is no reason to think that black is more or
less likely than white in either case, and there is no other possible outcome.
It therefore makes sense to think that the probability of winning is 1/2 in ei-
ther case. Nonetheless, many people prefer Gamble 1. Ellsberg used the term
ambiguity for the kind of unknown risk in Gamble 2. A situation in which the
‘probability is unknown’ is called ambiguous.

In principle, you can make money from someone who dislikes ambiguous
bets (Camerer and Weber, 1992, p. 359). You can remove the ambiguity from
Gamble 2 by flipping a coin in order to decide which color wins (Raiffa, 1961):
the chance of winning is clearly 50% in this case. An ambiguity averter holding
a ticket on ‘black in Gamble 2’ will therefore pay you to trade it for ‘black if
heads and white if tails.’ Then flip the coin. If it is heads, do nothing, and you
have been paid to return the person to her original state. If it is tails, get her
to trade her bet on white for a bet on black. (Surely she is indifferent between
these.) Again, she has paid you to get her back where she started.

Although this particular con game has apparently not been tried, Tversky
and Kahneman asked subjects about the following game: ‘Two boxes each con-
tain red and green marbles. A marble is drawn from each box; if their colors
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match, you win $60. In game A, both boxes have 50% red marbles and 50%
green marbles. ... In game C, both boxes have the same composition of red and
green marbles, but the composition is unknown’ (cited by Camerer & Weber,
1992, p. 359). Most subjects preferred to play game A, but the chance of win-
ning is higher in C. The decision rules that people follow thus fail to maximize
their winnings in the long run. This fact suggests that aversion to ambiguity is
an error. We shall examine this suggestion.

In a three-color version of the Ellsberg paradox, an urn contains 90 balls.
Thirty of them are red, and 60 of them are either black or yellow - we do not
know which. A ball is to be drawn from the urn, and we can win some money,
depending on which ball is drawn and which option we take, as shown in the
following table:

30 60 balls
red ----------------
balls black yellow

Option X $100 $0 $0
Option Y $0 $100 $0

Most subjects lean toward option X. They ‘know’ that they have a 1/3
chance of winning in this case (30 out of 90 balls). They do not like option
Y because they feel that they do not even know what the ‘real probability’ of
winning is. It appears to them that it could be as high as 2/3 or as low as 0.
Now consider the following pair of options:

30 60 balls
red ----------------
balls black yellow

Option V $100 $0 $100
Option W $0 $100 $100

In this example, most subjects prefer option W, because they ‘know’ that
their chance of winning is 2/3, whereas their chance of winning with option V
could be as low as 1/3 or as high as 1.

Note that subjects reversed their choice merely because the ‘yellow’ column
was changed. According to the independence principle, you should ignore any
column that has the same entries for both options. So your choice should not
be affected by whether the ‘yellow’ column contains $100 for both options or
$0. Hence, this pattern violates the independence principle.

Many people, nonetheless, feel a strong temptation to make the choices as
Ellsberg’s subjects (mostly economists) did, choosing X and W. Becker and
Brownson (1964) have even found that subjects will pay money to avoid making
choices in which the probabilities seem to be ‘unknown.’

Kashima & Maher (1992; see also Maher, in press) examined a modification
of the Ellsberg paradox in which you are first told whether or not the ball is
yellow. Then, if the ball is not yellow, you have a choice between X and Y
or between V and W. Ellsberg-type subjects presented with these modifications
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tended to chose X and V (thus not violating independence) rather than X and W.
(Note that the switch cannot be explained in terms of information supplied by
the fact that the ball is not yellow. If anything, that should raise the probability
of a black ball and incline the subject toward W.) All that changed was the order
in which information was revealed before the choice, yet the subjects could have
anticipated such revelations at the time the original choice. Again, this fact
suggests that ambiguity aversion is an error.

The Ellsberg example is a particularly clear case, but it is not isolated. Am-
biguity enters many of our real decisions and opinions, such as those concerning
the safety of nuclear power plants or the future of Soviet military policy. The
ambiguity effects pits strong intuitions about an example against a powerful
normative theory: that of expected-utility (EU) maximization. Many theorists
(Shafer, 1976, 1981; Grdenfors & Sahlin, 1982) have taken it, or closely related
phenomena, as a starting point for the development of what they take to be
alternatives to EU theory and the Bayesian probability theory that it implies.
Rawls (1971) argued for the worst-case decision rule in cases of ambiguity in
the ‘original position,’ and the use of this rule provided a major argument for
the difference principle, in which primary goods are distributed so as to benefit
the least advantaged group.

This phenomenon and related examples demonstrating subjects’ aversion to
ambiguity has led to empirical research examining the causes and effects of am-
biguity (Curley & Yates, 1985, 1989; Curley, Yates, & Abrams, 1986; Einhorn &
Hogarth, 1985; Heath & Tversky, 1991), as well as theoretical work attempting
to specify the relevance of ambiguity for normative models of decision making
(reviewed by Camerer & Weber, 1992).

More generally, Ellsberg’s (1961) seminal finding has been important because
it calls into question three fundamental claims in utility theory, as presented by
Savage (1954). Savage (1954) showed that the principle of maximizing EU could
be derived from a set of seemingly uncontroversial axioms. Utility theory, as
presented by Savage, consists of three related claims:

Measurement Claim: subjective probabilities can be defined in
terms of preferences among gambles;

Descriptive Claim: utility theory describes people’s behavior;
Normative Claim: the rule of maximizing EU is a normative rule

of decision making.

First, Savage showed that subjective probabilities could be defined in terms
of preferences (if certain ‘axioms’ were true of sets of preferences). By defining
probabilities in terms of preferences, Savage was able to develop the concept
of subjective probability in a way that was acceptable to behaviorally oriented
theoreticians.

Second, Savage proposed his theory as a descriptive model of choice under
uncertainty. Utility theory was assumed to be a reasonably accurate model of
people’s choices under uncertainty. A crucial implication of this theory is that
there is no meaningful distinction between ‘known risk’ and ‘uncertainty.’
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Finally, Savage showed that the principle of maximizing EU followed from a
set of intuitively compelling axioms. Thus, Savage presented a strong justifica-
tion of utility theory as a normative model. In Savage’s (1954) theory, choice is
a function of utilities and probabilities, where probabilities are one’s subjective
estimates of the likelihood of states of the world.

