
Studia Logica (2007) 86: 353–373
DOI: 10.1007/s11225-007-9065-6 © Springer 2007

Horacio Arló-Costa
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Abstract. The paper provides a framework for representing belief-contravening hy-

potheses in games of perfect information. The resulting t-extended information structures

are used to encode the notion that a player has the disposition to behave rationally at a

node. We show that there are models where the condition of all players possessing this

disposition at all nodes (under their control) is both a necessary and a sufficient for them

to play the backward induction solution in centipede games. To obtain this result, we do

not need to assume that rationality is commonly known (as is done in [Aumann (1995)]) or

commonly hypothesized by the players (as done in [Samet (1996)]). The proposed model is

compared with the account of hypothetical knowledge presented by Samet in [Samet (1996)]

and with other possible strategies for extending information structures with conditional

propositions.1
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1. Introduction: Extending Information Structures

Information structures are a standard representational tool in the theory
of games.2 Structures of this kind appeal to partitions of a given space in
order to define knowledge. Let us start with a brief review of the partitional
account of (unconditional) knowledge. An information structure, for a set
of players I, is a list:

((Ω, Πi )i∈I)

where Ω is a set of primitive states, and for each player i, Πi is a partition
of Ω.3 In game theory Πi(w) denotes the unique element of Πi containing w.
We can now introduce the knowledge operators K1, . . . , Kn, mapping subsets
of Ω to subsets of Ω as follows:

1This research was funded by the National Science Foundation: “Game-Theoretic Foun-
dation for Multi-Agent Systems”, IIS 9734923.

2See, for example, chapter 3 of [Rubinstein (1997)] for an introduction to their use in
models of perfect and ‘bounded’ rationality.

3We take states as primitives, following the standard practice in modal logic. Points,
nevertheless can be given intended interpretations depending on the field of application.
In game theory, some possible interpretations of a primitive state may be: a path, pairs
of beliefs and strategies, pairs of conditional beliefs and strategies, etc.
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(K) Ki(E) = {w: Πi(w) ⊆ E}

The event Ki(E) is the event that i knows E. Each partition cell P in Πi

can be seen as a possible epistemic state of agent i. Then the event Ki(E)
is obtained by taking the union of all the partition cells where E is accepted
(i.e. P ∈ 2Ω such that P ⊆ E). Knowledge can then be defined as follows:

(k) Ki(E) = ∪ {P ∈ Πi: P ⊆ E}

Dov Samet proposed in [Samet (1996)] to extend this standard frame-
work with an hypothetical operator. An extended information structure
(EIS) for a set of players I, is a list ((Ω, Πi, Ti )i∈I) where Ω is a set of
states, and for each player i, Πi is a partition of Ω. Ti is a hypothesis trans-
formation on Πi. More formally, Ti is a function Ti: Πi × (2Ω\∅) → Πi,
satisfying, for every possible hypothesis H ∈ Ω :

(T1) Ti(P, H) ∩ H (= ∅

(T2) If P ∩ H (= ∅, then Ti(P, H) = P

As we said before, given a player i and a partition Πi, the partition cells
P in Πi represent the possible epistemic states of i. Suppose that i is in an
epistemic state represented by P. Under i’s point of view at P, the hypothesis
H might either be true, false, or i might be in suspense about its truth-value.
Now one can ask: what would i’s hypothetical state of mind be, were H to
be true? The transformation function defines an hypothetical knowledge
operator that gives us i’s hypothetical state of mind, were H to be true.
Depending on our assumptions about the transformation function, we may
end up in very different hypothetical states.

Samet introduced the two postulates listed above, plus the following im-
portant constraint (implicit in the definition of the transformation function):
Whenever H is not contained in P, the result of hypothesizing H in P leads
from P to another cell of Πi. Samet does not allow for refinements of the
original partition.

Knowledge and hypothetical knowledge are then defined as follows: the
event Ki(E) is obtained by taking the union of all the partition cells where
E is accepted (i.e. Ps such that P ⊆ E). The event that E is known given the
hypothesis H, KH

i (E), can then be constructed by taking all the partition
cells P whose transformation with H is covered by E. In other words, we take
all the Ps such that E is accepted in Ti(P, H). In Samet’s model, the content
of a statement of the form: ‘Had H been the case, i would have known E’ is
given by the union of all these partition cells.
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(K) KH
i (E) = ∪ {P ∈ Πi: Ti(P, H) ⊆ E}

Samet’s model has many virtues as well as some limitations, some of
which we considered in [Arlo-Costa and Bicchieri (1998)].4 Our immediate
goal is to gain some insight on the nature and possible use of hypothetical
operators by comparing Samet’s approach with other standard accounts of
transformation functions in the literature. We will then use this analysis
in order to propose a new representation of rationality in games of perfect
information. Using our characterization of rationality, we prove that much
less than common knowledge of rationality is sufficient to determine the
backwards induction solution for games of perfect information.

