

History Remembered: Optimal Sovereign Default on Domestic & External Debt

by

Pablo D'Erasmo & Enrique G. Mendoza (JME 2021)

Central government debt ratios: Advanced economies

Central government debt ratios: Italy and Japan

Central government debt ratios: Latin America

The forgotten history of domestic debt

- **Domestic** public debt viewed as "risk-free asset" despite history of overt defaults and very high debt ratios:
 - Reinhart & Rogoff (08): 1.1% frequency since 1750, 1/3 ratio
 v. external defaults, a forgotten history in Macro
 - 2. Hall & Sargent (14): U.S. default after revolutionary war
 - 3. European Debt Crisis akin to domestic default: 85% of EU debt stays in Europe, common currency
 - 4. Record-high U.S. public debt ratio: 100% for net federal debt in 2022, + about 200pp in unfunded entitlement liabilities
- Narratives differ from those for external defaults in highlighting concern of creditors and their institutions for financial/redistributive effects

Presentation layout

- 1. Propose a framework for explaining domestic defaults: Aiyagari-Bewley meet Eaton-Gersovitz
- 2. Structure of the model
- 3. Two specialized cases:
 - a) Distributional default incentives in one- and two-period models with two agent types
 - b) Social value of debt (social welfare costs of a surprise, one-time default) in a Bewley economy
- 4. Quantitative analysis of full model (calibration, timeseries evaluation, default mechanism)
- 5. Robustness analysis & conclusions

1. Summary of the framework

- A Bewley-Aiyagari-Eaton-Gersovitz model: agents are heterogeneous in public debt holdings and income (b, y), gov. issues debt & has stochastic expenditures (B, g) and is not committed to repay (i.e., defaults optimally)
- Soc. Planner values distributional role of debt: Issuing (*repaying*) debt causes progressive (*regressive*) redistribution, making default desirable ex-post
- ...but default has large **endogenous costs** (debt is useful for **liquidity provision, self-insurance**, **risk-sharing**)
- Ex-ante prog. redistribution is hampered by lower debt prices if default risk rises (**debt Laffer curve**)

Default tradeoffs

- If gov. defaults, public debt is wiped out (totally or partially, with endogenous or exogenous partial default)
- **Benefits**: Avoid regressive redistribution, transfers do not fall to repay gov. bond holders
- **Costs**: Liquidity, self-insurance and risk-sharing benefits of debt are lost to everyone (but valued differently!)
- Government re-enters debt market next period (no exclusion costs)
- Can also include exogenous income cost a'la Arellano

Feedback mechanism

- 1. Gov. decides to default or repay
 - 2. If it repays, it sells new debt to foreign (risk neutral) & domestic (risk averse) agents
 - Foreigners are marginal buyers. Debt priced by arbitrage condition (def. risk premium ≈ prob. of def)
 - 4. Agents differ in (b, y), respond differently to def. risk
 - 5. Individual valuations of gains from default vary widely across agents and move over time
- 6. Social gains from default change with dispersion of individual valuations

2. Model structure

Timing of actions & participation

- 1. Period t begins, $\{y, g\}$ realizations are observed
- 2. Individual states $\{b, y\}$, distribution of bonds and income $\Gamma_t(b, y)$ and agg. states $\{B, g\}$ are known
- 3. Income taxes are paid
- 4. Government makes default decision
 - i. Repayment $(d_t = 0)$: market for new debt opens, gov. choose supply of debt, domestic and foreign agents buy it at price q_t , gov. sets transfers to satisfy GBC
 - ii. Default ($d_t = 1$): market for new debt does not open, domestic agents may face income cost $\phi(g)$, gov. sets transfers to satisfy GBC
- 5. Agents consume, period ends

Individual optimization problem

• Payoff before default decision is made:

 $V(b,y,B,g) = (1 - d(B,g))V^{d=0}(b,y,B,g) + d(B,g)V^{d=1}(y,g)$

• Optimization problem under repayment:

 $V^{d=0}(b, y, B, g) = \max_{\{c \ge 0, b' \ge 0\}} \left\{ u(c) + \beta E_{(y',g')|(y,g)}[V(b', y', B', g')] \right\}$ s.t. $c + q(B'(B, g), g)b' = b + y(1 - \tau^y) + \tau^{d=0}(B, g)$

