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Abstract: Many questions in judgment and decision-making research, and, indeed, in experimental 

psychology generally, concern the existence of effects, and the explanation of effects shown to exist. These 

questions  do  not  concern  the  prevalence  of  effects  in  any  particular  population.  It  is  thus  appropriate  to 

look for effects in single subjects. If one person shows the effect, then it exists. This argument implies that 

it  is  sometimes  appropriate  to  test  effects  across  cases  or  rounds,  without  testing  across  subjects.  It  also 

implies that, in some experiments, effects in opposite directions may exist. I recommend looking for such 

effects by carrying out statistical tests on individual subjects. I describe a few methods, varying in formality, 

that  can  be  used  to  deal  with  the  inevitable  problem  of  doing  multiple  tests  of  the  same  hypothesis: 

probability-probability plots; tests of the distribution of p-values; and correction for multiple testing with 

step-down resampling. I also present a few examples, some of which show effects in both directions and 

some of which do not.  
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Introduction 

In  this  paper  I  present  an  approach  to  data 

analysis  in  my  field,  which  is  the  experimental 

psychology of judgment and decision making. The 

idea is to analyze the data from individual subjects, 

looking for effects in both possible directions, not 

just an overall effect in one direction. This 

approach  is  surely  relevant  to  other  fields.  I  will 

not  dwell  on  these,  but  I  should  mention  that  the 

issues are closely related to a discussion in 

psycholinuguistics, which goes back to Herbert 

Clark’s  (1973)  landmark  paper  on  “The  language 

as fixed-effect fallacy.” Indeed, my interest in this 

topic  began  when  I  read  that  paper  and  wrote  a 

comment on it (Baron, 1975).   

 

Within-subject experiments   

In a typical experiment, each of several 
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subjects (usually about 80) responds to several 

cases. The subjects are a “convenience sample,” not 

intended to be representative of any particular 

population.  Sometimes  the  cases  are  chosen  to  be 

compared with each other. For example, in one 

recent study (Baron & Ritov, 2009a), we asked for 

judgments  of  appropriate  punishment  for  various 

offenses. The offenses were in pairs. The members 

of  each  pair  differed  in  whether  the  offense  was 

easy or hard to detect; for example, the offense of a 

waitress not reporting tips on her taxes is easier to 

detect if the customers pay with credit cards than if 

they  pay  with  cash.  In  other  experiments  in  the 

same  paper,  subjects  were  asked  directly  about  the 

issue  of  interest  after  each  case,  e.g.,  whether  the 

punishment should be more harsh (coded as 1), less 

harsh (-1), or the same (0) if the offense were more 

difficult to detect.   

The cases (e.g., different offenses) in such 

studies are typically chosen for the  simple purpose 

of getting more data out of each subject than if we 

used  only  one  case  per  subjects.  For  me,  they  are 

not representative samples of any particular 
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population of cases, although they can be 

representative (and some have argued that 

representative design is important, e.g., Gigerenzer, 

Hoffrage, & Kleinbölting, 1991). In this study, they 

were simply offenses that were easy to think of and 

(we  hope)  easy  for  the  subjects  to  understand.  But 

the use of several cases opens many possibilities for 

data analysis.   

If  we  had  the  data  from  a  single  subject  we 

could  ask  whether  probability  of  detection  had  a 

significant effect for that subject. If we had 20 cases, 

10 of each type, we could look at the penalty 

judgments for each of the 20 cases and do a paired t 

test comparing the cases (with 9 df). If, alternatively, 

we  had  10  cases,  with  a  direct  question  about  the 

relevance of detection probability, on a rating scale 

in which 0 was the midpoint representing no effect, 

we  could  also  do  a t  test  (or  some  nonparametric 

equivalent)  asking  whether  the  mean  answer  was 

greater than 0.   

The most common method for analysis of such 

experiments is to compute an effect for each subject, 

and  then  test  across  subjects,  so  the df  of  a t  test 

would  be  79  for  80  subjects.  This  is  also  what  we 

would do if each subject had only one pair of cases. 

The  use  of  many  pairs  still  reduces  the  error  in 

estimating  the  effect  for  each  subject,  so  it  should 

also reduce the error of such a test across subjects, 

increasing its power.   

It  is  also  possible  to  do  the  entire  analysis 

across cases, so that the final test would be just like 

the test for one individual subject, but each number 

would  consist  of  the  average  response  of  all  the 

subject to the case in question. Some researchers do 

this.   

The  point  made  by  Clark  (1973)  was  that,  in 

experiments  on language, we need to pay attention 

to both subjects and cases, so that we can 

“generalize to the population,” as if either the cases 

or subjects were representative samples of relevant 

populations.   

 

Existence versus generalization   

In this article, I want to extend the argument I 

made in Baron (1975). I argued there that many — I 

would say “most” except that I do not know how to 

define the population — hypotheses in my field, and 

in experimental psychology generally, are one tailed. 

