
Enrique G. Mendoza, Univ. of Pennsylvania & NBER

Lab Session: Using FiPIt to Solve a Model of Macroprudential Policy

(application to Bianchi, Liu & Mendoza (JIE, 2016))

This handout describes the application of the FiPIt algorithm to solve the model of

macroprudential policy studied in Bianchi, Liu and Mendoza (2016). This model fea-

tures regime switches in global liquidity and noisy news about the future. Additionally,

the handout contains problems that can help you practice and think of applications of

this class of models.

1 MPPsolve2new.m

The Matlab code named MPPsolve2new.m provides the algorithm for solving the model. The

code is divided into seven sections (cells). The code starts with instructions that clear the

workspace and start the parallel pool, depending on the Matlab version being used. The

latter can be commented out if the parallel toolbox is not going to be used (taking care

of also changing all the “parfor” instructions for “for”). Whether using the parallelized

code improves performance is code and parameter dependent (e.g., size of the grids, type of

nonlinear solver, etc.).

Cell 1. Values of model and algorithm parameters : Sets the model parameter values shown

in Table 1. In addition, the number of nodes for the grid of bonds is set with NB

and the number of nodes for the grids of realizations of the yT shocks and news

shocks is set in NS. The grid of the regime-switching interest rate shocks has two

nodes. This cell also sets several important technical parameters for execution of the

algorithm: The parameter “uptd” sets the updating coefficient for constructing the

new conjectured decision rules for the next iteration. “outfreq” sets the frequency

with which the algorithm displays the convergence criterion of the decision rules

in the screen. “iter tol” sets the maximum number of iterations that the loops

conducting the decision rule iterations are allowed to run. If it is reached, the

algorithm failed to converge in the allowed number of iterations. The convergence

tolerance level for the solution of decision rules is set with “tol,” as defined in Section

3 below. The tolerance for defining when the collateral constraint is considered to

be binding is set with the parameter “tol EEbind”.

1

Table 1: Baseline Model Parameters

Parameter Value Parameter Value

yN 1 NyT 3

E[yT] 1 ρyT 0.54

σyT 0.059 β 0.91

γ 2 η 0.205

κL 0.32 ω 0.32

θ 2
3

Rh 1.0145

Rl 0.9672 Fhh 0.9333

Fll 0.6

Cell 2. . Construction of Markov Chain:

i) First, discretize yT shocks using Tauchen and Hussey (1991) method, imple-

mented in function tauchenhussey.m. That Matlab routine and other simi-

lar methods are available at http://www2.hhs.se/personal/floden/. The time-

series properties of the yT process that the method targets are estimates ob-

tained by Bianchi (2011) using data for Argentina, and the corresponding mo-

ments are reported in Table 1.

ii) Next, incorporate news shocks according to the formulas in the Section 2.3 of

the paper. Recall by Bayes rule:

p(yTt+1 = l|st = i, yTt = j) =
p(st = i|yTt+1 = l)p(yTt+1 = l|yTt = j)∑
n p(st = i|yTt+1 = n)p(yTt+1 = n|yTt = j)

(1)

Hence we can write:

Π(yTt+1, st+1, y
T
t , st) ≡ p(st+1 = k, yTt+1 = l|st = i, yTt = j)

= p(yTt+1 = l|st = i, yTt = j)p(st+1 = k|yTt+1 = l)

= p(yTt+1 = l|st = i, yTt = j)× . . .

. . .
∑
m

[
p(yTt+2 = m|yTt+1 = l)p(st+1 = k|yTt+2 = m)

]
,

(2)

iii) Finally we add global liquidity shocks to construct the entire transition matrix,

assuming yT shocks and global liquidity shocks are independent.

Cell 3. Decentralized Equilibrium: Solves the decentralized equilibrium using the fixed-

point iteration method. Intuitively, this algorithm solves the model by backward

2

recursive-substitution of the model’s optimality conditions written in recursive form.