2. Bayesian supposing

An alternative model of hypothetical reasoning is the Bayesian belief revision
model. Before the play begins, perhaps the most reasonable representation
of an agent’s state of mind is given by Ω, the set of primitive states. In other
words, the agent has not yet acquired any knowledge about the game; he is
in a state of maximal ignorance. He can nevertheless hypothesize that an
event occurs and reason about the consequences of such hypothesis. In so
doing the agent will change his mind for the sake of the argument, going from
some initial state P to an hypothetical scenario T(P, H).5 The partitional
account of knowledge (or conditional knowledge) may not be the best way of
modeling this situation. An alternative would be to represent the hypothesis
transformation T as a mapping from pairs of propositions to propositions
(rather than partition cells to partition cells, given a hypothesis): The first
proposition in the pair represents the current epistemic state P (which, in
turn, could be hypothetical),6 the second proposition represents the hypoth-
esis H, and the third proposition represents the resulting hypothetical state,
T(P, H).

We may ask of the new transformation function ∗i: (2Ω × 2Ω) → 2Ω,
that it satisfies the following typical Bayesian constraints:

(T*1) ∗i(P, H) ⊆ H

(T*2) If P ∩ H (= ∅, then ∗i(P, H) = P ∩ H

(T*3) If P (= ∅, then ∗i(P, H) (= ∅.

4Similar arguments were independently presented in [Halpern (1998)].
5If the initial state coincides with the entire space Ω, P is the singleton cell {Ω}.
6Consider, for example, the nested transition T(T(Ω, H), H’).
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(T*1) is essential for a well-behaved notion of supposing. Consider, for
example, the case where the agent’s state of knowledge is Ω. If in this
situation the agent supposes that H is the case (for example, that some node
has been reached), it seems that a condition for successful supposing is to
move to an hypothetical state where H holds, i.e. where the agent’s decision
node is indeed reached. Yet the hypothetical process will break down if in
the hypothetical scenario the agent continues to be in doubt about whether
the node has been reached or not (this will happen, for example, if the
hypothetical state continues to be Ω). ∗i(P, H) can thus be interpreted as
answering the question: ‘What would the agent know, had he held H true
for the sake of the argument?’.

Notice that Samet’s theory does not assume (T*1) but the weaker axiom
(T1). This is due, in part, to the intended interpretation (in Samet’s theory)
of T(P, H) as answering the question: ‘What would the agent know, had H
been true?’ — rather than ‘What would the agent know, had H been assumed
to be true for the sake of the argument.’

(T*2) is a Bayesian principle of ‘informational economy’. The central
idea behind it is ‘use conditionalization whenever possible’.7

(T*3) is a consistency constraint, assuring that the hypothetical scenarios
triggered by consistent propositions are always consistent.

A conditional operator similar to Samet’s can be now defined in this
Bayesian setting as follows. Given a set of players I, a dynamic information
structure (DIS) is a list ((Ω, ∗i )i∈I) where Ω is a set of primitive states,
and ∗i is a hypothesis transformation on Ω. ∗i is now a function ∗i: (2Ω ×
2Ω) → 2Ω, satisfying T*1–3 and the following equation (B), which defines a
hypothetical knowledge operator:

(B) KH
i (E) = ∪ {P ∈ 2Ω: ∗i(P, H) ⊆ E}

(B) preserves the central definitional features of (K). The main differ-
ence with (K) is that (B) allows P to be any arbitrary proposition, whereas
(K) restricts the set of possible states of knowledge P to members of Πi.
The postulates T*1–3, in turn, are well grounded in Bayesian theory. It
thus seems that the combination of (B) and T*1–3 is exactly what one

7The principle does not offer guidance as to how to perform minimal changes prompted
by hypotheses contravening current knowledge. In order to do so one needs stronger prin-
ciples, and in this case it is controversial how to articulate the meaning of ‘informational
economy’. These issues are beyond the scope of this article. Here we are only concerned
with minimal changes prompted by an hypothesis compatible with current knowledge.
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needs in order to model hypothetical reasoning in games of perfect informa-
tion. Unfortunately, we will immediately verify that B and T*1–3 can be
jointly held only in trivial models. The result supporting this claim is the
game-theoretic counterpart of similar results recently found by philosophical
logicians and computer scientists. See chapter 7 of [Gardenfors (1988)] as
well as [Lewis (1976)].

Definition 2.1. A hypothetical knowledge operator is well behaved if there
is no proposition P in Ω, and propositions H, E, and C such that if C ⊆ ¬E,
P ⊆ KH

i (E) and P ⊆ KH
i (C).

The idea behind the notion of a well-behaved operator is simple. We do
not want a hypothetical operator to draw contradictory conclusions when
an hypothesis is entertained.

Definition 2.2. A dynamic information structure, (Ω, ∗i )i∈I is called non-
trivial if (1) Ω contains three or more states and (2) the hypothetical know-
ledge operator induced by the structure is well behaved.

Claim 2.1. There are no non-trivial dynamic information structures.

Proof. Let w1, w2, w3, be three distinct states in the universe Ω of a
non-trivial dynamic information structure, (Ω, ∗i )i∈I). Then we have

{w1} ⊆{ w1, w2} ⊆ K{w2,w3}
i ({w2})

The last inclusion is justified by T*2. In fact, ∗i({w1, w2}, {w2, w3}) =
{w1, w2} ∩{ w2, w3} = {w2}. But, by the same token, we have:

{w1} ⊆{ w1, w3 } ⊆ K{w2,w3}
i ({w3})

Therefore we have a state (w1) such that {w1} ⊆ K{w2,w3}
i ({w3}) and

{w1} ⊆ K{w2,w3}
i ({w2}). This contradicts the assumption that the dynamic

information structure (Ω, ∗i )i∈I is non-trivial. In fact, if (Ω, ∗i )i∈I were non-
trivial, the hypothetical knowledge operator Ki should be well-behaved.