For example, in our study of punishment (Baron & 

Ritov,  2009a),  we  wanted  to  ask  whether  subjects 

followed  the  principle  of  compensating  for  lower 

probabilities  of  detection  with  increased  penalties, 

so that, from the offender’s point of view, the 

expected punishment was independent of 

probability  of  detection.  It  is  possible  that  some 

subjects would find some reason to reduce penalties 

with lower probabilities of detection, but this 

reduction  would  have  to  result  from  some  entirely 

different mechanism than the one of interest to us.   

I argued further that a one-tailed hypothesis of 

this  sort  asks  for  a  demonstration  of  existence.  In 

principle,  if  one  subject  shows  the  effect,  it  exists. 

Thus,  I  argued,  a  test  across  cases  is  sufficient.  I 

assumed  that  we  had  no  reason  to  think  that  cases 

should differ in the direction of the effect. Whether 

we  did  or  not,  then  a  test  across  subjects,  with  a 

single case or pair of cases, or more, would also be 

sufficient to demonstrate existence.   

The same argument could be made in terms of 

cases  rather  than  subjects.  If  we  demonstrate  an 

effect for two versions of one case, and the versions 

are well controlled, differing only in the property of 

interest,  then  the  effect  exists.  Many  studies  draw 

conclusions from effects in a small number of cases. 

The classic findings in judgment and decision 

making  rest  on  particular  cases,  such  as  the  Asian 

disease problem (Tversky & Kahneman, 1981, 

showing  framing  effects  that  lead  to  risk  aversion 

when  the  problem  is  stated  in  terms  of  gains  and 

risk  seeking  when  it  is  stated  in  terms  of  losses). 

Many papers in the field are based on a small 

number  of  cases,  with  no  significance  test  across 

cases.   

 
Incorrect paragraph
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1.
 

What does it mean, anyway, to generalize to a 

population? I think it means this: If we think of our 

sample as a random sample from a population, and 

we find in the sample that an effect is significantly 

positive, in a two-tailed test, then we can conclude 

that the effect is positive in the population as well, 

with the usual caveats about the possibility of false 

rejections of the null hypothesis. For example, in an 

opinion poll about a forthcoming election, we try to 

sample randomly from the population of voters. We 

can,  in  principle,  ask  whether  the  support  for  one 

candidate is significantly higher than that for 

another.   

Experimental psychologists rarely sample from 

populations of people, or (as I just noted) cases. We 

select  subjects  without  thinking  much  about  any 

population.  Traditionally,  psychologists  have  used 

students 2.
 
The phenomena that have been discovered 

                                                 

2 Roddy Roediger (2004) put it this way: “Most of the people 
participating  in  psychology  experiments  are  college  students. 
We  get  a  lot  of  grief  about  this,  I  know,  and  we  often  feel 
abashed  and  ashamed.  I  don’t  know  why.  All  scientists  use 

this  way  are  unlikely  to  go  away.  Recently,  some 

American psychologists have made an effort to use 

random samples of Americans (at considerable cost). 

I would see some value in this if they were 

interested in predicting American elections. But 

most psychological questions are not about 

predicting what a particular population will do. 

They are, in some sense, about people in general.   

But it is impossible to sample “people in 

general.” Americans are not representative of 

English speakers. English speakers are a minority of 

people  who  are  currently  alive  (even  counting  all 

Indians  as  English  speakers).  If  we  are  optimistic, 

people  currently  alive  are  a  tiny  minority  of  those 

who  will  exist  in  the  future.  Thus,  in  an  important 

sense, every sample is a “convenience sample,” the 

derogatory term used by those who seem to accept 

the view that research necessarily involves 

generalizing to populations.   

Some questions are inherently two-tailed. Does 

capital punishment for murder increase or decrease 

the homicide rate? We have evidence for both 

deterrence and “brutalization” effects, and the 

question  is  which  effect  is  stronger.  The  answer 

surely depends on the population. For example, 

Shepard  (2005)  presents  evidence  that  deterrence 

effects  are  larger  when  states  in  the  U.S.  use  the 

death penalty a lot, but brutalization effects are 

larger in other states. (But see Donohue & Wolfers, 

2005, who argue for no effects.)   

Questions about individual differences are 

sometimes more difficult. Many of these depend on 

such  issues  as  whether  the  correlation  between  A 

and  B  is  higher  than  that  between  A  and  C.  Such 

differences in correlations can determine the 

                                                                              
samples  and  techniques  that  are  readily  available  and  can  be 
adapted to make rapid scientific progress. I study human 
memory, and to me the college student is the ideal experimental 
animal. Millions of years of evolution have designed a creature 
that  is  a  learning  and  memorizing  marvel.  Students  in  my 
experiments  have  also  been  carefully  selected  through  12  or 
more years of education before they get to my lab. Only the ones 
who  have  shown,  year  after  year,  that  they  can  learn  and 
remember material in courses make it to my experiments. The 
world could not have arranged a more ideal subject,. . . ”  



4 心       理       学       报 42卷 

outcomes  of  factor  analysis,  for  example,  which  is 

central  to  the  study  of  individual  differences.  The 

pattern  of  correlations  could  vary  from  population 

to  population.  Differences  among  correlations  are 

also central to selection  of items on personality 

scales,  which  can  thus  lose  their  intended  meaning 

when  they  are  transferred  from  one  population  to 

another. Cross-cultural researchers are of course 

aware of these problems.   