The ambiguity effect provides first-blush evidence against all three of Sav-
age’s claims. While previous discussions of ambiguity have noted the relevance of
ambiguity for each of these claims, the implications have not been distinguished
very clearly. In this paper, we shall discuss the implications of ambiguity for
each of Savage’s claims and show how the ambiguity effect leads to new insights
into the uses and limits of utility theory. We conclude with a discussion of
prescriptive implications, that is, implications for practice.

2 The measurement claim

There are two distinct ways of operationalizing the notion of ‘degree of belief’
or subjective probability (Ramsey, 1931). First, one can define a subjective
probability as an intuitive judgment of probability. On this view, the way to
measure subjective probabilities is to ask people. We can call this tradition
the introspective interpretation of subjective probabilities. Alternatively, one
can define subjective probability as a theoretical entity that is inferred from
a person’s choices. We can call this tradition the behaviorist interpretation of
subjective probabilities, since probabilities are defined in terms of choices and
are inferred from choices. One of Savage’s contributions was to show that if
certain constraints were true of people’s preferences, then probabilities could be
inferred from choices. Savage’s theory was very useful to researchers wanting to
apply the behaviorist interpretation.

When Ellsberg (1961) first discussed the issue of ambiguity, most researchers
were committed to the behaviorist interpretation of subjective probabilities.
Ramsey (1931) and others (Marschak, 1975) argued that one cannot just ask
people for probability judgments. They claimed that if you ask people for prob-
abilities, the answers you get are not necessarily meaningful. Both Ramsey
(1931) and Savage (1954) suggested that people may not have access to intu-
itions about ‘How likely is X.’ They also suggested that such intuitions may
have nothing to do with behavior. Ramsey argues: ‘..the quantitative aspects
of beliefs as the basis of action are evidently more important than the intensities
of belief-feelings.’ (p. 171). Savage puts it quite clearly: ‘Even if the concept
were so completely intuitive, which might justify direct interrogation as a sub-
ject worthy of some psychological study, what could such interrogation have to
do with the behavior of a person in the face of uncertainty, except of course for
his verbal behavior under interrogation?’ (p. 27).

Thus, when Ellsberg wrote his paper, many researchers believed that the only
sensible way to define subjective probabilities was in terms of behavior. The am-
biguity effect demonstrated that the probabilities inferred from choices are not
coherent. That is, if a person states a pattern of preferences in which ambiguity
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is avoided (or preferred), then it is impossible to assign coherent probabilities
to that person. For example, if the person prefers Gamble 1 whether black or
white is associated with the payoff, then the probability of white in Gamble 2
must be less than the probability of white in Gamble 1, and the probability of
black in Gamble 2 must be less than the probability of black in Gamble 1. If the
probability of white and black in Gamble 1 are .5, then the probabilities of the
two outcomes of Gamble 2 must add to less than one. Thus, Ellsberg’s finding
called into question the validity of the concept of subjective probability. This
finding was obviously troubling to researchers in decision making. If observable
behavior (choices) is the only type of admissible data and the probabilities in-
ferred from this observable behavior are incoherent, then one could not develop
a theory of decision making in terms of probabilities and utilities.

In the past two decades, researchers have become increasingly comfortable
with the practice of asking people for probability judgments directly (e.g. Kah-
neman et al., 1982). Although such data were inadmissible 25 years ago (see
e.g. Marschak, 1975), today the practice of asking subjects to give probability
assessments is very common. For example, Kahneman and Tversky’s work on
judgment under uncertainty largely involves experiments in which subjects are
explicitly asked for probability ratings. Perhaps this increased willingness to ask
for numerical judgments is a result of the increase use of scoring rules both in
theory (Lindley, this volume) and practice (Murphy & Winkler, 1977): scoring
rules provide a behaviorist constraint on numerical judgments.

Nonetheless, we cannot assume that all problems with probability elicita-
tion have been solved. Until they have been solved, and so long as hypothetical
decisions are used to elicit probabilities, the ambiguity effect is relevant to prob-
ability measurement as well as to decision making.

3 The descriptive claim

Given that psychologists have become increasingly comfortable assessing prob-
abilities directly as opposed to inferring them from preferences, it now makes
sense to ask whether ambiguity affects preferences directly or through an effect
on probabilities. Although this question would not have made sense to Sav-
age or Ellsberg, it is a reasonable question today, since we accept as data both
probability judgments and preference judgments.

An important goal of research on ambiguity is to explain why ambiguity
influences choices in the ways it does. There have been two basic approaches to
explaining ambiguity, one in which ambiguity affects beliefs (probabilities) and
one in which ambiguity affects preferences directly.

Effects on belief. Some authors have attempted to explain ambiguity as an
effect on belief. Einhorn and Hogarth (1985) account for ambiguity effects in
terms of distortion of beliefs. In particular, when subjects are given an ambigu-
ous probability - or some results that imply one - they use that probability as an
anchor and they adjust it, as if they were adjusting toward some central point
by regression. Adjustment is less when the anchor is near 0 or 1 than when it is
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more central. The central point itself depends on the subject and the situation;
it may be taken as an index of optimism or pessimism when the outcomes differ
in utility. The mechanism for this adjustment is the imagination of values both
higher and lower than the anchor, and the averaging of these imagined values.
The adjusted probability is then entered into the decision as if it were a stated
probability.

In order to obtain results that support this view, subjects must not be told
the overall ‘marginal’ probability, or else they must be discouraged from taking it
too seriously. When this is done, most results support the theory. (Camerer and
Weber, 1992, provide a thorough review.) The most important result is that the
stated probabilities assigned to complementary events can systematically sum
to less than one (Einhorn & Hogarth, 1985). For example, one subject, told
that 4 witnesses has identified a car as blue and 1 had identified it as green gave
.77 as the probability that it was blue. On another trial of the experiment, the
subject gave .18 as the probability that the car was green, based on the same
data (Table 4).

The Einhorn/Hogarth model predicts that adjustments resulting from am-
biguity will be greater for more extreme probabilities. It therefore accounts for
the fact that some people prefer to bet on an ambiguous urn when the proba-
bility of winning is very low: each urn contains 1000 balls; you win if #683 is
drawn; in the unambiguous urn, the balls are numbered 1 to 1000; and in the
ambiguous urn, each ball can have any number in that range. (According to
Becker & Brownson, 1964, such preference for ambiguity was observed by Ells-
berg; Einhorn & Hogarth, 1986, present additional supporting data.) According
to the model, subjects assume that the probability of drawing #683 is greater
in the ambiguous urn. Although this prediction has not been directly tested by
asking subjects to compare the probabilities, no other model has been proposed
to account for such findings.