Results of the previous type are interesting (and perhaps surprising)
because they show that two ideas, which are independently coherent and
useful, cannot be jointly implemented on pain of triviality. As we said before,
(B) seems an obvious extension of Samet’s ideas, though it requires the use of
a transformation function whose interpretation and formal properties diverge
from Samet’s. On the other hand, the adoption of the postulates T*1–3
is well-grounded in Bayesian ideas. Much of the contemporary work on
qualitative theories of belief revision is based on the use of these postulates.
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2.1. The Ramsey test

There is an intuitive criterion for acceptance of conditionals that one would
like to make compatible with (K) — and also with (B), to the extent to which
(B) can be saved by relaxing some of the principles T*1–3. The criterion
is that for every permissible state of knowledge P, KH

i (E) is entailed by
P as long as the transformation of P with H entails E. This is known as
the Ramsey test for conditionals [Ramsey (1990)]. The intuition behind this
criterion is that the conditional ‘Had H been true (held as true), E would
have been the case’ should hold in every permissible state of knowledge
whose hypothetical revision with H yields E.

In Samet’s model, permissible states of knowledge are partition cells, and
it turns out that (K) entails, for each partition cell P:

(R1) P ⊆ KH
i (E) iff Ti(P,H) ⊆ E

In Samet’s model we also have a corresponding clause for negated con-
ditionals:

(R2) P ⊆ ¬ KH
i (E) iff Ti(P,H) (⊆ E

Is it true that a similar acceptance criterion holds for (B)? Concern-
ing (R1), the question is tantamount to asking whether there is a suitable
operator T i such that it follows from (B) that:

(RTP) P ⊆ KH
i (E) iff T i(P,H) ⊆ E, for arbitrary propositions P

The answer is yes, but with an important proviso. (RTP) follows from
(B), provided that the transformation function T i obeys a linearity property
[Collins (1999)].

Claim 2.2. (RTP) and (B) are equivalent if the transformation operator T i

is linear, i.e. if for every proposition P, H, and any partition ΠP of P and
every cell Pj of ΠP : T i(P, H) = ∪{T i(Pj, H)}.

The problem is that linearity is incompatible with postulates T*1–3.
In other words, when the hypotheses and permissible states of knowledge
are not restricted in any special manner,8 there is no linear transformation
function obeying T*1–3 (we leave the verification of this fact to the reader
as a simple exercise).

8For example, a restriction might require that the permissible states of knowledge are
partition cells, which is basically Samet’s solution.
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(RTP ) is well known in the literature. It was proposed by Peter Garden-
fors in [Gardenfors (1988)] as a test for acceptance of ontic conditionals (the
only difference is that Gardenfors uses sentences rather than propositions in
order to formulate the test). Therefore the previous claim shows that when
the transformation function is linear (i.e. it is an imaging operator) (B) is
equivalent to a well-known condition for acceptance of conditionals used in
the literature. This provides additional intuitive support for the condition
(B) by showing that it is equivalent well-known acceptance conditions for
ontic (or subjunctive) conditionals (for linear revisions).

Our first claim, therefore, shows that there is a tension between well-
supported Bayesian constraints on transformation functions (T ∗ 2) and the
condition (B) and that this tension is explained in terms of the fact that
(B) and (RTP ) are equivalent for linear transformations (it is well known
that there are no non-trivial theories jointly stating (RTP ) and (T ∗ 2)).

2.2. Circumventing the problem

There are (at least) three possible ways out of the problem we just diag-
nosed. One option is to keep (RTP) and give up some of the postulates
T*1–3. This approach was first suggested by David Lewis [Lewis (1976)].
Lewis faced a probabilistic analogue of our triviality result, and opted for
the radical solution of abandoning conditionalization as a rule for supposing.
His proposal is to use a new linear rule for updating, called imaging. In this
setting both T*2 and T*3 are thus weakened:

(T*i2) If P ⊆ H, then P ⊆ T i(P, H)

(T*i3) If P (= ∅ and H is consistent, then T i(P, H) (= ∅.

Many of the contemporary versions of causal decision theory are based
on the substitution of imaging to conditioning in the calculation of expected
utility.9

Another possible solution is to keep T*1–3 and to give up (RTP). This
can be accomplished by developing a syntactic model where hypotheti-
cal operators do not express propositions. See ‘General Propositions and
Causality’ in [Ramsey (1990)] for a historical reference, and the section of
[Cross and Nute (1998)] devoted to epistemic conditionals for a review of
contemporary work in the field. Chapter 7 of [Gardenfors (1988)],

9Some authors have recently suggested that the defining ingredient of the notion
of supposition used in causal decision theory is exactly linearity ([Gardenfors (1988)],
[Joyce (199)], [Collins (1999)]).
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[Levi (1988)], [Arlo-Costa (1999)], and [Hansson (1992)] offer an overview
of the syntactical model of conditionals in games along the lines sketched in
[Arlo-Costa and Bicchieri (1998)].

Our solution in this paper (compatible with accepting conditional propo-
sitions) is to keep (RTP) together with a restricted version of T*1–3. Ac-
cording to this restriction, as we show in the next section, the transformation
function ranges only over primitive states in Ω.