The  point,  though,  is  that  these  questions  are 

inherently  two-tailed,  unlike  most  of  the  questions 

that experimental psychologists ask, which are 

mostly about the existence of mechanisms that lead 

to  an  effect  in  a  particular  direction.  As  I  noted, 

sometimes  different  mechanisms  lead  to  effects  in 

different  directions,  but  these  are  best  seen  as  two 

different one-tailed hypotheses. We are not usually 

asking  which  effect  is  bigger  but,  rather,  whether 

each effect exists.   

Regardless of whether questions are inherently 

one  tailed  or two  tailed,  how  can  we  deal  with  the 

sampling  problem?  Again,  I  put  aside  those  cases 

where the population is well defined, such as voters 

in  an  election.  Much  of  psychology  is  concerned 

with  human  beings  in  general,  or,  at  least,  human 

beings as we exist now. (In the future, we may find 

ways  to  change  our  nature,  or  human  nature  may 

change  by  accident.)  My  answer  is  that  we  should 

strive for diverse samples of subjects, and we 

should  look  carefully  at  individual  differences.  In 

particular, we should look for the existence of 

subjects who  show  each possible  effect  that  the 

experiment can show. We may find only a few who 

show  an  effect  of  one  sort  or  another,  but  some 

other sample might show a larger proportion, so we 

cannot just dismiss these subjects as oddballs. 

Diversity within the sample increases the chance of 

finding such rare subjects, if they exist at all. And, 

if  we  do  not  find  them,  a  diverse  sample  increases 

our confidence that they do not exist.   

 

Effects in both directions   

Let  us  explore  further  the  fact  that  subjects 

may  differ  in  the  kind  of  effect  that  dominates. 

(Cases might differ too, but I shall put that 

possibility aside for the rest of this article; the 

argument for cases is analogous.) For example, 

some subjects may think that punishment should be 

less severe when the probability of detection is 

lower.  For  example,  they  might  see  punishment  as 

unfair and arbitrary when most offenders do not get 

caught.   

Another example from my own research 

concerns  “omission  bias,”  the  general  finding  that 

people tend to tolerate harms of omission more than 

harms that result from action. They are thus 

generally unwilling to cause harm in order to 

prevent greater harm (Ritov & Baron, 1990; 

Spranca,  Minsk,  &  Baron,  1991).  There  are  many 

reasons  for  this  bias  (Baron  &  Ritov,  2009b).  For 

example, people seem to base judgments on a 

concept of causality that is more appropriate to the 

physical  sciences  than  to  decision  theory  or  moral 

judgment. They think that it is worse to cause a bad 

outcome through a connected chain of physical 

events than to cause it by failing to prevent it. Yet 

failing  to  prevent  can  be  considered  causing  in  a 

legal context, where “the event would not have 

happened but for your failure to prevent it” is often 

sufficient for legal sanctions.   

Yet, even in one of our earliest papers (Spranca 

et al., 1991) we noticed that some subjects seemed 

to  show  the  opposite  bias,  but  we  carried  out  no 

statistical test of whether their existence was real, or 

just a consequences of random error. Intuitively, we 

suspected that some people, in some situations, 

might feel a responsibility to act, even if the action 

was so risky as to be expected to do more harm than 

good. We thought of surgeons as a possible example. 

Military  commanders  might  be  another,  although 

usually their training favors an appropriate balance. 

If  such  an  action  bias  exists,  then  it  would  have  a 

very different basis than the omission bias. It is not 

simply the opposite; people would not think of 

physical causality as less serious than indirect 

causality.  Rather,  it  would  arise,  perhaps,  from  an 

exaggerated  sense  of  responsibility,  a  feeling  that 

the expectation of someone in a particular role was 
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to act.   

In  this  example  and  all  the  examples  I  can 

think  of,  we  are  not  interested  in  simply  rejecting 

the  null  hypothesis  of  no  effect,  because  effects  in 

different  directions  have  different  interpretations. 

Thus, they are not simply “two-tailed tests.” When 

we  look  for  both  effects,  we  are,  in  essence  doing 

two one-tailed tests.   

Another way to make the point is that an 

overall  test  of  significance  can  show  an  effect  in 

one direction, but it does not rule out the existence 

of an opposite effect, even in the same experiment.   