The regression of belief strength toward some reference level is a reasonable
strategy when evidence is poor. For example, if you are told that the probability
of streptococcus infection is 10% in people with fever, sore throat, and swollen
glands, but a recent study of 10 patients with sore eyes in addition found that
9 of them had this infection, a reasonable estimate of the true probability for
a patient with all four symptoms would be closer to .40 than to .90. This re-
gression heuristic can be overgeneralized to cases in which it is inappropriate,
however. In the context of an experiment, adjusting beliefs is amounts to per-
versity when an experimenter specifies that they should not be adjusted. For
example, when subjects are told that the probability of a disease depends on
membership in a risk group, but membership in the risk group is unknowable
and the overall probability of the disease is X (taking into account both mem-
bers and nonmembers), the subject would be perverse not to accept the value
of X as the probability. Of course, a subject who accepted the value of X might
still prefer to bet on some other event with the same probability. That is a
different issue.

In real life, however, probabilities are not so constrained. When the Food
and Drug Administration tells us that the increased lifetime risk of cancer from
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some birth-control method is .003, we are not necessarily irrational to adjust that
figure upward. In particular, we might have good reason to believe that such
figures are generally underestimates and that the tendency to underestimate
risk is greater when less information is available. Studies of changes in expert
probability estimates as a function of increased data are needed. (Loewenstein
& Mather, 1990, report such data for public perceptions.) It may well turn
out that risk estimates first increase as a risk first enters our consciousness on
the basis of preliminary findings and then decrease, in part because of regres-
sion to the mean (since studies would not be done if no risk is perceived) and
in part because initial estimates are often based on ‘worst case’ assumptions.
These assumptions, of course, are the result of psychological processes like those
described by Einhorn and Hogarth. Thus, non-experts may be unwise to ad-
just reported probability estimates upward, if the estimates have already been
revised upward once by the experts who produced them.

More generally, whether probability estimates should be adjusted depends on
the social context in which they were generated. The rationality of adjustment
depends on the facts of the matter in the social context. It could go either way.
In sum, the adjustment of beliefs because information is ambiguous is a useful
heuristic that may sometimes be overused.

Effects on preference. Although Einhorn and Hogarth (1985) present evi-
dence demonstrating that ambiguity can influence choice through an effect on
beliefs, this is not a sufficient explanation for all ambiguity effects. In Ellsberg-
type experiments, at least the more sophisticated subjects can figure out the
marginal probability for themselves, so accounts in terms of belief are unlikely
to account for these results. Frisch (1988), Ritov and Baron (1990), and Heath
and Tversky (1991) gave subjects the marginal probabilities, or asked subjects
to provide them, so their results clearly demand an explanation in terms of pref-
erence rather than belief. (See Winkler, 1991, for other arguments concerning
a preference account.)

Frisch and Baron (1988) provide an explanation for why ambiguity influ-
ences preferences, independent of beliefs. Ambiguity effects may be a result of
our perception that important information is missing from the description of the
decision (Frisch & Baron, 1988). Perhaps, then, we avoid ambiguous options
because we really want to exercise another option: that of obtaining more infor-
mation. (Roberts, 1963, p. 335, attributes this idea to Ward Edwards.) When
this other option is available - as it often is - it is perfectly rational to choose
it, providing that the information is worth obtaining. When the information is
not available, however, or not worth the cost, we would do better to put aside
our desire to obtain it and go ahead on the best evidence we have, even if it is
‘ambiguous.’ More generally, we can think of our tendency to avoid ambiguous
decisions as a useful heuristic that points us toward the option of obtaining more
information. From a prescriptive point of view, we probably do well to follow a
rule of thumb that tells us to avoid irreversible commitments when information
is missing. If we can learn to put this rule aside when the missing information
is too costly or truly unavailable, however, we shall achieve our goals more fully
in the long run.
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Note that the effect of missing information is a matter of perception. In
principle, an apparently unambiguous option could become ambiguous by calling
attention to missing information. For example, in an urn with 50 red balls and
50 white ones, the probability of a red ball seem to be .5, without ambiguity.
But think about the top layer of balls, from which the ball will actually be
drawn. We have no idea what the proportion of red balls is in that layer; it
could be anywhere from 100% to 0%, just like the proportion of black to yellow
balls in the Ellsberg paradox. By thinking about the situation in this way, we
have turned an unambiguous situation into an ambiguous one. The idea that
some probabilities are ‘objective’ is simply a consequences of our not paying
attention to unknown determinants of each event.

Support for our proposal comes from a study of hypothetical vaccination
decisions (Ritov and Baron, 1990). In one experiment, subjects were told to
imagine that their child had a 10 out of 10,000 chance of death from a flu
epidemic, a vaccine could prevent the flu, but the vaccine itself could kill some
number of children. Subjects were asked to indicate the maximum overall death
rate for vaccinated children for which they would be willing to vaccinate their
child. Most subjects answered well below 9 per 10,000. Of the subjects who
showed this kind of reluctance, the mean tolerable risk was about 5 out of
10,000, that is, half the risk of the illness itself. The results are also found when
the subject is asked to take the position of a policy maker deciding for large
numbers of children. This result was interpreted as a biased toward omission,
toward the default option of not vaccinating.

Of interest here is what happened when this manipulation was combined
with ambiguity. In two experiments, subjects were told that the effect of vacci-
nation, or of the flu, depended heavily on whether the child was in a ‘risk group.’
Children not in the risk group were save, but those in the risk group were sub-
ject to a considerable risk. The test for the risk group was not available. Thus,
all that could be known was the overall probability of death in each case. The
risk group was a form of salient missing information, which should, according to
Frisch and Baron, induce a reluctance to choose the option in question. Subjects
were in fact less willing to vaccinate when the result of vaccination was affected
by membership in the risk group, thus supporting our hypothesis. Interestingly,
the risk group did not affect preference when it applied to the effect of the flu.
It seems that the effect of missing information reduces the tendency to act but
has no effect on the tendency to omit action. This asymmetry deserves further
investigation.