3. Extended information structures revisited

A t-extended information structure (t-EIS) for a set of players I, is a list ((Ω,
ti )i∈I) where Ω is a set of states, and for each player i, ti is a hypothesis
transformation on Ω. ti is a function ti: Ω × (2Ω\∅) → 2Ω satisfying, for all
w in 2Ω,

(t*1) ti(w, H) ⊆ H

(t*2) If {w} ∩ H (= ∅, then ti(w, H) = {w} ∩ H

(t*3) If H (= ∅, then Ti(w, H) (= ∅.

Intuitively ti(w, H) can be seen as the set of states of the world considered
possible by an agent who supposes that H is true, if her current epistemic
state is w. This interpretation should be carefully differentiated from a
reading of ti(w, H) as ‘ti(w, H) is the set of states of the world considered
possible by an agent who supposes that H is true, if the actual state of the
world is w. This ontological reading of ti(w, H) is quite foreign to the central
accounts of belief revision in the existent literature. Neither Gardenfors, Levi
or Spohn, just to mention three important authors in the field considers
this ontologizing version feasible, and we will here follow standard usage in
dismissing such an interpretation of the transformation function.

We can now define a hypothetical knowledge operator as follows:

(k) KH
i (E) = {w ∈ Ω: ti(w, H) ⊆ E}

From a technical point of view the transformation function just intro-
duced is a selection function of the type used in standard possible worlds
semantics for conditionals, rather than a more general suppositional op-
erator capable of modifying not only states of the underlying space, but
also sets of states. See [Stalnaker (1968)], [Stalnaker and Thomason (1970)],
[Lewis (1973)], [Bicchieri (1988)], [Bicchieri (1989)], and [Bicchieri (1994)]
as well as [Cross and Nute (1998)] for suitable references.
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Notice that the following postulates can be deduced from the previous
ones:

(t1s) ti(w, H) ∩ H (= ∅

(t2s) If {w} ∩ H (= ∅, then ti(w, H) = {w}

(t*i2) If {w} ⊆ H, then {w} ⊆ ti(w, H)

It should be noted that a t-EIS does not appeal to partitions at all.
In what follows, we will not use (unconditional) knowledge operators, and
we will not need partitions, although nothing precludes adding them to the
t-EIS models for some purposes. In other words, our conclusions do not
depend upon the type of partitions eventually used to model a game. We
only need a set of states and hypothetical transformations of those states.

After this remark we can return to our main line of argument. Notice
that ti(w, H) might select any (not necessarily proper) subset of the conse-
quent proposition H. Any such selection is compatible with our axioms. For
example, in a centipede game {w} might encode the path recommending to
go ‘down’ at the root. Here it is useful to keep in mind that the states in Ω
should be understood as paths.

ti(w, H) encodes a hypothesis, made by the player who moves at the
root, about what would happen if a successor node H were to be reached.
Our axioms are neutral with regard to the content of such a supposition.
Some models might allow for ti(w, H) = H, which would represent a state
of maximal ignorance of the player engaging in the hypothetical exercise. In
other words, ti(w, H) = H would include all the paths that pass through
node H. Other models might impose stronger requirements. For example,
it could be possible to uniquely select a subset of H as ti(w, H). One such
subset may recommend playing the backwards induction strategy once H is
reached. Axiomatic constraints in our models do impose, nevertheless, some
limitations. For example, H should be known in the hypothetical state ti(w,
H). This, as we explained before, is standard practice in Bayesian models
and departs from Samet’s model, whose goal is to capture the content of
what is known given that a fact is true, rather than supposed to be true.

To see how ti-functions work, consider the following three-node cen-
tipede. The root is node 1, and then we have successor nodes 2 and 3.
Player I plays at the root and at node 3, and player II plays at node 2. w1,
w2, w3, w4 are four possible paths, or complete histories of the game. Each
path also represents an epistemic state. For example, w3 is the epistemic
state in which player I knows he plays across at node 1, and player II plays
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across at node II, and finally I plays down at node 3 (with payoffs (3, 1)).
Path w1 consists on player I playing down at root (with payoffs (1, 0)).
In path w2, player I plays across and player II down (with payoffs (0, 2)).
Finally in path w4 both player I and player II play across. Player I plays
across twice and the path ends with payoffs (2, 3). Even if a player is in a
specific state of knowledge, he may entertain a hypothesis about what would
happen were he to play differently. For example, hypotheses of the following
sort would be natural candidates for evaluation by player I: ‘I would play
down at node 3 if II were to play across at node 2’. Such a conditional can
be entertained by player I, even if he plays down at the root and knows
it. The relevant transformation function is tI(w1, H), where H = {w3, w4}.
If tI(w1, H) = {w3}, player I accepts the conditional in question from his
epistemic state w1.