 

Statistical methods 

The  problem  is  that,  typically,  one  of  the  two 

effects  predominates  in  a  given  sample  of  subjects 

and cases. In this section, I shall discuss some 

statistical methods for demonstrating that some 

subgroup of subjects (or cases) shows an effect 

opposite to the predominant effect. Of course, 

exactly the same methods can be used to show that a 

subgroup shows the predominant effect; this 

demonstration  is  rarely  needed,  however,  since  the 

same  conclusion  follows  from,  say,  an  overall  test 

across subjects. The idea is that we test each subject 

and then look for subjects showing individual 

significant effects, even after correcting for the fact 

that we are testing so many. We cannot just take the 

significance  levels  of  individual  tests  at  face  value 

because,  for  example,  5%  of  these  tests  will  be 

significant at the .05 level even if the null 

hypothesis  is  true.  With  80  subjects,  we  are  very 

likely  to  find  one  or  two  who  show  “significant” 

effects by chance.   

The  statistical  literature  most  relevant  is  that 

on  correction  for  multiple  tests.  This  literature  is 

vast, and I am not an expert on it, so I shall merely 

describe  a  few  of  the  methods  that  I  use  myself. 

Shaffer  (2002)  and  Dudoit,  Shaffer,  and  Boldrick 

(2003; see also Ge, Dudoit, & Speed, 2003) provide 

excellent introductions.   

An  important  distinction  in  this  literature  is 

that  between  two  common  measures:  family-wise 

error  rate  (FWER)  and  false-discovery  rate  (FDR). 

(There  are  others.  These  are  the  two  most  used.) 

Both measures assume that we have some criterion 

for  rejecting  a  null  hypothesis.  For  example,  for  a 

single test, we might say that we will reject the null 

hypothesis if the p-value is .05 or less, or if t is 2 or 

more.   

The FWER is a generalization of “type 1 

error,” that is, the probability of falsely rejecting the 

null hypothesis. For a single hypothesis, this is just 

the p-value. The “family” is the group of hypotheses 

being tested. Here it is the subjects. So maintaining 

a FWER of .05 means that there is a .05 probability 

(or less) of rejecting the null hypothesis — that no 

subject shows an effect — given that the null 

hypothesis is true. For example, a Bonferroni 

correction divides the stated p-values by the number 

of p-values, so that, if one corrected p-value is less 

than  .05,  we  can  reject  the  null  hypothesis  that  no 

subject shows an effect. Of course, with 100 

subjects,  this  requires  a  stated p-value  of  .0005  in 

the  original  tests.  The  Bonferroni  method  is  not 

very  powerful,  but  other  methods,  as  we  shall  see, 

are substantially more powerful.   

The FDR is the proportion of rejected null 

hypotheses  that  are  true  (no  effect).  Note  that  the 

FDR cannot be computed from the FWER. The 

FDR  also  depends  on  the  proportion  of  true  null 

hypotheses. For example, if 100 subjects all have no 

real  effect  (null  is  true),  and  5  of  them  yield  a 

p-value of .05, then the FDR is 1.00 (100%). All of 

the 5 rejected hypotheses are falsely rejected. But, if 

50  subjects  yield  .05  or  better,  we  can  expect  the 

FDR to be much lower. Most (but not all) of the 50 

will probably be true rejections of the null 

hypothesis.  The  FWER  is  the  same  in  these  two 

cases,  because  it  is  calculated  on  the  assumption 

that  all  the  null  hypotheses  are  true.  Note  that  the 

FDR varies with the number of results that are 

“significant,” so it is calculated contingently on the 

results. The FDR depends, of course, on the p-level. 

You can set a p-level to generate a given FDR; the 

given FDR is called the q-value.   

It  is  interesting  to  ask  what  we  would  think 

about the FDR if it had been invented decades 
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before the idea of type-1 error, the reverse of what 

happened. Suppose I tell you that I did an 

experiment with 100 subjects, that 20 of them pass 

my test for showing significant results, and, further, 

that  my  test  has  a  FDR  of  .10.  You  know  that  the 

expectation is that 18 of the subjects are truly 

significant.  Of  course  it  could  be  that  0  are  truly 

significant, but this is very unlikely. (To know how 

unlikely,  we  need  to  know  the  FWER!)  For  some 

purposes,  knowing  that  18  subjects  show  an  effect 

might  be  very  informative.  However,  if  we  start 

with the basic assumption I have made throughout, 

namely, that we are primarily interested in the 

existence  of  effects,  we  would  be  unsatisfied.  We 

would still want to know the FWER, because that is 

the measure that concerns existence versus 

non-existence  of  an  effect.  But  the  FDR  can  be 

informative,  and  when  this  is  sufficiently  low  we 

may still be satisfied.   

I shall not discuss FDR further. It is surely of 

interest if we want to estimate how many subjects in 

our  sample  are  truly  showing  an  effect,  or  if  we 

want to make some decision that requires 

classifying  subjects  and  we  have  a  specific  payoff 

function for true and false classifications. It is also a 

bit more formal than just looking at the graph I shall 

describe in the next section. But I am more 

interested  in  asking  whether any subjects  show  an 

effect  in  a  given  direction.  For  further  discussion, 

see Benjamini and Hochberg (1995), Ge, Sealfon, & 

Speed (2008), Storey (2002), and Storey and 

Tibshiran (2003).   