Heath and Tversky (1991) provide an account of ambiguity effects that is
similar to that of Frisch and Baron (1988). They argue that people prefer to bet
when their perceived competence is high. In several experiments, subjects were
asked to give probabilities of answers to various questions, such as questions
about general knowledge, football predictions, or political predictions. Subjects
were then asked whether they would prefer to bet on their answers or on chance
lotteries (based on colored poker chips) with the same probabilities. Subjects
chose their answers when the probability they had assigned was high (indicat-
ing competence) or when they knew a lot about the subject. Subjects chose
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the lotteries when their probabilities were low or when they knew little. Heath
and Tversky interpreted these results as follows: ‘... holding judged probabil-
ity constant - people prefer to bet in a context where they consider themselves
knowledgeable or competent than in a context where they feel ignorant or unin-
formed. We assume that our feeling of competence in a given context is deter-
mined by what we know relative to what can be known. Thus, it is enhanced by
general knowledge, familiarity, and experience, and is diminished, for example,
by calling attention to relevant information that is not available to the decision
maker, especially if it is available to others’ (p. 7).

They suggested that this competence effect has both cognitive and motiva-
tional determinants. Cognitively, the effect results from an overgeneralization
of a rule that people do better in situations about which they have more infor-
mation. Motivationally, Heath and Tversky suggest that the effect can result
from anticipations of credit and blame: subject would expect more blame for a
wrong guess on a lottery than for a wrong guess on an equally probable item
in which the subject was expert. Such an expectation, however, requires the
subject to assume that others are committing a cognitive error. Either this is
true, in which case a cognitive error is being made somewhere, or not, in which
case the subject is making an error in predicting the reactions of others. We
also have no reason to think that subjects would expect others to make such
an error, unless the error were often made. Thus, we regard the motivational
account as secondary to some sort of cognitive account, if it is true.

Regardless of the source of this competence effect, its similarity to our earlier
hypothesis is striking. In both accounts, the appearance of missing information
leads to an unwillingness to bet, and Heath and Tversky’s cognitive account is
similar to our account in terms of overgeneralization of the reluctance to act
when missing information might be available.

Some effects attributed to effects on beliefs (as postulated by Einhorn &
Hogarth, 1985) might be at least partially the result of direct effects of per-
ceived missing information on choice. For example, Kunreuther and Hogarth
(1989) describe the effects of ambiguity on decisions about buying and selling
(hypothetical) insurance contracts. In their experiments - done with actuaries
as well as business-students - subjects set higher prices for insurance when risks
were ambiguous. Ambiguity was manipulated by telling subjects that experts
disagreed about the probability of the adverse event in question. Subjects were
also told the mean of the experts’ judgments, however, and this was held con-
stant between ambiguous and unambiguous conditions. It therefore seems likely
that subjects regarded the question of why the experts disagreed as missing in-
formation, so they were more reluctant to accept the risk.

In sum, two different mechanisms seem to produce ambiguity effects, one
involving belief and the other involving preference. The former tends to mod-
erate extreme beliefs when they are ambiguous. The latter inhibits people from
choosing an option when they feel that information about its consequences is
missing.
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4 The normative claim

Savage (1954) provided a rationale for a normative theory which implies that
uncertain states of the world are all assigned personal probabilities and decisions
are consistent with the maximization of expected utility based on these proba-
bilities. An important implication of Savage’s theory is that ‘...for a ’rational’
man - all uncertainties can be reduced to risks’ (Ellsberg, 1961, p. 645). The
ambiguity effect demonstrates that many people do make a distinction between
different types of risk. Thus, people’s intuitions are in conflict with a normative
theory.

Central to Savage’s theory is a form of the independence principle, which can
itself be violated by people who are sensitive to ambiguity. Similar principles,
along with the principle of transitivity, are used in later developments along the
same lines (see Krantz et al., 1971, ch. 8).

Justification of the independence principle. Independence (in one form) re-
quires an analysis of decisions into options, uncertain states of the world, and
outcomes, which depend on the option and the state. According to the inde-
pendence principle, if the option chosen does not affect the outcomes in some
states of the world, then we can ignore the nature of these outcomes in those
states. For example, in option A, you get a 1/1000 chance to win $1000 if a coin
flip comes up heads, and $Z for sure if it comes up tails. In option B, you get
$1 for sure if it comes up heads, and $Z for sure if it comes up tails. Z has the
same value in both options. By the independence principle, you should make
the same choice regardless of the value of Z, because in the state of the world
‘tails’ the outcome is the same regardless of my choice. Your choice really comes
down to whether you prefer the dollar or the chance to win $1000.

More generally, the independence principle can be described in terms of a
table like the following, in which the rows are the options and the columns are
uncertain events or states of the world (as described by Jeffrey, 1983):

state 1 state 2 state 3
option A V X Z
option B W Y Z

The entries in the table are the outcomes (V-Z). In the example just given,
state 3 corresponds to tails, state 1 corresponds to heads and winning the lottery,
state 2, to heads and losing. W and Y are both $1, V is $1000, and X is
$0. By assumption, the entries in one column (state 3) are identical. The
options therefore differ as a function of the choice only in the other columns.
The independence principle states that the outcomes in the identical column
(Z, here) should not affect the decision. The non-identical columns affect the
decision in the same way, regardless of what is in the identical column.

If you follow independence and transitivity (plus other axioms that are less
important), then you must make decisions as though you assigned probabilities
to uncertain states of the world, assigned utilities to outcomes, multiplied the
probability of each outcome by its utility, added up these products for the pos-
sible outcomes of each option, and chose the option with the highest sum (EU).
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If you accept the axioms as constraints on your decision, then, normatively, you
should not violate this EU formula.

How can the independence axiom be justified? One line of justification may
be based on the definition of utility in terms of goal achievement (or, equivalently
for this purpose, desire satisfaction). Importantly, we take utility to be a real
property of states of the world, not an intervening variable designed to explain
preferences. Thus, as Kahneman and Snell (1992) argue, judgments of utility are
more like predictions than reports of inner states. When we make a judgment of
the utility of an outcome, we are predicting how much that outcome will achieve
all of our goals taken together. Note that, by this view, to say that two entries
in the table are the same (e.g., to label them with the same letter) is to say that
they are equivalent in terms of achieving goals.