There are, nevertheless, some limitations in the use of transformation
functions to track the dynamics of epistemic states. For example, one might
want to represent the act of sequentially entertaining two hypotheses. The
first establishes that node 2 has been reached (F = {w2, w3, w4}). The
second evaluates H (saying that player II plays across at node 2), from F’s
point of view. The corresponding nested usage of tI is:

tI(tI(w1, F), H)

Note that this formula is meaningful only if tI(w1, F) is a singleton.
Notice, nevertheless, that this restriction, which is rather common in equi-
librium analysis, is only a restriction about feasible suppositional states.
It should be stressed that we are not restricting the set of possible epis-
temic states of players (which could be in epistemic states that are far from
omniscient), we are only restricting the set of feasible suppositions made
by agents.

ti is, as we just remarked, a function ti: Ω × (2Ω\∅) → 2Ω. Of course,
one might extend the representational power of ti-functions by defining tI(F,
H) as the union of tI(wi, H), for i ranging in {w2, w3, w4}. This can be done,
at the price of re-introducing a version of the condition we called linearity,
and this condition will certainly bring us far away from the Bayesian path
we have followed so far (notice that such a function will not obey the crucial
Bayesian postulate (t*2) presented above). Alternatively one can assume
that transformation functions cumulate in the sense that tI(tI(wi, F), H)
= tI(wi, F ∩ H), for arbitrary propositions F and H. Some recent dynamic
extensions of Harsanyi’s theory of types make cumulative assumptions (see,
for example [Battigalli and Bonnano (1997)] for a recent analysis of issues
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related to this point). Cumulativity seems also required in order to guarantee
(sufficiently rich) maps between primitive conditional probability (the so-
called Renyi-Popper functions used in dynamic extensions of type theory)
and infinitesimal probability (see [Arlo-Costa and Thomason (2001)]) (see
also [Arlo-Costa (2001)] for a review of the use of cumulative assumptions
in probabilistic models of conditionals of the type offered in [Adams (1975)]).
Yet cumulativity is not universally assumed as a constraint on supposition
(see, [Arlo-Costa and Thomason (2001)], sections 5 to 8) and assuming it
is not compatible with an unrestricted version of postulate t*3. We will
thus not appeal to this assumption here, even when its use for representing
supposition in games of perfect information might be justifiable (at least for
models with finite or at most countable universes).

See [Arlo-Costa and Thomason (2001)] and [Arlo-Costa (2001)] for
a probabilistic justification of a non-consistency preserving and cumulative
t-function. It should be said in passing that less than the full force of cu-
mulativity can perhaps be used in models of games of perfect information.
For example, one might require the mutual compatibility of H and F, as
well as the fact that both propositions are epistemically possible for player I
(see [Arlo-Costa and Thomason (2001)] for a precise definition of epistemic
possibility). This weakened version of cumulativity is consistency preserving.

The introduction of conditional propositions in information structures is
not easy to reconcile with the idea of providing Bayesian foundations for the
theory of games. It is possible to build extended information structures con-
taining such conditional propositions, as long as we accept some constraints
on expressive power. The model we present here introduces conditional
propositions and sets various constraints of the type exemplified above. Our
characterization of rationality does not require either iterated conditionals or
the evaluation of hypotheses from the point of view of non-singleton events.
On the other hand, even when our transformation functions range over the
domain of states Ω, rather than over 2Ω, the suppositional outputs can be
arbitrary events. It should be said here in passing that our model answers
to criticisms of Samet’s model advanced in [Arlo-Costa and Bicchieri (1998)]
and [Halpern (1998)]. Moreover, our selection functions have a different in-
terpretation than Samet’s ones.

4. Models for games of perfect information

A finite game G of perfect information consists of a finite set of players I
and a finite tree with a set of nonterminal nodes V, a set of terminal nodes
Z, and a root r (we follow Samet’s notation here). For each player i ∈ I,
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Vi ⊆ V is the set of i’s decision nodes. For two nodes u, v, we write v * u
or u + v when u is a node in the subtree the root of which is v. For v ∈ V,
A(v) denotes the set {a | (v, a) is an arc of the tree}. The members of A(v),
when v ∈ Vi, are called i’s actions at v.

A strategy for player i is a function si: Vi → V ∪ Z, such that for each
v ∈ Vi, si(v) ∈ A(v). A strategy profile s is a combination of strategies s =
(si)i∈I . s(v) denotes the terminal node that is reached by strategy profile s
from node v. Thus, if v itself is a terminal node, then s(v) = v.

A model for a game of perfect information G with set of players I is a
pair (E, ζ), where E is an extended information structure and ζ is a map ζ:
Ω → Z, onto the set Z of terminal nodes, such that for every player i, node
v ∈ Vi, and action a ∈ A(v), [a] ⊆ Ki([v] → [a]) where [v] is the event that
node v is reached and [a] the event that action a is performed. The player’s
payoff function is a real valued function hi: Z → R. Let the payoff maps ηi

on Ω be defined by ηi(w) = hi(ζ(w)). In addition the event {w: ηi(w) < x}
is denoted by [ηi < x].

The payoffs are assumed to be non-degenerate. Therefore there is a
unique strategy β = (βi)i∈I satisfying, for each i and v ∈ Vi, the condition
βi(v) = argmaxa∈A(v) hi(β(a)). β is called the backward induction strategy,
and β(r) is called the backward induction path. According to the previous
notation, β(r) denotes the terminal node that is reached by the backward
induction strategy from the root.