• Payfoff Under default:

 $V^{d=1}(y,g) = u(y(1-\tau^y) - \phi(g) + \tau^{d=1}(g)) + \beta E_{(y',g')|(y,g)}[V^{d=0}(0,y',0,g')]$

$$\max_{d \in \{0,1\}} \left\{ W^{d=0}(B,g), W^{d=1}(g) \right\}$$

- Bergson-Samuelson SWF with exogenous weights:

$$W^{d=0}(B,g) = \int_{\mathcal{Y}\times\mathcal{B}} V^{d=0}(b,y,B,g) d\omega(b,y)$$
$$W^{d=1}(g) = \int_{\mathcal{Y}\times\mathcal{B}} V^{d=1}(y,g) d\omega(b,y)$$

– Welfare weights:

$$\omega(b,y) = \sum_{y_i \leq y} \pi^*(y_i) \left(1 - e^{-\frac{b}{\bar{\omega}}} \right)$$
 creditor bias

Government debt issuance choice under repayment:

$$\max_{\tilde{B}'} \int_{\mathcal{Y}\times\mathcal{B}} \tilde{V}(b, y, B, g, \tilde{B}') d\omega(b, y).$$

$$\tilde{V}(b, y, B, g, \tilde{B}') = \max_{\{c \ge 0, b' \ge 0\}} u(c) + \beta E_{(y', g')|(y, g)}[V(b', y', \tilde{B}', g')]$$

s.t.
$$\begin{cases} c + q(\tilde{B}', g)b' = y(1 - \tau^y) + b + \tau \\ \tau = \tau^y Y - g - B + q(\tilde{B}', g)\tilde{B}'. \end{cases}$$

• Foreign creditors' no arbitrage condition:

$$q(B',g) = \frac{(1-p(B',g))}{(1+\bar{r})} \qquad p(B',g) = \sum_{g'} d(B',g')F(g',g)$$

Social value of debt

• Use $\tilde{b} = (b - B)$ to transform individual agents' budget and liquidity constraint under repayment:

$$\begin{array}{rcl} \hline c &=& y + \tilde{b} - q(B',g)\tilde{b}' - \tau^y(y-Y) - g \\ \hline b' &\geq& -B' \end{array}$$

- 1. Liquidity: Issuing debt relaxes no-borrowing constraint
- Self-insurance: Low (high) income agents draw from (add to) precautionary savings by selling (buying) debt
- 3. Risk-sharing: Debt sales (purchases) by low (high) income agents reduce consumption dispersion
- Income tax also provides income risk-sharing, but limited because calibrated taxes are well below 100%

Default risk widens dispersion in bond holdings

• FOC for debt demand (assuming differentiability):

$$u'(c) \ge \beta E_{(y',g')|(y,g)} \left[(1 - d(B',g')) \frac{u'(c')}{q(B',g)} \right]$$

- How does default risk widen dispersion in bond holdings?
 - 1. Bonds yield zero marginal benefit in default states
 - 2. Larger default set lowers expected marginal benefit of holding bonds (given q), weakening incentives to demand bonds and proportionally more for low (b, y) types
 - 3. ...but it also increases prob. of default and risk premium (reduces q), incentivizing high (b, y) types to buy more

Dispersion in bond holdings alters government default incentives

• Differences in individual consumption across default and repayment states (consumption gap):

$$\Delta c \equiv c^{d=0} - c^{d=1} = \tilde{b} - q(B',g)\tilde{b}' + \phi(g)$$

- Cross-sectional dispersion in consumption gap: Given q, issuing new debt favors agents with $\tilde{b'} < 0$, but it requires repaying outstanding debt, which hurts agents with $\tilde{b} < 0$
- Effects of dispersion in bond holdings on def. incentives:
 - 1. Larger mass with $\tilde{b} < 0$ at low qs imply more agents with negative gap, which strengthens default incentives (prevent **regressive redistribution**)
 - 2. Larger mass with $\tilde{b'} < 0$ implies more agents with positive gap, which weakens defaults incentives (**progressive red.**)
 - 3. Caveat: Applies to date-t, not expected lifetime utility