Now, given this kind of table, we have two possibilities. Either the identical
state (state 3) occurs or one of the non-identical states (state 1 or 2). If the iden-
tical state occurs, then the nature of the identical outcome (Z) does not affect
the achievement of goals as a function of the option chosen, since the outcome
is the same regardless of the option chosen. If one of the non-identical states
occurs, then the nature of the identical outcome does not affect the achievement
of goals either, because the identical outcome (Z) does not occur. Achievement
of a goal is a matter of fact, so it depends on what is true of the world af-
ter the decision is made. (Recall that we have assumed that no goals concern
counterfactual outcomes.) In sum, the nature of Z, the identical outcome, does
not matter if Z occurs, and it does not matter if Z does not occur, so it does
not matter. Independence therefore follows from the idea that rational decisions
should be determined by the extent to which their outcomes achieve goals. (The
same kind of argument can be used to defend related principles, such as those
involving dominance or independence of irrelevant alternatives.)

Why people might still want to violate independence. The independence prin-
ciple is usually illustrated with monetary outcomes, as in the Ellsberg paradox.
When the entries in the table represent monetary outcomes, people may want to
violate the principle for a couple of reasons. First, forgone or counterfactual out-
comes affect their emotions, or more generally, the way in which consequences
are experienced (before, during, or after they occur). For example, if Z is $1 in
the table, then X ($0) could cause a feeling of regret, since you would realize
that if you had chosen B you would have won something no matter what. If Z
is $0, however, it will be easier for you to tell yourself that you might have won
nothing anyway. Your experience of X is therefore changed by your knowledge
of Z. In terms of goal achievement, then, X is no longer the same outcome for dif-
ferent values of Z. It should be represented with different symbols depending on
the value of Z. Because the independence principle for goal achievement requires
that X be the same consequence, the premise of the independence principle is
not true, and you have not violated it if you make different choices for different
values of Z. In sum, violations of independence (or of EU itself) that depend
on emotional experiences need not be violations at all once the experiences are
included in the descriptions of consequences. The trouble comes from describ-
ing the consequences as amounts of money. (Frisch & Jones, in press, make
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a similar point.) Evidence that subjects take such experiences into account in
making decisions is summarized by Harless (1992).

In case it is difficult to imagine when the assumptions of the independence
condition are met, consider the case of (what we shall call) Other decisions,
in which each decision is made for another person, who does not know what
the rejected options or counterfactual outcomes were, and in which we cannot
assume that the Other has goals concerning the effect of these unknowns on
choice (Baron, in press). If the decision maker truly took into account only the
utilities of the recipient, not her own utilities connected with making the deci-
sion, the emotional effects of forgone or counterfactual outcomes would largely
disappear. If the recipient’s utilities concerned only the outcomes that he would
know about, these effects would disappear completely.

For Self decisions (those made for the self), the fact that the same nominal
outcome (e.g., ‘$1000) may lead to different real outcomes as a function of
forgone options or counterfactual outcomes makes it difficult to test EU as a
descriptive theory from behavior alone. To test the theory for Self decisions, we
must measure the utility of outcomes in the context of the decision itself, using
other methods than how people make decisions under risk (Baron, 1988, ch.
16). We can use the theory normatively and prescriptively in the same way, i.e.,
by describing the outcomes in the context of the whole decision and allowing
its utility to depend on events that did not happen and options that were not
chosen.

If we want the utilities of outcomes to be independent of the context, we do
well to think about Other decisions. Our arguments in favor of the independence
principle applied most clearly to this case. If we use Other decisions to test the
theory descriptively, we will probably find all the same violations that have
been found in Self decisions, such as the effect of certainty. Some experiments
have used Other decisions decisions (Baron & Hershey, 1988; Kahneman &
Tversky, 1984; Ritov & Baron, 1990; Spranca, Minsk, & Baron, 1991), finding
that the theory still did not apply descriptively. In particular, the ambiguity
effect found by Ritov and Baron (1990) was in the context of an Other decision,
the vaccination of a child or (equally) a policy for vaccination of many children.
When the conditions are met for the independence principle to apply, violations
of that principle, such as the Ellsberg paradox, subvert the achievement of
goals. In that sense, the pattern of choices observed in the Ellsberg paradox is
nonnormative. We suggest that more research be done using Other decisions.
Ambiguity effects in Self decisions are not clearly nonnormative. When these
effects - and other effects - occur in Other decisions, they are more clearly
nonnormative. They may be considered as overgeneralizations of heuristics that
might be useful for Self decisions.

In sum, we have provided a defense of the independence principle in terms
of goal achievement. This defense is intended as an answer to criticisms of the
more traditional approach, which derives from the intuitive appeal of the axioms
themselves (e.g., Slovic & Tversky, 1974).
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5 The Allais paradox

The Allais paradox is another case in which the independence principle is vio-
lated (Allais, 1953). Consider the following gambles, in which the outcome is
decided by drawing a ball at random from an urn containing 100 balls with the
numbers 1 through 100 written on them:

{Number on ball drawn}
1 2-11 12-100

{Situation X}
Option 1 $1,000 $1,000 $1,000
Option 2 0 5,000 1,000

{Situation Y}
Option 3 $1,000 $1,000 $0
Option 4 0 5,000 0

Many people in this situation are tempted to choose Option 1 in Situation
X and Option 4 in Situation Y. In situation X, they are not willing to give up
the certainty of winning $1,000 in option 1 for the chance of winning $5,000 in
option 2: This extra possible gain would expose them to the risk of winning
nothing at all. (If you do not happen to feel this way, try replacing the $5,000
with a lower figure, until you do. Then use that figure in choice 4 as well.)
In situation Y, they reason that the difference between the two probabilities of
winning is small, so they are willing to try for the larger amount.

This pattern of choices violates the independence principle. Balls 12-100
lead to the same outcome ($1,000) regardless of whether we choose Option 1 or
2 in Situation X, and they lead to the same outcome ($0) whether we choose
Options 3 or 4 in Situation Y. By the independence principle, you should choose
Options 1 and 3, or Options 2 and 4, but you should not choose Options 1 and
4. Usually, the independence principle is intuitively attractive, but many people
are prone to violate it by choosing Options 1 and 4.