Now we can define the key notion of this section. The event that player
i is rational at node v ∈ Vi is defined as follows:

R(v) = [v] ∩ ∩x ∩a∈A(v) ¬ (([v] → [ηi < x]) ∩ K [a]
i ( [a] → [ηi ≥ x]))

The definition is a slight variation of the characterization of rationality
at a node offered by Samet in [Samet (1996)]. Unlike Samet’s, our character-
ization is completely independent of the use of partitions, and therefore we
eliminate an extra (unconditional) knowledge operator also used by Samet.
It is important to emphasize that the notion just defined is a behavioral con-
cept, i.e. rationality at a node v is a concept that only applies to states
where v is indeed reached. The intuition is that player i is rational at node
v if that node is in fact reached and if there is no number x such that i’s ac-
tion at v nets him a payoff less than x, whereas he hypothesizes that another
action he might choose at v would net him a payoff of at least x.

One of the main goals of [Samet (1996)] is to find sufficient rationality
conditions to guarantee backward induction play. Several obvious conditions
do not suffice. For example, Samet shows in [Samet (1996)] that neither
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common knowledge of rationality at a node, nor the event that players hy-
pothesize that they are rational at each decision node are enough. Samet
proposed the notion of common hypothesis of node rationality, and proved
that it entails the backward induction path. For each pair of nonterminal
nodes u and v such that v + u, and event E, the event that there is a common
hypothesis of E from u to v, H (u, v, E), is defined inductively as

H (u, u, E) = E

If u ∈ Vi, v + u, and H (a, v, E) is defined for the (unique) node a in A(u)
on the path from u to v then

H (u, v, E) = K [a]([a] → H (a, v, E))

The event that there is a common hypothesis of node rationality is
⋂

v∈V H (r, v, R(v))

5. Rationality at a node and rationality as a disposition

The event that player i is rational can be constructed in terms of a behavioral
notion of rationality by identifying it with the event that i hypothesizes that
he is rational at all his nodes: ∩v∈Vi K [v]

i ([v] → R(v)).
We propose an alternative definition of players’ rationality that, when

it is distributed knowledge among the players, guarantees the backward in-
duction play. This notion of rationality (Rat) is based upon the notion of
rationality at a node. Let us say that a player has a disposition to be ratio-
nal if, for every node v at which he might choose, it is not possible that he
knowingly chooses an irrational action at v.

Rat(i) = ∩v∈Vi ∩a∈A(v) ¬ (K [v]
i ( [v] → [a]) ∩ K [a]

i ( [a] → ¬ R(v))

We shall now focus on the class of games known as centipede games -
defined over binary trees. A game of perfect information is called a centipede
game if and only if there is a vertex v whose actions at v lead to terminal
nodes and such that for every u * v, and actions a, d ∈ A(u), one of the
actions, say d, leads to a terminal node and [a] = [s], where s is the vertex
immediately succeeding u.

Theorem 5.1. For each centipede game there exists a model in which:

Rat = [β(root)]
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Proof. We will split the proof into two main lemmas. First we will show
the existence of models such that for each centipede game [β(root)] entails
Rat. This proof also shows in all generality that for each game of perfect
information there exist a model such that Rat is non-empty. In the second
part of the proof we will show that Rat entails [β(root)].

We remind the reader that the payoffs are assumed to be non-degenerate.
Therefore there is a unique β = (βi)i∈I satisfying, for each i and v ∈ Vi, the
condition βi(v) = argmaxa∈A(v) hi(β(a)). It is useful to remember here that
if a is a terminal node, hi(β(a)) = hi(a). β is called the backward induction
strategy, and β(root) is called the backward induction path. According to the
previous notation, β(root) denotes the terminal node that is reached by the
backward induction strategy from the root.

In order to show the existence of a model capable of solving centipede
games, we will choose a particular transformation function. In this proof we
will use the transformation function that selects backward induction solu-
tions in sub-trees.

Define ti for each path w in Ω and non-empty hypothesis H ⊆ 2Ω, as
follows:

If w (∈ H, then set ti({w}, H) = {[β(t)]}, for some t which is minimal
with respect to + in H. Otherwise ti({w}, H) = {w}. It is easy to check that
ti is a transformation function obeying the corresponding axioms. Moreover
this definition entails that for each u ∈ V:

(I) [β(u)] ⊆ R(u)

Samet proves (I) in his paper, but his definition of rationality at a node
differs from ours. So we need to re-check this fact here. Let a and d be the
actions at node u and i the player playing at u.

Assume first, that [β(u)] ⊆ [a]. In this case, in virtue of the fact that
for each agent i and v ∈ Vi, βi(v) = argmaxa∈A(v) hi(β(a)), we claim that
hi(β(a)) > hi(β(d)). The proof branches into two sub-cases. First consider
the case x ≤ hi(β(u)). In this case we have:

(II) [β(u)] (∈ ([u] ∪ [ηi < x])

which guarantees that, for each payoff x ≤ hi(β(u)), and each action a at u:
[β(u)] (∈ (([u] → [ηi < x]) ∩ K [a]

i ( [a] → [ηi ≥ x])).

The second sub-case contemplates values of x > hi(β(u)). In this case
we have:
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(a) ti([β(u)], [d]) = [d] (∈ ([d] → [ηi ≥ x])

(b) ti([β(u)], [a]) = [β(u)] = [β(a)] (∈ ([a] → [ηi ≥ x])

In order to see that (a) holds it is enough to notice that, given the
assumptions, x > hi(β(u)) = hi(β(a)) > hi(β(d)). Similar considerations
suffice to establish (b). This, in turn, is sufficient to establish the case [β(u)]
⊆ [a].