3. Specialized Cases: Distributional Incentives & Social Value of Debt

Distributional default incentives in a one-period model

- Two types of agents: Fraction γ hold less debt, b^L , fraction 1γ hold more, b^H .
- Exogenous supply of public debt *B*
- Exogenous distribution of ownership given by $0 \le \epsilon \le B$ (no self-insurance, risk-sharing or liquidity benefits)

– L-types holdings:
$$b^L = B - \epsilon$$

- H-types holdings: $b^H = B + \gamma \epsilon / (1 \gamma)$ (by market clearing)
- Government Bergson-Samuleson payoffs:

$$W^{d=0}(\epsilon) = \omega u(y - g + \epsilon) + (1 - \omega)u\left(y - g + \frac{\gamma}{1 - \gamma}\epsilon\right)$$
$$W_1^{d=1}(\phi) = u(y(1 - \phi) - g)$$

Redistribution alone cannot sustain debt

Two-period general equilibrium extension (D'Erasmo & Mendoza, JEEA 2016)

- Two types of risk-averse agents (L, H), with fraction γ of L-types ($b_0^L < b_0^H$)
- Gov. collects lump-sum taxes τ , faces stochastic g, issues bonds B (g and default are non-insurable aggregate risks)
- Default is costly as a fraction $\phi(g)$ of income that rises as g falls (higher cost in good times a'la Arellano (2008))

 $\phi(g_1) \geq 0$, with $\phi'(g_1) \leq 0$ for $g_1 \leq \overline{g}_1, \phi'(g_1) = 0$ otherwise

 Gov. attains 2nd-best deviation from equal mg. utilities by redistributing via debt & default (debt has *some* social value because of two-period horizon)

Private Agents

Preferences:

$$u(c_0) + \beta E[u(c_1)], \qquad u(c) = \frac{c^{1-\sigma}}{1-\sigma}$$

Date-0 budget constraints and initial wealth for *i=L,H*:

$$c_0^i + q_0 b_1^i = y + b_0^i - \tau_0$$

Date-1 budget constraints **under repayment** for *i=L,H*:

$$c_1^i = y + b_1^i - \tau_1$$

Date-1 budget constraints **under default** for *i=L,H*:

$$c_1^i = (1 - \phi(g_1))y - \tau_1$$

Agents' Optimization Problem

Payoff function for i=*L*,*H* :

$$v^{i}(B_{1},\gamma) = \max_{b_{1}^{i}} \left\{ u(y+b_{0}^{i}-q_{0}b_{1}^{i}-\tau_{0}) + \beta E_{g_{1}} \left[(1-d_{1}(B_{1},g_{1},\gamma))u(y+b_{1}^{i}-\tau_{1}^{d_{1}=0}) + d_{1}(B_{1},g_{1},\gamma)u(y(1-\phi(g_{1}))-\tau_{1}^{d_{1}=1}) \right] \right\}$$

subject to $b_1^i \ge 0$.

Initial bond holdings given by initial wealth distribution and bond market clearing:

$$b_0^H = \frac{B_0 - \gamma b_0^L}{1 - \gamma} \ge b_0^L \ge 0$$

Government

Budget constraints

$$\tau_0 = g_0 + B_0 - q_0 B_1$$

$$\tau_1^{d_1=0} = g_1 + B_1 \qquad \tau_1^{d_1=1} = g_1$$

Default decision in 2nd period (as in 1-period model w. <u>utilitarian</u> SWF):

$$\max_{d \in \{0,1\}} \left\{ W_1^{d=0}(B_1, g_1, \gamma), W_1^{d=1}(g_1, \gamma) \right\}$$

 $W_1^{d=0}(B_1, g_1, \gamma) = \gamma u(y - g_1 + b_1^L - B_1) + (1 - \gamma)u(y - g_1 + b_1^H - B_1)$

$$W_1^{d=1}(g_1, \gamma) = u(y(1 - \phi(g_1)) - g_1)$$

Debt issuance optimization problem in 1st period:

$$W_0(\gamma) = \max_{B_1} \left\{ \gamma v^L(B_1, \gamma) + (1 - \gamma) v^H(B_1, \gamma) \right\}$$