 

Distributions of p-values   

A very simple method for looking at 

significance  of  individual  subjects  is  to  test  each 

subject and then look at the distribution of p-values. 

Under  the  null  hypothesis  that  no  subject  shows  a 

real effect, the p-values will be uniformly 

distributed between 0 and 1. This follows from the 

fact  that,  by  chance,  5%  of  them  will  be  .05  or 

lower,  10%  will  be  .10  or  lower,  and  so  on.  If  we 

put  the p-values  from  our  subjects  in  order  from 

lowest to highest, we should see that the 5% of the 

lowest values should be .05 or lower.   

We  can  plot  these p-values  against  their 

percentile  rank 3.
 
An  example  is  shown  in  Figure  1 

(from Bonner & Newell, 2008). Each point 

represents the p-value of one subject. The horizontal 

axis is the percentage of p-values less than or equal 

to the given value, that is, its percentile rank. Under 

the  null  hypothesis  of  no  real  effects,  the p-values 

should  fall  on  roughly  on  the  diagonal.  It  is 

apparent here that many p-values are less than .05, a 

lot  more  than  5%,  and  even  more p-values  are 

between .95 and 1. The experiment in question, in a 

test  across  subjects,  showed  an  effect  consistent 

with the high p-values, but it is apparent that many   

 

 
 
Figure 1:  P-P plot of the observed probability of individual 

p-values against the expected prob-ability. Under the null hypothesis 

of  no effects, a  uniform  distribution along  the identity  line  is 

expected. Points above 0.5 on the expected probability axis indicate 

an effect in one direction, with the smallest p-values approaching 1. 

Points below 0.5 on the expected probability axis indi-cate an effect 

in the opposite direction, with the smallest p-values approaching 0. 

(From Bonner & Newell, 2008.)   

                                                 
3
Here  is  some  R  code  for  plots  of  this  sort,  where  V  is  the 

variable of interest:   
# get one-tailed p-values and sort them 
Ordinate <-sort(apply(V,1,function(x) 
t.test(x,alt="greater")$p.val)) 
n <-length(Ordinate) 
Plotpos <-seq(0.5/n, (n -0.5)/n, by = 1/n) 
plot(Ordinate, Plotpos, xlab="Expected probability",   
ylab="Observed probability") 
abline(0,1,lty=3) 
grid() 

All curves
flipped.
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subjects  show  the  opposite  effect.  (At  issue  was 

whether risks seemed worse when described in 

terms  of  deaths  per  year  or  deaths  per  day.  The 

predominant answer was “per year.”) In an example 

like this, the graph seems convincing by an 

“intra-ocular  test”;  the  result  hits  you  between  the 

eyes and no further analysis is needed.  
 

 
 

Figure 2:  P-P plot for Experiment 2 of Baron and Ritov (2009a). 

 
Figure 2 shows another example from the 

punishment study described at the beginning of this 

article, specifically, Experiment 5 of Baron and 

Ritov  (2009a).  In  this  experiment,  subjects  were 

asked about the appropriate level of punishment for 

crimes. Within each page, they were asked what the 

punishment should be if 1% of the committed 

crimes  were  detected  and  if  90%  were  detected. 

Many subjects made no distinction, but a large 

group  of  subjects  gave  harsher  punishments  when 

the  probability  of  detection  was  lower,  in  accord 

with the economic theory, which holds that 

increased severity  can  compensate  for  the  lower 

chance  of  detection,  so  as  to  maintain  sufficient 

deterrence.  In  this  case,  no  subjects  showed  the 

opposite effect. I shall return to this example.   

Although the graph is sufficient in many cases, 

a formal test is also possible. For example, we could 

do a binomial test (proportion test) asking whether 

the  proportion  of p-values  less  than  .05  is  greater 

than the “null hypothesis” value of .05. Or we could 

use  some  other  criterion  such  as  .10.  In  the  last 

example, 26 p-values were less than or equal to .05, 

out of 48. (The rest were undefined because all the 

responses  were  0.)  This  is  of  course  much  greater, 

and  significantly  greater,  than  the  number  of  such 

p-values expected by chance (48/20, or 2.4).   

The trouble with this approach is that the result 

will  depend  on  what  cut-off  we  use.  I  know  of  no 

way of setting a non-arbitrary cutoff. Laxer cutoffs 

are  more  appropriate  when  the  power  to  detect  an 

effect  for  each  subject  is  lower,  e.g.,  when  each 

subject does a small number of cases.   