We can now check the case [β(u)] ⊆ [d]. In this case we have hi(β(d))
> hi(β(a)). The proof of this sub-case branches again. When x ≤ hi(β(u))
condition (II) holds again. On the other hand, when x > hi(β(u)), we also
have

ti([β(u)], [d]) = [d] (∈ ([d] → [ηi ≥ x])

and since x > hi(β(d)) = hi(β(u)) > hi(β(a)), we also have:

ti([β(u)], [a]) = [β(u)] = [β(a)] (∈ ([a] → [ηi ≥ x])

We will show now for an arbitrary node u that:

(A) [β(root)] ⊆ Rat(u) = ∩a∈A(u) ¬ (K [u]
i ([u] → [a]) ∩ K [a]

i ([a] → R(u))

First case: [β(root)] (∈ [u]

In this case ti([β(root)], [u]) = [β(u)], for each player i. Call a and d the
two actions at u. Assume w.l.o.g. that [β(u)] ∈ [a]. In order to establish
(A) it is enough to notice that the following two facts hold. First β(root) (∈
(K [u]

i ([u] → [d]) ∩ K [d]
i ([d] → R(u)), given that:

ti([β(root)], [u]) = [β(u)] (∈ ([u] → [d])

On the other hand, since [β(u)] ⊆ R(u), β(root) (∈ (K [u]
i ([u] → [a]) ∩

K [a]
i ([a] → R(u)), in virtue of:

ti([β(root)], [a]) = [β(u)] = [β(a)] (∈ ([a] → R(u)).

Therefore [β(root)] ⊆ Rat(u) as desired. Now we have to consider the
second case:

Second case: [β(root)] ∈ [u]
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Assume w.l.o.g. that [β(root)] ∈ [a]. Then ti([β(root)], [u]) =
ti([β(root)], [a]) = [β(root)]. And we also have [β(root)] = [β(u)], as well as
[β(u)] ∈ R(u). This is enough to guarantee that:

(B) [β(root)] ⊆ Rat(u) = ∩a∈A(u) ¬ (K [u]
i ([u] → [a]) ∩ K [a]

i ( [a] → R(u))

In fact, as before,

ti([β(root)], [u]) = [β(root)] (∈ ([u] → [d])

and
[β(root)] (∈ ([a] → R(u))

We will conclude the proof by establishing that Rat entails [β(root)].
Throughout the proof we will call v the node such that there is an action at
v leading to a terminal node, say d, such that [d] = [β(root)]. Assume by
contradiction that there is a path [p] ∈ Rat and [p] (= [β(root)]. This proof
branches into two main cases. Either there is a node t * v, such that there
is an action dt ∈ A(t), and [p] = [dt]; or v ≺ t (this being the second case).
Since we are working with binary trees, we will call at the ‘across’ action
at t.

It is enough to establish that [p] (∈ Rat(t). To show this, in turn, it is
enough to show that, if player i is playing at node t:

(1) ti([p], [t]) = [p] ⊆ [t ] ∪ [dt].

(2) ti([p], [dt]) = [p] = [dt] ⊆ [dt] ∪ R(t)

(1) is obviously true. Establishing (2) requires showing that [dt] (∈ R(t).
We know that the backwards induction strategy β is such that βi(at)) =
hi(ζ([β(root)]). Moreover, hi(ζ([p]) < βi(at)) = hi(ζ([β(root)]).

In order to show that that [p] = [dt] (∈ R(t) it is sufficient to establish
that [p] ∈ ([t] ∪ [ηi < x]) ∩ K [at]

i ([at] → [ηi ≥ x]). Pick x = hi(ζ([β(root)]).
This guarantees that ti([p], [at]) = [β(root)]) ⊆ ([at] ∪ [ηi ≥ x]), given that
we have selected x = hi(ζ([β(root)]) - which guarantees [β(root)] ∈ [ηi ≥ x].
On the other hand [p] ∈ [ηi < x], guaranteeing that [p] (∈ R(t).

Now we have to consider the second case. I.e. we assume by contradiction
that there is a node t, which is a successor of v (v ≺ t), such that there is an
action dt ∈ A(t), and [p] = [dt] ∈ Rat.

There are two main sub-cases to consider. First assume that [βi(t)] (=
[dt]. In this sub-case [p] ∈ (K [t]

i ([t] → [dt]) ∩ K [dt]
i ([dt] → R(t)). In other
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words, [p] (∈ Rat(t). In order to see this it is enough to notice that [dt] (∈
R(t). In fact, in this sub-case we have the following constraint for payoffs:

hi([β(dt)]) < hi([β(at)]) = βi(t) = x

This (together with assumed properties of the transformation function
t) is enough to guarantee that [p] = [dt] ∈ [([t] ∪ [ηi < x]) ∩ K [at]

i ([at] → [ηi

≥ x]). And this, in turn, establishes that [dt] (∈ R(t).

Second sub-case: [βi(t)] = [dt]. In order to solve this sub-case it is enough
to show that [p] = [dt] (∈ Rat(v) – against the assumption that [dt] ∈ Rat. An
argument similar to the one given above suffices (by showing [dt] (∈ R(v)).

6. Discussion

The main proof in the previous section shows that a minimal extension of
standard information structures provides a powerful tool to analyze games
of perfect information. Conditional propositions are explicitly represented
in the model. We use them to encode (as propositions) both the notion of
rationality at a node and the notion of rationality as a disposition. The first
notion is essentially Samet’s. The second notion makes possible to formalize
the idea that if all agents have the disposition to act rationally at all nodes,
then they implement the BI solution in centipede games.