 Selling debt reduces dispersion at t=0 (prog. red.), but increases it at t=1 under repayment (reg. red.):

$$c_0^H - c_0^L = \frac{1}{1 - \gamma} \left[B_0 - q(B_1, \gamma) B_1 \right]$$
$$c_1^{H,d=0} - c_1^{L,d=0} = \frac{1}{1 - \gamma} B_1$$
$$c_1^{H,d=1} - c_1^{L,d=1} = 0.$$

- Gov. internalizes how default risk reduces the gain of issuing debt by lowering bond prices (debt Laffer curve).
- Debt market clearing induces a demand composition effect (as γ rises, each H-type has to buy more debt because there are fewer agents available to be bond holders)

$$b_1^L = B_1 - \epsilon$$
 and $b_1^H(\gamma) = B_1 + \frac{\gamma}{1-\gamma}\epsilon_1$

• Without default, some dispersion is optimal (liquidity benefit: debt helps relax L-types borrowing constraint)

$$u'(c_0^H) = u'(c_0^L) + \frac{\eta}{q(B_1, \gamma)\gamma} \{ \gamma \mu^L \}$$

$$\eta \equiv q(B_1, \gamma) / (q'(B_1, \gamma)B_1) < 0$$

$$\mu^L \equiv q(B_1, \gamma) u'(c_0^L) - \beta E_{g_1} [(1 - d^1)u'(c_1^L)] > 0.$$

 With default risk, more dispersion at t=0 repaying is traded off for zero at t=1 in default states

$$u'(c_0^H) = u'(c_0^L) + \frac{\eta}{q(B_1,\gamma)\gamma} \left\{ \beta E_{g_1} \left[\Delta d \Delta W_1 \right] + \gamma \mu^L \right\}$$

 $\begin{aligned} \Delta d &\equiv d(B_1 + \delta, g_1, \gamma) - d(B_1, g_1, \gamma) \ge 0, & \text{for } \delta > 0 \text{ small}, \\ \Delta W_1 &\equiv W_1^{d=1}(g_1, \gamma) - W_1^{d=0}(B_1, g_1, \gamma) \ge 0, \end{aligned}$

Calibration to European Data

Parameter		Value
Discount factor	β	0.96
Risk aversion	σ	1.00
Average income	У	0.79
Low household wealth	b_0^L	0.00
Average government consumption	μ_{σ}^{0}	0.18
Autocorrel. G	ρ_{a}	0.88
Std. dev. error	σ_a	0.017
Initial government debt	B_0^{ϵ}	0.35
Output cost default	φ_0	0.004

Notes: Government expenditures, income, and debt values are derived using data from France, Germany, Greece, Ireland, Italy, Spain, and Portugal.

Default thresholds and debt decision rule

Utilitarian government

Non-bond-holders may prefer bias! (if ownership is sufficiently concentrated)

Panel (i): $v_0^L(\gamma, \omega)$ -1.5max-2 $\omega = \gamma_H$ -2.5 $= \gamma_L$ -3 $v_0^L(\gamma_L,\omega)$ $v_0^L(\gamma_H, \omega)$ 0.4 0 0.2 0.6 0.8 Welfare weights (w)

- Assume a given initial outstanding debt *B*
- Compare economy without default v. one that starts with a once-and-for-all default (no def. *risk*, no dist. incentives)
- Individual default gains/costs (Lucas-style comp. variation):

$$\alpha(b, y, B, g) = \left[\frac{V^{d=1}(y, g)}{V^c(b, y, B, g)}\right]^{\frac{1}{1-\sigma}} - 1$$

• Social value of public debt:

$$\bar{\alpha}(B,g) = \int \alpha(b,y,B,g) d\omega(b,y)$$

Two options for weights: calibrated or average of endogenous distribution of debt and income (utilitarian)

Social value of debt is large

Using calibrated welfare weights (w. creditor bias)

B/GDP	B^d/GDP	$\bar{\alpha}(B,\mu_g)\%$	$\bar{\alpha}(B,\underline{g})$	$\bar{\alpha}(B,\overline{g})$	hh's $\alpha(b, y, B, \mu_g) > 0$
5.0	4.25	-1.87	-4.66	-1.13	0.9
10.0	4.25	-0.90	-3.76	-0.12	29.1
15.0	4.25	0.04	-2.88	0.89	66.0
20.0	4.25	1.00	-1.99	1.90	83.9