Using a somewhat different approach, Sundali 

and Croson (2006) demonstrated that individual 

gamblers in the game of roulette differed in whether 

they  were  susceptible  to  the  “hot  hand”  effect  (in 

which  they  thought  of  a  given  roulette  wheel  as 

having  a  stock  of  luck  that  would  continue)  or  the 

“gambler’s fallacy” (in which they believed that one 

outcome  became  more  likely  over  rounds  in  which 

it did not occur). These effects tended to be 

incompatible. Sundali and Croson calculated 

p-values for each subject, for each effect. They 

compared the results to the expected uniform 

distribution using a Kolmogorov-Smirnov test. 

Although this method solves the problem of 

arbi-trariness,  it  lacks  power,  as  it  looks  for  any 

departure  at  all  from  the  hypothesized  distribution. 

(In this case, it worked, despite the lack of power.)   

 

Corrections for multiple tests   

The best way to determine whether any 

subjects shows an effect is to test each subject and 

correct for multiple tests, using a given FWER. The 

well-known Bonferroni correction is one way to do 

this.  Suppose  we  set  the  acceptable  FWER  at  .05, 

and we carry out two independent tests of the same 

hypothesis  (e.g.,  2  subjects).  To  maintain  a  FWER 

of  .05,  we  must  set  our α level  (the  level  for  what 

we  call  “significant”)  at  .025.  Assuming  that  the 

tests are independent, then this yields a .05 chance 

of a Type I error (rejecting a true null hypothesis). 

Thus,  we  change  our α level  as  a  function  of  the 

number  of  tests.  With  100  subjects,  then  we  must 



8 心       理       学       报 42卷 

look  for  at  least  one  subject  with  a  result  that  is 

significant  at  .0005,  in  order  to  claim  that  at  least 

one subject shows an effect significant at .05. This 

might  be  literally  impossible;  for  example,  if  the 

data consist of two-option choices, and we want to 

claim  that  one  choice  is  more  frequent  than  the 

other,  with  10  choices,  the  best  that  can  be  done 

is  .0010  (one  tailed),  if  all  10  responses  go  in  the 

hypothesized  direction.  Even  if  we  use  a  t  test  on 

continuous numbers, such a highly reliable result is 

difficult to get.   

It  turns  out  that  it  is  unnecessarily  difficult. 

The Bonferroni method is unnecessarily 

conservative. A variety of methods have been 

invented that avoid the various problems. These 

methods  are  used  in  fields  in  which  the  number  of 

tests  is  far  larger  than  the  number  of  subjects  in 

most  psychology  experiments:  genetics  and  brain 

imaging. In genetics, a researcher might test 

hundreds  of  genes  for  association  with  some  trait, 

using  fewer  subjects  than  genes.  In  brain  imaging, 

such  as  the  use  of  functional  magnetic  resonance 

imaging  (fMRI),  a  researcher  might  test  thousands 

of  locations  in  the  brain  (voxels)  for  association 

with a particular stimulus or response, using only a 

hundred trials of each type. If you think about these 

cases, it is apparent that the Bonferroni correction is 

unfair. Particularly in the fMRI example, the voxels 

that  are  next  to  each  other  tend  to  behave  very 

similarly.  They  are  not  independent.  This  is  one 

problem.  Analogously,  if  we  test  100  subjects  on 

the same 20 cases, subjects might show patterns of 

similarity to each other in the way they respond to 

the 20 cases. Groups of subjects might behave 

essentially  identically,  just  as  voxels  in  the  same 

brain region would behave identically. Thus, instead 

of  100  subjects,  we  might  have  what  amounts  to  a 

much smaller number of subject types. The 

correction should be applied to the number of types, 

not the number of subjects.   

The  example  I  just  gave  is  just  a  way  to  see 

why the Bonferroni  method  might be conservative. 

In  fact,  we  don’t  have  to  look  for  types.  Methods 

have been developed that, in essence, take into 

account  the  correlations  among  subjects  in  other 

ways. I shall not (and could not) review all of these 

methods.  (Dudoit  et  al.,  2003,  and  Westfall  et  al., 

2001, review most of them.) The best for our 

purposes seem to be the step-down resampling 

methods of Westfall and Young (1993) as 

implemented  in  the  Multtest  package  for  R  (Ge, 

Dudoit, & Speed, 2003; R Development Core Team, 

2008).   

The basic idea is this. Suppose we have a 

matrix of numerical responses, with 100 rows as the 

subjects and cases as the 20 columns. Our 

hypothesis says that responses to cases 1–10 should 

be  higher  than  those  to  matched  cases  11–20.  (If, 

instead  of  20  cases,  we  have  10  cases,  and  our 

hypothesis is that the responses to these cases 

should be greater than zero, we make up an 

additional 10 cases with responses of zero to each, 

for  each  subject.)  We  do  a  t  test  for  each  subject. 

Suppose we want to know the “true significance” of 

the  subject  with  the  highest  t  value  (or  lowest  p 

value).  To  determine  this,  we  simulate  the  test  by 

“permuting”  the  columns.  That  is,  we  switch  the 

columns around at random, thousands of times. 