Shafer (1986) argues that it is not necessarily irrational to choose Options 1
and 4. He says that the ’constant‘ outcomes - those that are the same regardless
of our choice - affect our goals or desires in the situation. (Lopes, 1987, makes
a similar argument.) When we see that we can win a substantial sum of money
for sure in Option 1, this reduces our desire for the larger sum. When we see
that we are likely to lose no matter what, in Options 3 and 4, our desire to ’win
big‘ increases.

This argument is less relevant if we change the example. Instead of the
decision maker getting the money, it is donated anonymously and without ex-
planation to his favorite nephew, or whoever. This is an Other decision. The
nephew does not know what options were foregone or what states did not occur,
so his experiences are unaffected by these things. Moreover (we assume), the
decision maker has no reason to think that the nephew has any particular goals
concerning options that were not chosen, or states that did not occur, in having
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decisions made on his behalf. The nephew’s utilities thus cannot be affected
by counterfactual outcomes, so Shafer’s argument does not apply. We see here
how Other decisions are, in a sense, simpler than Self decisions. By Shafer’s
account, the assumptions of the independence principle are typically not met
in Self decisions, but it is easy to imagine how they might be met in Other
decisions.

The perspective of Other decisions also strengthens another argument for
the independence principle. Raiffa (cited in McClennan, 1983) points out that
we may view the original problem as a sequential decision, as follows:

First, a ball will be drawn out of an urn with balls numbered 1-100.
If the number drawn is between 12 and 100 inclusive, the outcome is
$1,000 (for Situation X) or $0 (for Situation Y). Otherwise, a second
draw is made from a new urn with balls numbered 1 through 12. For
Option 5, the outcome of the second draw is $1,000, no matter what.
For Option 6, the outcome is $5,000 if the number is between 2 and
11 inclusive but $0 if the ball is 1.

If we get to the stage of making the choice between Options 5 and 6, then
the outcome for number 12-100 is irrelevant, for it did not occur. Raiffa ar-
gues that it should be irrelevant whether we make the decision before we know
whether we get to the second stage of the game (as in the original Situations
X and Y) or after we know (as in this example). McClennan (1983), points
out that Raiffa and others who make similar arguments give no reason why
the timing of the decision should not matter; they simply assert it, or suggest
that most people’s intuition would agree. But, to answer McClennan, it is clear
that the timing would not matter to some Other who simply experienced the
consequences without knowing the sequence of events that led to it (assuming
that the Other has no goals concerning these non-experienced events).

6 Issues in application

We have argued that ambiguity effects can result from overgeneralization of
heuristics concerning the postponement of decision making when information is
perceived as missing. These effects can be nonnormative, that is, in opposition
to the optimal achievement of our goals. But issues remain concerning the
practical treatment of situations in which information is missing, for example,
cases in which probability judgments disagree and we lack information about
how to resolve the conflict. We discuss this problem here, as well as the problem
of defining true probability in practical contexts, and the role of experts in
decisions under ambiguity.

Conflict. Lindley, Tversky, and Brown (1979) have discussed the problem of
conflicting judgments from a Bayesian point of view. Theoretically, they assume
that judgments are a function of some underlying probability that we might call
’true.‘ If assumptions are made about the probability of each judgment given
each possible true probability, then Bayes’s theorem can be used to derive a
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probability distribution over the possible true probabilities, and the mean of
this distribution can be taken as the best estimate. In this way, judgments
made by different methods or by different people can be reconciled. Lindley et
al. give several examples.

True probability. But the true probability is still known only probabilisti-
cally. In fact, the concept of true probability requires explication. The very
distinction that inspired Ellsberg, that between uncertainty and risk (Knight,
1921; Luce and Raiffa, 1957) implies that some probabilities can be known with
certainty but others cannot be known, only judged. This distinction lies at the
heart of a number of recent alternatives to EU theory, reviewed by Camerer
& Weber (1992). Bayesians in the tradition of Savage are skeptical about this
distinction, however. They see cases of ’known risk‘ as merely convenient simpli-
fications, in which various judges and methods agree closely on the probability.
In some cases, this agreement has resulted from overwhelming of priors by ex-
tensive data. In other cases, it results from ignoring relevant data, as when a
judgment is made about the probability of a certain patient having a disease on
the basis of populations statistics, ignoring potentially relevant data about the
individual. From this Bayesian point of view, the only possible ’true‘ probabil-
ities are zero and one, and these apply mostly after the fact. Everything else
involves judgments based on incomplete information.

This sort of Bayesian stance runs into conflict with our way of talking about
probabilities. We say thinks like, ’I thought that the probability was X, but
it was really Y.‘ In some cases, laws and regulations are stated in terms of
probabilities, such as limits on the probability of disease caused by exposure to
a chemical. These regulations are written as if the probability was an objective
fact.

Brown (in press) proposed a Bayesian analysis of the idea of true probability,
an analysis that allows such ways of talking to make sense. The true probability
is the judgment that experts would converge on, as further relevant information
became too costly to collect. In each case, the specific information required
would differ, and a true probability need not exist in every case. For example,
in determining the cancer risk from a chemical, the true probability might be
thought of as the estimate derived from epidemiological data concerning cancer
rate as a function of yearly exposure in the whole population of interest. Experts
would form their priors on the basis of animal studies and theoretical beliefs
about the form of the dose-response function. As more data were collected,
these beliefs would approach the same asymptote. In principle, given sufficient
time, data like these could be collected for different groups of patients. But such
data on the interaction between exposure and individual characteristics would
presumably be too costly to collect, so the population asymptote would be the
one that experts would have in mind as the ’true probability.‘ Thus, Brown’s
analysis assumes both that an intermediate asymptote exists and that expert
judgments would converge. He argues for the plausibility of these assumptions
in many cases.

This definition of true probability avoids the conclusion that ’the true prob-
ability is always just 0 or 1.‘ It assumes that there is some sort of standard
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body of evidence that people want in each case. To take another example, a
doctor might sensibly say, ’I can’t assign a probability that the patient has can-
cer until we get back all the test results.‘ Here, the standard tests constitute
the standard evidence. Note that a biopsy would be definitive here, but that is
not included in the standard tests because it is considerably more costly (and
perhaps because it would not make sense to speak of probabilities at all if it
were available).