Using average wealth distribution

B/GDP	B^d/GDP	$\bar{\alpha}(B,\mu_g)\%$	$\bar{\alpha}(B,\underline{g})$	$\bar{\alpha}(B,\overline{g})$	hh's $\alpha(b, y, B, \mu_g) > 0$
5.0	4.25	-1.75	-4.56	-1.00	0.0
10.0	4.25	-0.95	-3.81	-0.15	9.2
15.0	4.25	0.00	-2.93	0.85	75.8
20.0	4.25	1.07	-1.92	1.99	86.9

4. Quantitative Analysis of Complete Model

Model calibration

- Calibration to Eurozone (also a case with only Spain)
- Most parameters set to data estimates
- Maturity adjustment: Macaulay duration rate of a consol proxied by mean duration *D*, so *B=B^{obs}/D=0.48/6.35=7.45%*
- Three parameters set by SMM:
 - a) Default cost targets mean debt ratio $\phi(g) = \phi_1 \max\{0, (\mu_g g)^{1/2}\}$
 - b) Discount factor targets mean *domestic* debt ratio
 - c) Creditor bias targets mean spread (v. Germany)

			Moments (%)	Data	Model
Discount Factor	$\beta = 0.8$	71	Avg. Ratio Domestic Debt	55.53	55.47
Welfare Weights	$\bar{\omega} = 0.0$	55	Avg. Spread Eurozone	0.92	1.22
Default Cost	$\phi_1 = 0.7$	93	Avg. Debt to GDP (maturity adjusted)	7.45	7.87

Quantitative findings

- 1. Model matches two key R&R historical facts:
 - a) Infrequent defaults: 1.2% in model v. 1.1% in data
 - b) Defaults w. low external debt (44% of total debt on average)
- 2. Debt sold at risk-free price 75% of the time, but amount of debt sharply reduced by inability to commit
- Pre-default dynamics typical of debt crises: Debt & spreads rise sharply, suddenly before defaults (debt 38% above average, spreads at 953 basis points)
- 4. In line with key cyclical moments (negative corrs. of spreads with disp. income and gov. expenditures)
- 5. Large, time-varying dispersion in private default gains

Quantitative findings contn'd

- 6. When default incentives are low, debt is used for taxsmoothing, but as they rise, gov. generates fewer resources by borrowing, so debt falls when g rises
- 7. Optimal debt moves across three zones:
 - A. Low enough *B* and/or *g*, debt is sold at risk-free price and is in upward-sloping region of Laffer curve
 - B. High enough *B* and/or *g* such that debt still sells at risk-free price but at the max. of the Laffer curve.
 - C. Region of *B* and/or *g* in which debt carries risk premium but can be at the max. of Laffer curve or less (gov. desires more resources than what debt at risk-free price yields, but not always the most it can generate at a positive spread)
 - Debt is in region c) less frequently, so it sells at the risk-free price more often but option to default always restricts debt.

Long-run and pre-crisis moments

		Data	Model				
Moment (%)	Avg.	Crisis Peak	Average	Prior Default			
Gov. Debt B	7.45*	10.94	7.87	10.82			
Domestic Debt B^d	4.14	5.92	4.37	4.87			
Foreign Debt \widehat{B}	3.31	5.02	3.50	5.95			
Ratio B^d/B	55.53^{*}	54.15	55.47	44.97			
Tax Revenues $\tau^y Y$	30.01^{*}	29.20	30.01	30.01			
Gov. Expenditure g	19.98^{*}	21.34	19.99	19.15			
Transfers τ	8.15	16.78	9.90	10.35			
Spread $(\%)$	0.92*	3.34	1.22	9.53			

Default event dynamics

Pricing function & Laffer curve

Dispersion in gains from default

Evolution of social default gains

Ind. utility gains from default (α)

5. Robustness Analysis & Conclusions

Robustness Analysis

- 1. Welfare weights
- 2. Risk aversion and subjective discount factor
- 3. Idiosyncratic income variability
- 4. Exogenous default costs
- 5. Income tax rates
- 6. Exogenous and endogenous partial default