Each  time,  we  test  cases  (columns)  1–10  against 

cases 1–20. Then we simply count the proportion of 

tests that yield a t value equal to or higher than that 

of the subject with the highest t value. This 

estimates  the  probability  of  getting  that  t  value  by 

chance,  if  no  subject  showed  a  true  effect.  (The 

permutations,  by  ignoring  the  assignment  of  cases 

to  conditions,  assure  that  there  will  be  no  effect 

overall.) The procedure continues for subjects other 

than  the  one  with  the  highest  t  value,  but  here  we 

are interested in asking whether any subject yields a 

truly significant result.   

To  see  how  this  helps,  imagine  the  extreme 

case  in  which  all  subjects  had  a  t  value  of  2.83 

because they all made the same responses to every 

case. This corresponds to a one-tailed p of .01. But 

of course a Bonferroni correction, with 100 subjects, 

would make this nonsignificant. Yet there is 

essentially  1  subject,  for  purposes  of  correction. 

One  percent  of  the  permutations,  if  we  did  enough 
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of them, would yield a t of 2.83 or higher.   

The  relevant  functions  in  the  Multtest  package 

(Ge et al.,  2003) are mt.maxT and mt.minP. The 

mt.maxT function is based on t tests; the minP 

function  is  based  on p-values  calculated  from  t  tests 

(by  default). The  minP  packages,  which takes longer 

to run (but not very long), is more useful when 

subjects  have  missing  data,  so  that  the  degrees  of 

freedom  are  unequal.  (In  that  case,  t  values  do  not 

correspond  to  p  values.)  These  functions  rank  order 

the subjects in terms of their corrected p values4.
 
 

Another  experiment  to  try  with  the  Multtest 

package  is  this.  Generate  a  fairly  large  matrix  of 

random data  and run  mt.maxT on it 5.
 
Then  make it 

twice as long (twice as many subjects) by repeating 

the whole thing twice. This will generate two sets of 

random subjects, but each subject will have a 

perfectly  correlated  twin  in  the  other  set.  Run  the 

procedure again. You will find that the corrected p 

values of the best subjects are unchanged. That is as 

it should be. But, if you just generate more random 

subjects, the p value of the best one will increase 6.
 
 

                                                 
4
Here  is  an example  of  some  R  code  for  mt.maxT,  beginning 

with a data matrix V in which rows are subjects, columns are 
cases,  and  the  entries  are  scores,  with  a  null  hypothesis  that 
they are zero:   
library(multtest)   
# create a matrix m with alternative columns of V and 0   
m <-matrix(rbind(V,matrix(0,nrow(V),ncol(V))),nrow(V),)   
mt <-mt.maxT(m,classlabel=rep(0:1,ncol(V)),side="lower") 
5

It doesn’t work well with tiny data sets.  
6
Here is the relevant code:   

library(multtest)   
# generate the data   
ns <-nv <-10 # 10 subjects, 10 variables   
m <-matrix(0,ns,nv*2) # 20 columns   
m1 <-rnorm(ns*nv)   
m2 <-rnorm(ns*nv)   
m[,2*1:nv] <-m1 # fill the even-numbered columns   
m[,2*1:nv-1] <-m2+1 # fill the odd-numbered columns   
# first analysis   
mt <-mt.maxT(m,classlabel=rep(0:1,10),side="lower")   
# the following shows that doubling has no effect   
# because of correlations   
mt.maxT(m,classlabel=rep(0:1,10),side="lower")   
mt.maxT(rbind(m,m),classlabel=rep(0:1,10),side="lower")   
# but this has an effect because we add noise   
m3 <-matrix(rnorm(ns*nv*2),ns,nv*2)   
mt.maxT(rbind(m,m3),classlabel=rep(0:1,10),side="lower") 

Another example: omission bias 

Spranca et al. (1991) speculated that some 

subjects showed an action bias, favoring actions that 

led to a harmful outcome over omissions that led to 

an  equally  harmful,  or  less  harmful,  outcome,  in 

contrast to the opposite bias toward harmful 

omissions, which has repeatedly been found to 

dominate results when tested across subjects (Baron 

& Ritov, 2009b). Baron & Ritov (2004) applied the 

step-down  resampling  procedure  just  described  to 

test  for  the  existence  of  this  reverse  bias,  and  we 

found it. We explained omission bias, the dominant 

result, in terms of a heuristic based on direct 

causality. The opposite bias toward action may 

result from aspects of the context;  for example, 

when subjects are asked about vaccination, they 

may think that vaccination is a generally good thing. 

Thus, the context may work against finding the 

normal bias toward omissions.   

To  illustrate  further  the  analysis  of  individual 

subjects,  I  now  present  data  from  Baron  &  Ritov 

(2009b),  Study  3.  Seven  of  the  items  in  this  study 

assessed  omission  bias,  in  a  situation  where  the 

consequences of acts and omissions were the same. 

For example, one item read:   

Joe is angry at a neighbor.   