Brown’s account fits neatly with our own theory of ambiguity as missing in-
formation. When a standard body of evidence exists and has not been obtained,
people will be aware that this information is missing, and they will desire to
collect it before acting. In most cases, this hesitation will be justified. In some
cases, however, the situation will be classified as one in which the standard in-
formation is easily available, when, in fact, the information is not available at
reasonable cost. From this perspective, then, ambiguity effects arise in situa-
tions seen as similar to those in which additional information is available. In
the Ellsberg urn, for example, the proportion of balls is seen as something that
is usually given. The unique aspect of the problem is that the experimenter
won’t tell.

Expert judgment vs. democracy. People fear risks that are not well known
(Slovic et al., 1984). These risks include those of new technologies such as
genetic engineering. Another example is the risks resulting from changes in legal
standards: part of the U.S. ’liability crisis‘ of the 1980’s was the unwillingness
of insurance companies to write liability policies when court standards could
change retroactively, as they did several times in recent years (Huber, 1988).

Hacking (1986) makes an argument with which many would probably sym-
pathize. He is happy enough to have policy decisions made on his behalf by
decision analysis when probabilities of relevant outcomes are well known, but
not when probabilities are subjectively judged. Presumably, probabilities would
be well known for things like the success rate of various medical therapies for
various disorders. Probabilities would not be well known for events such as melt-
downs of nuclear power plants (especially when their design is new). In cases of
the latter type, we would have to rely more heavily on traditional methods of de-
cision making, which stress participation of those affected, or holistic subjective
judgments by elected representatives.

On the other hand, we have argued that missing information is always
present whenever probabilities are involved. What changes from case to case is
its psychological salience. Normatively, we ought to make decisions on the basis
of our best estimate of the probability, it would seem.

An exception to this argument occurs when the risk to one person is corre-
lated with the risk to another and when the utility function for harm is nonlinear
with the number of people. Correlated risks are found in the case of disasters,
e.g., hurricanes or earthquakes, since harm to one person from such a source
implies that others are more likely to be harmed as well. But the argument as
stated here applies to individuals.

As we have noted already, the ’best estimate‘ could be systematically biased
against caution in the case of new technologies. Often, the best estimate is
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arrived at by trying to imagine all possible ways in which something could go
wrong. Yet, as Fischhoff, Slovic, and Lichtenstein (1978) have shown, we might
tend to err on the side of leaving things out because of our inability to think
of them, and therefore estimate on the low side. The public’s intuition that
experts underestimate risks (’You’ve been wrong so many times before, so why
should we believe you now¿) might be justified.

On the other hand, the public could be basing its judgment on a biased
sample of cases that come to mind simply because the experts erred against
caution, such as the Three-Mile-Island nuclear incident and the problems with
some intrauterine devices. Perhaps as many, or more, cases could be found in
which experts erred in favor of caution. Experts, too, could be sensitive to
ambiguity effects. (The U.S. Food and Drug Administration is said to routinely
boost risk estimates when the data on which they are based are in any way
inadequate.)

In principle, these problems are remediable. Enough experience exists with
risk estimates to allow a direct test of the existence of bias. Such tests have
not been done. In the meantime, risk analysts ought to do the best they can.
Perhaps they should correct for various sources of error. Putting this another
way, our true best estimate should include a correction - if needed - for under- or
overestimation as a function of the amount of information available. Analysts
can also use risk analysis to determine when more data will be helpful and when
it will not.

Political factors are sometimes relevant. One of the purposes of risk analysis
is to help reduce political friction. For this purpose, the risk analysis ought to
be open to criticism by the public. Conceivably, such criticism can improve the
accuracy of risk analysis, but even if it impairs accuracy it might be worth so-
liciting. In addition to soliciting public input, risk analysis should also consider
educating the public about such matters as the ambiguity effect just described.
The intuition that ’we should not act until we know the probability‘ should be
understood as one that has a legitimate basis only insofar as systematic bias
enters the process of risk analysis or insofar as collection of additional data is
worthwhile.

Intertwined with the ambiguity effect is also a bias toward the status quo,
or toward inaction (Ritov & Baron, 1990). Ambiguity seems to exaggerate this
bias (Ritov & Baron, 1990), but it is present in any case. The amount of money
that people will pay to rid themselves of a risk they already have is far less than
the amount that they will accept in order to take on the same risk (Thaler,
1980; Viscusi, Magat, & Huber, 1987). If people could learn to overcome this
bias - and it seems that they can to some extent (Larrick, Morgan, & Nisbett,
1990) - we could take their resistance to new technology more seriously. The
existence of this bias toward inaction therefore makes more plausible the claim
that people subvert their own goals by favoring present risks over smaller risks
that just happen to be new.

What of Hacking’s argument? In cases in which the public has reason to
distrust those in charge of a decision analysis, traditional methods of decision
making might be better. As noted, self-serving bias - the basis of distrust - can
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be minimized by precautions surrounding the analysis itself. If substantial self-
serving bias is absent, however, or if adequate precautions are taken to avoid
its effects, perhaps Hacking would do well to trust his fate to the best guess of
experts rather than to the political process. The political process itself is hardly
perfect.

References

Allais, M. (1953). Le comportement de l’homme rationnel devant le risque:
Critique des postulats et axioms de l’cole amricaine. Econometrica, 21, 503–
546.

Baron, J. (1988). Thinking and deciding. New York: Cambridge University
Press.

Baron, J. (in press). Morality and rational choice. Dordrecht: Kluwer.
Baron, J., & Hershey, J. C. (1988). Outcome bias in decision evaluation.

Journal of Personality and Social Psychology, 54, 569–579.
Becker, S. W., & Brownson, F. O. (1964). What price ambiguity? Or the

role of ambiguity in decision making. Journal of Political Economy, 72, 62–73.
Brown, R. V. (in press). Impersonal probability as an ideal assessment based

on accessible evidence: a viable and practical construct? Journal of Risk and
Uncertainty.

Camerer, C. & Weber, M. (1992). Recent developments in modeling prefer-
ences: uncertainty and ambiguity. Journal of Risk and Uncertainty, 5, 325–370.

Curley, S. P., & Yates, J. F. (1985). The center and range of the probability
interval as factors affecting ambiguity preferences. Organizational Behavior and
Human Decision Processes, 36, 272–287.

Curley, S. P., & Yates, J. F. (1989). Am empirical evaluation of descriptive
models of ambiguity reactions in choice situations. Journal of Mathematical
Psychology, 33, 397–427.