Relevance of welfare weights

- Weighing non-bond holders more:
 - 1. Riske-free utilitarian: Use long-run average of (b, y)distribution without default risk $\omega(b, y) = \overline{\Gamma}^{rf}(b, y)$
 - 2. Quasi-Rawlsian weighting: Modify weighting function to assign weight z to agents with zero bond holdings

$$\omega(b,y) = \sum_{y_i \le y} \pi^*(y_i) \left(1 - e^{-\frac{(b+z)}{\bar{\omega}}} \right)$$

- Model sustains debt with positive risk premia in both experiments (for lower $\overline{\omega}$ and/or z > 0)
- Default incentives are stronger, so default freq./spreads increase and sustainable debt ratios fall

Results with different welfare weights

	Baseline	(A)	(B)	(C)	(D)
	$\bar{\omega} = 0.065$	$\bar{\omega} = 0.065$	$\bar{\omega} = 0.055$	$\bar{\omega} = 0.055$	$\omega(b,y)$
Moment (%)	z = 0	z = 0.025	z = 0	z = 0.025	$= \bar{\Gamma}^{rf}(b,$
Long Run Avg.					
Gov. Debt B	7.87	5.71	6.61	4.93	3.76
Dom. Debt B^d	4.37	4.21	4.27	4.14	3.23
Foreign Debt \hat{B}	3.50	1.50	2.35	0.79	0.53
Default Frequency	1.21	2.26	2.10	3.52	4.39
Spreads	1.22	2.32	2.15	3.65	4.592
Transf τ	9.90	9.93	9.92	9.95	10.01
Frac. Hh's $b = 0$	65.58	67.42	67.69	67.33	69.64
$ar{lpha}(B,g)$	-0.814	-0.781	-0.862	-0.766	-0.768
Avg. Prior Default					
Gov. Debt B	10.82	7.99	9.26	6.97	5.43
Dom. Debt B^d	4.87	4.79	4.95	4.76	4.28
Foreign Debt \hat{B}	5.95	3.20	4.32	2.21	1.15
Spreads	9.53	12.67	12.30	19.78	16.16
Def. Th. $\hat{b}(\mu_y)$	0.095	0.068	0.081	0.060	0.049
%. Favor Repay $(1-\omega(\hat{b}(\mu_y),\mu_y))$	22.44	21.92	21.59	20.48	4.91
% Favor Repay $(1-\bar{\gamma}(\hat{b}(\mu_y),\mu_y))$	4.48	5.19	4.97	5.51	5.53
Cumulative Welfare Weights					
$\overline{\Omega(b=0)}$	0.00	32.06	0.00	36.59	65.64
$\Omega(b = 0.0004)$	1.00	32.29	0.51	36.84	65.65
$\Omega(b = 0.0447)$	50.00	67.09	57.48	73.01	85.83
$\Omega(b = 0.3025)$	99.00	99.41	99.63	99.77	93.82

		β		σ		σ_u		
Moment (%)	Baseline	0.853	0.888	0.75	1.25	0^{\dagger}	0.28	0.34
Long Run Avg.								
Gov. Debt B	7.87	7.90	8.03	7.79	7.90	2.82	7.86	7.88
Dom. Debt B^d	4.37	2.45	7.53	1.05	10.07	0.00	2.85	5.92
Foreign Debt \hat{B}	3.50	5.46	0.50	6.74	-2.16	2.82	5.01	1.96
Def. Freq.	1.21	1.23	1.19	1.26	1.19	8.92	1.21	1.18
Spreads	1.22	1.24	1.21	1.278	1.202	9.793	1.224	1.199
Transf τ	9.896	9.895	9.897	9.896	9.896	10.35	9.896	9.896
Frac. Hh's $b = 0$	65.58	82.99	60.07	88.75	55.67	99.99	81.30	63.28
$\bar{lpha}(B,g)$	-0.814	-0.946	-0.698	-0.771	-0.877	-0.666	-0.803	-0.827
Avg. Prior Default								
Gov. Debt B	10.82	10.84	10.74	10.24	10.78	3.73	10.80	10.82
Dom. Debt B^d	4.87	2.78	8.52	1.17	10.60	0.00	3.22	6.74
Foreign Debt \hat{B}	5.95	8.06	2.22	9.08	0.17	3.73	7.57	4.08
Spreads	9.530	9.495	9.631	9.299	9.563	14.76	9.562	9.530