A. When the neighbor’s car starts rolling down 

a  hill,  Joe  sees  that  a  brick  in  front  of  it  will 

stop it from rolling. Joe pushes the brick away, 

and the car suffers expensive damage.   

B. When the neighbor’s car starts rolling down 

a hill, Joe sees that it is possible to stop the car 

by  pushing  a  brick  in  front  of  it.  Joe  does 

nothing, and the car suffers expensive damage.   

Is option A morally wrong? [yes, no, equal or 

hard to say] 

Is option B morally wrong? [yes, no, equal or 

hard to say]   

Which  option  is  better  or  less  wrong?  [A,  B, 

hard to say] 

. . . [Other questions followed.] 

None of the seven cases involved vaccination.   

I  assessed  omission  bias  by  counting  “equal” 

as 0, “yes” as 1, and “no” as -1 and then subtracting 
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the  second  question  from  the  first,  and  adding  the 

third,  thus  combining  the  two  morality  questions 

with  the  comparison  question.  The  mean  bias  was 

0.35 on a scale ranging from -3 to 3; this was highly 

significant across subjects and even significant 

across the 7 cases ( t6 =2 .67, p =0.0368, two tailed). 

The p-values for t tests on 75 individual subjects are 

shown in Figure 3. (Some subjects had all 0 values 

and  were  omitted.)  It  is  apparent  that  no  subjects 

showed the opposite effect, as found in the 

vaccination cases used by Baron and Ritov (2004). 

This results is consistent with the claim that 

vaccination is a special case because of the 

pro-vaccination norm. The mt.maxT method 

(described earlier) yielded only two significant 

subjects. Evidently, with only seven cases, it is 

difficult to find many that survive correction. 

However, 15 of the 75 subjects had results 

significant at .05, two tailed, significantly more than 

expected by chance.   

 

 
 

Figure 3:   P-P plot for Study 3 of Baron and Ritov (2009b).   

 

Conclusion 

I have discussed the value of looking at 

individual subjects in research on judgment and 

decision making. I have presented some examples in 

which individual subjects show effects in both 

directions,  and  other  examples  in  which  only  one 

direction of effect is found. This seems like an 

important distinction.   

It is also consistent with the view that, in much 

of experimental psychology, we are interested 

mainly  in  the  existence  of  effects,  and,  given  that 

they  exist,  their  explanation.  We  are  not  so  much 

interested  in  their  prevalence,  if  only  because  we 

cannot begin to sample the population of real 

interest, all human beings, present and future.   

Such  analyses  might  be  useful  in  other  areas. 

For  example,  a  great  deal  of  research  shows  that 

people  are  biased  toward  beliefs  that  are  already 

strong,  both  in  the  selection  of  evidence  and  the 

assimilation  of  that  evidence.  (Baron,  2008,  ch.  8, 

provides  a  review.)  Yet  it  is  possible  that  some 

people do not show these effects, and others might 

even be too self-critical.   

Perhaps  a  more  important  case  is  the  study  of 

treatment  effects,  in  education,  in  psychotherapy, 

and  elsewhere.  Famously,  it  is  often  been  claimed 

that psychotherapy is beneficial on the average, but 

this  is  only because  it  hurts some  people  while 

helping more people. (The ratio of 1 to 2 is 

commonly  mentioned.)  These  claims  seem  to  be 

based on comparison of measures taken before and 

after treatment. Yet these measures contain error. It 

is  quite  possible  that  nobody  is  hurt.  If  we  could 

evaluate treatment effects for individuals by looking 

at  data  collected  over  longer  periods  of  time,  we 

might be able to answer this question. Perhaps some 

sort  of  regression  discontinuity  design  could  make 

this possible.  
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 决策与判断研究中的个体分析
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   摘 要    决策与判断研究中(甚至是实验心理学研究中 )的许多问题关注某效应是否真实存在 , 及其背后的
解释是什么。这些问题不关注该效应在某一特殊群体中是否显著。因此 , 可以通过分析单个被试来检验效
应的显著性。如果有一个被试表现出了该效应 , 那么, 这个效应就是存在的。根据这一观点 , 有时也可通
过跨案例或者轮次 (across  cases  or  rounds)分析来验证效应的显著性 , 而不需要进行跨被试分析 (across 

subjects )。这一观点也暗示在一些实验中可能存在反方向的效应。本文建议通过进行基于被试个体的统计
分析来检验这样的效应, 并介绍了一些不同形式的方法：PP 概率图(probability probability plots); P 值分布
检验(tests  of  the  distribution  of p-values); 分层取样多重检验的矫正 (correction  for  multiple  testing  with 

step-down  resampling  )。这些方法都可以用于处理在对同样假设进行多重检验时无法避免的问题。另外 , 

本文也列举了一些例子, 其中有一部分例子存在反方向的效应 , 另一部分例子不存在。 

关键词    多重检验; 单尾检验; 实验方法; 冗余偏差 分类号    B841; B842.5 
 
 