Curley, S. P., Yates, J. F., & Abrams, R. A. (1986). Psychological sources of
ambiguity avoidance. Organizational Behavior and Human Decision Processes,
38, 230–256.

Einhorn, H. J., & Hogarth, R. M. (1985). Ambiguity and uncertainty in
probabilistic inference. Psychological Review, 92, 433–461.

Einhorn, H. J., & Hogarth, R. M. (1986}. Decision making under ambiguity.
Journal of Business, 59, S225-S250.

Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. Quarterly
Journal of Economics, 75, 643–699.

Fischhoff, B., Slovic, P., & Lichtenstein, S. (1978). Fault trees: Sensitivity
of estimated failure probabilities to problem representation. Journal of Experi-
mental Psychology: Human Perception and Performance, 4, 330–334.

Frisch, D. E. (1988). The effect of ambiguity on judgment and choice. Doc-
toral dissertation, Department of Psychology, University of Pennsylvania.

Frisch, D., & Baron, J. (1988). Ambiguity and rationality. Journal of Be-
havioral Decision Making, 1, 149–157.

18



Frisch, D. & Jones, S. K. (in press). Assessing the accuracy of decisions.
Theory and Psychology.

Grdenfors, P. & Sahlin, N.-E. (1982). Unreliable probabilities, risk taking,
and decision making. Synthese, 53, 361–386.

Hacking, I. (1986). Culpable ignorance of interference effects. In D. MacLean
(Ed.), Values at risk (pp. 136–154). Totowa, NJ: Rowman & Allanheld.

Hammond, P. H. (1988). Consequentialist foundations for expected utility.
Theory and decision, 25, 25–78.

Harless, D. W. (1992). Actions versus prospects: the effect of problem
representation on regret. American Economic Review, 82, 634–649.

Heath, C., & Tversky, A. (1991). Preference and belief: ambiguity and
competence in choice under uncertainty. Journal of Risk and Uncertainty, 4,
5–28.

Huber, P. W. (1988). Liability: The legal revolution and its consequences.
New York: Basic Books.

Jeffrey, R. C. (1965). The logic of decision (2nd revised edition). Chicago:
University of Chicago Press.

Kahneman, D., Slovic, P. & Tversky, A. (Eds.) (1982). Judgment under
uncertainty: Heuristics and biases. New York: Cambridge University Press.

Kahneman, D., & Snell, J. (1992). Predicting changing taste: do people
know what they will like? Journal of Behavioral Decision Making, 5, 187–200.

Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. Ameri-
can Psychologist, 39, 341–350.

Kashima, Y., & Maher, P. (1992). Framing of decisions under ambiguity.
Manuscript, Department of Psychology, La Trobe University.

Knight, F. H. (1921). Risks, uncertainty, and profit. London: Macmillan.
Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations

of measurement (Vol. 1). New York: Academic Press.
Kunreuther, H., & Hogarth, R. M. (1989). Risk, ambiguity, and insurance.

Journal of Risk and Uncertainty, 2, 5–35.
Larrick, R. P., Morgan, J. N., & Nisbett, R. E. (1990). Teaching the use of

cost-benefit reasoning in everyday life. Psychological Science, 1. 362–370.
Lindley, D. V., Tversky, A., & Brown, R. V. (1979). On the reconciliation

of probability assessments. Journal of the Royal Statistical Association A. 142,
146–180 (with commentary).

Loewenstein, G., & Mather, J. (1990). Dynamic processes in risk perception.
Journal of Risk and Uncertainty, 3, 155–175.

Lopes, L. L. (1987). Between hope and fear: The psychology of risk. In
L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 20, pp.
255–295). New York: Academic Press.

Luce, R. D., & Raiffa, H. (1957). Games and decisions. New York: Wiley.
Maher, P. (in press). Betting on theories. Cambridge: Cambridge University

Press.
Marschak, J. (1975). Personal probabilities of probabilities. Theory and

Decision, 6, 121–153.

19



McClennan, E. (1983) Sure thing doubts. In B. P. Stigum & F. Wenstp
(Eds.), Foundations of utility and risk theory with applications, pp. 117–136.
Dordrecht: Reidel.

Murphy, A. H., & Winkler, R. L. (1977). Can weather forecasters formu-
late reliable probability forecasts of precipitation and temperature? National
Weather Digest, 2, 2–9.

Raiffa, H. (1961). Risk, ambiguity, and the Savage axioms: comment. Quar-
terly Journal of Economics, 75, 690–694.

Ramsey, F. P. (1931). Truth and probability. In R. B. Braithwaite (Ed.),
The foundations of mathematics and other logical essays by F. P. Ramsey. New
York: Harcourt, Brace.

Rawls, J. (1971). A theory of justice. Cambridge, MA: Harvard University
Press.

Ritov, I., & Baron, J. (1990). Reluctance to vaccinate: omission bias and
ambiguity. Journal of Behavioral Decision Making, 3, 263–277.

Roberts, H. V. (1963). Risk, ambiguity, and the Savage axioms: comment.
Quarterly Journal of Economics, 77, 327–336.

Savage, L. J. (1954). The foundations of statistics. New York: Wiley.
Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton

University Press.
Shafer, G. (1981). Constructive probability. Synthese, 48, 1–60.
Shafer, G. (1986). Savage revisited. Statistical Science, 1, 463–501 (with

discussion).
Slovic, P., Lichtenstein, S., & Fischhoff, B. (1984). Modeling the societal

impact of fatal accidents. Management Science, 30, 464–474.
Slovic, P., & Tversky, A. (1974). Who accepts Savage’s axioms? Behavioral

Science, 14, 368–373.
Spranca, M., Minsk, E., & Baron, J. (1991). Omission and commission in

judgment and choice. Journal of Experimental Social Psychology, 27, 76–105.
Thaler, R. H. (1980). Toward a positive theory of consumer choice. Journal

of Economic Behavior and Organization, 1, 39–60.
Viscusi, W. K., Magat, W. A., & Huber, J. (1987). An investigation of

the rationality of consumer valuation of multiple health risks. Rand Journal of
Economics, 18, 465–479.

Winkler, R. L. (1991). Ambiguity, probability, preference, and decision anal-
ysis. Journal of Risk and Uncertainty, 4, 285–297.

20