Baseline model parameters are $\beta = 0.871$, $\sigma = 1$ and $\sigma_u = 0.31$

Results with different tax rates & default costs

 $\phi(g) = \phi_1 \max\{0, (\hat{g} - g)^{\psi}\}\$

		τ	$\cdot y$	¢	91	l	þ	į	ĵ
Moment $(\%)$	Baseline	0.29	0.48	0.59	0.99	0.40	0.60	0.188	0.209
Long Run Avg.									
Gov. Debt B	7.87	7.85	7.87	7.36	8.23	8.26	7.19	6.80	13.52
Dom. Debt B^d	4.37	7.41	2.33	4.22	5.48	4.41	4.24	4.22	4.44
Foreign Debt \hat{B}	3.50	0.45	5.54	3.14	2.75	3.85	2.96	2.58	9.09
Def. Freq.	1.21	1.21	1.18	0.42	4.10	1.30	0.31	0.06	2.64
Spreads	1.220	1.223	1.189	0.42	4.28	1.32	0.31	0.06	2.71
Transf τ	9.896	2.40	17.41	9.898	10.91	9.89	9.90	9.90	9.74
Frac. Hh's $b = 0$	65.58	59.94	83.08	66.85	73.63	65.35	66.34	65.68	66.79
$\bar{\alpha}(B,g)$	-0.814	-0.897	-0.766	-0.636	-3.880	-1.046	-0.541	-0.213	-1.963
Avg. Prior Default									
Gov. Debt B	10.82	10.78	10.82	9.40	9.97	12.02	9.03	11.03	18.62
Dom. Debt B^d	4.87	8.31	2.66	4.56	5.85	5.08	4.54	5.37	4.46
For eign Debt \hat{B}	5.95	2.47	8.16	4.85	4.12	6.94	4.49	5.65	14.15
Spreads	9.530	9.560	9.524	4.207	10.33	10.42	2.98	8.46	11.34

Baseline parameters are $\tau^y = 0.386$, $\phi_1 = 0.793$, $\psi = 1/2$ and $\hat{g} = 0.199$.

Results with partial default

		(A)	(B)	(C)	(D)	
	Baseline	Fixe	Fixed Default Rate			
Moment $(\%)$	$\varphi = 1.0$	$\varphi = 0.90$	$\varphi = 0.80$	$\varphi=0.50$	Default Rate	
Long Run Avg.						
Gov. Debt B	7.87	7.96	8.21	12.62	7.87	
Dom. Debt B^d	4.37	4.28	4.30	4.68	4.37	
Foreign Debt \hat{B}	3.50	3.68	3.91	7.93	3.50	
Def. Freq.	1.21	1.10	1.05	1.87	1.21	
Spreads	1.220	1.111	1.058	1.902	1.220	
Transf τ	9.896	9.910	9.921	10.199	9.896	
Frac. Hh's $b = 0$	65.58	67.17	66.43	59.00	65.58	
$ar{lpha}(B,g)$	-0.814	-0.849	-0.870	-1.112	-0.814	
Avg. Prior Default						
Gov. Debt B	10.82	10.94	11.60	20.57	10.82	
Dom. Debt B^d	4.87	4.85	4.92	6.12	4.87	
Foreign Debt \hat{B}	5.95	6.09	6.67	14.45	5.95	
Spreads	9.530	8.415	8.098	9.802	9.530	
Recovery Rate $(1 - \varphi)$	0.00	10.00	20.00	50.00	0.00	

Conclusions

- Heterogeneous-agents model with defaultable public debt (feedback mechanism links debt, spreads & dist. of debt holdings)
- Default is optimal when distributional incentives are stronger than social value of debt
 - Redistribution alone cannot sustain debt
 - Large social value (liquidity, self-insurance risk-sharing)
- Calibrated to Eurozone, model yields low freq. of domestic defaults and debt sold at risk free price most of the time (but lack of commitment limits debt)
- Large, time-varying dispersion in private default gains
- Realistic debt crisis dynamics
- Tax smoothing only with weak default incentives