There is no need to posit that rationality is commonly known or believed.
Or, following Samet’s formulation, there is no need to assume that there is
a common hypothesis of rationality among agents.

At first sight Theorem 5.1 has an existential character. It shows that
there exist t-EIS models inducing the BI solution. Our main result can
easily be presented, nevertheless, in a different form. In fact, the intended
model used in the main result uses what we can call a normal rationality
condition, by which the transformation function used in the encoding of
rationality selects backward induction solutions in sub-games. This is a
simple and natural selection function (saliently used in the informal analysis
of cetipedes). A by-product of the main result is that normal rationality of
the players is both a necessary and sufficient condition for the BI solution
in every model of the game.

The demands on normal rationality that our transformation functions
impose might be seen as substantial. Yet those constraints are no less de-
manding in alternative models which, in addition, impose considerable bur-
dens on the amount of shared and commonly acquired knowledge needed
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376 H. Arló-Costa and C. Bicchieri

to solve games. In our model the knowledge assumptions are kept to a
minimum.

What would have happened had node H been reached? An agent can
always ask this question (ex ante) in our model. The axioms we impose
on transformation functions do not require that the agent should find the
backwards induction solution at H every time he or she answers the question.
Our axioms let the agent select other solutions or even suspend judgment
upon supposing H. Some criticism of Samet’s model has been in part based
on the fact that it precludes these degrees of freedom — see [Halpern (1998)]
and [Arlo-Costa and Bicchieri (1998)]. It may seem, however, that our main
result depends on additional restrictions on transformation functions, which
are not required axiomatically. Some obvious answers can be given. The first
is that although our general result uses a special transformation function,
many interesting games can be solved by permissible functions that allow
agents to be endowed with considerably weaker cognitive powers. As an
example, consider a centipede where option w1 is down at root for player I
and with payoffs (1, 0), and where options w2, w3 and w4 are, respectively,
down for agent II with payoffs (0, 2), down for agent I with payoffs (3, 1) and,
finally, across for player I with payoffs (2, 3). In this game we have that Rat
= {w1}, even when one uses transformation functions requiring hypothetical
suspension of judgement in the case of hypotheses about unreached nodes.
In other words, ti({w}, H) = H, whenever w (∈ H.

Answering the question: ‘What would have happened had node H been
reached?’ depends on background knowledge about the payoff structure
and on hypotheses about the rationality of other agents at different nodes.
But even if all agents have the disposition to be rational, and each agent
knows that, this does not necessarily force transformation functions to select
backward induction solutions. In fact, at states where Rat is true, K [v]

i ([v]
→ [β(v)]) need not be true for all nodes v. For example, consider again the
aforementioned game. K [v]

i ([v] → [β(v)]) is only true at w3 if transformation
functions are such that ti({w}, H) = H, whenever w (∈ H.

So, on the one hand we can have games where Rat induces the backward
induction solution, even though the transformation functions fail to select
backward induction solutions at unreached nodes. On the other hand, nor-
matively (or experimentally) justified transformation functions of this type
might produce models where the disposition to act rationally at all nodes
need not entail the BI solution. Models of this type could be justifiable to
the extent that the corresponding transformation functions are justifiable.
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Much of the recent interest in the explicit representation of the epistemic
structure of games has grown out of the awareness that the known results
about refinements and equilibrium selection are model-relative. Aumann’s
result [Aumann (1995)], showing that the BI solution is entailed by com-
mon knowledge of rationality, for example, depends on several theoretical
assumptions. Knowledge representation matters in making those assump-
tions. Constructing a model involves selecting certain propositional attitudes
(knowledge, belief, certainty) as the right attitudes, as well as building par-
ticular models of those attitudes. The crucial attitude selected in this paper
is a form of supposing embedded in transformation functions. Emphasizing
this propositional attitude makes other aspects of traditional models less
crucial. In particular, neither common knowledge nor common hypotheses
of rationality need to be assumed in order to derive the BI solution.

The models presented here are applicable to games of perfect informa-
tion. Modeling conditionals in games of imperfect information requires de-
veloping a more sophisticated theory of conditionals. Games of imperfect
information typically require to make hypotheses that are naturally mod-
eled via functions T(P, H), where P is the current epistemic state, H the
hypothesis and P is a complex proposition (a set of nodes, for example)
[Bicchieri and Schulte (1997)], [Bicchieri (1993)]. In a companion paper we
argue that the best modeling of conditionals in these games is syntactic
rather than propositional [Bicchieri and Antonelli (1993)].

Throughout this paper we focused on studying a viable model for us-
ing conditional propositions in games of perfect information. The account
that thus arises articulates a mathematical model of supposing. As we just
argued, a more encompassing account of supposing might need a syntactic
presentation. In addition, it should be stressed that the notion of supposing
we are interested in is synchronic. Even when some of the ideas discussed
here might be useful in order to model the (diachronic) notion of belief re-
vision in games, this notion is more complex. Its careful study requires
deploying concepts and formal apparatus which are beyond the scope of this
paper. Our fundamental interest here just focuses on the interest and limits
of the use of conditional propositions in modeling (‘ex ante’) supposing in
games of perfect information.
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