In particular, the algorithm solves for the recursive functions cT (b, z),PN(b, z) and

B(b, z) that satisfy these four conditions:

PN(b, z) =
1− ω

ω

(
cT (b, z)

yN

)1+η

(3)

uT (c
T (b, z), yN) ≥ βR(z)Ez[uT (c

T (B(b, z), z′), yN)] (4)

B(b, z) ≥ −κR(z)(PN(b, z)yN + yT (z)) (5)

cT (b, z) + q(z)B(b, z) = b+ yT (z) (6)

where z is a triple (yT , q, s) that includes the realizations of the exogenous shocks

to yT , the news signal s, and q (recall that q = 1
R
).

Start the algorithm at an initial iteration K = 1 and define conjectures for the

equilibrium functions for this iteration, denoted cTK(b, z), p
N
K(b, z) and BK(b, z).

Then proceed with the following steps:

Step 1. Set initital conjecture for bonds decision rule as BK+1(b, z) = b, which

is the “stationary” decision rule that assumes the decision rule stays at

the same value of b it started from (the 45 degree line). Initial con-

jectures for tradables consumption and the price of nontradables follow

from the budget constraint of tradables and the marginal rate of substi-

tution of tradables and nontradables, respectively. If the constraint binds,

BK+1(b, z) = −κR(z)(PN
K (b, z)yN + yT (z)) yields the maximum feasible

debt (lowest b), and we can calculate cTK+1(b, z) using equation (6), which

yields cTK+1(b, z) = b+ yT (z)− (1/R(z))BK+1(b, z). For K = 1, all of these

conjectures are just the initialized arrays for the decision rules.

Step 2. Compute marginal utility of cT , denoted mup, and expected marginal util-

ity for t + 1 as a function of (b, z), Ez

[
uT (c

T
K(BK(b, z), z

′), yN)
]
, denoted

emu(b, z). For the latter, note that we need to interpolate the consumption

decision rule because, in general, BK(b, z) will not be strictly on the nodes

of the bonds grid. We use linear interpolation.

Step 3. Assuming that the constraint binds in the current period, compute the

Euler equation gap. This requires using the binding consumption function

“cbind” in the left-hand-side, so that the Euler gap is:

EE ≡ uT (c
T
K+1(b, z), y

N)− βR(z)Ez

[
uT (c

T
K(BK(b, z), z

′), yN)
]

In the RHS, uT (c
T
K(BK(b, z), z

′), yN) = uT (BK(b, z), z
′, yN) requires inter-

polation over BK(b, z), which is done when computing emu(b, z)

3

Step 4. If EE > tol EEbind, the collateral constraint binds and then equations (5)

and (6) set bonds decision rule and consumption, respectively

Step 5. If EE ≤ tol EEbind, the collateral constraint does not bind. Solve for

cTK+1(b, z) as the recursive function that satisfies the Euler equation (4)

with equality using the “fzero” solver (and interpolating in the RHS as in

Step 3). We then compute BK+1(b, z) using equation 6 and we also compute

PN
K+1(b, z) using equation 3.

Step 6. The above steps will in general produce a new set of functions cTK+1(b, z),

pNK+1(b, z) and BK+1(b, z) that will differ from the conjectures cTK(b, z),

pNK(b, z) and BK(b, z). We thus check the convergence criterion d2 =

sup |xK+1 − xK | for x = B, cT (we don’t need to include pN because its

convergence its implied by convergence of cT). If d2 > tol (and as long as

the maximum number of iterations is not reached, namely iter < iter tol),

the conjectures are updated with a convex combination of the solutions

cTK+1(·), pNK+1(·) and BK+1(·) and the initial conjectures cTK(·), pNK(·) and

BK(·) and the procedure returns to step 1 using these new conjectures. If

d2 ≤ tol, the decision rules solved in the last iteration are a solution to

the model’s decentralized competitive equilibrium in recursive form. The

solutions are stored in the file named “MPPpoliciesDE.mat”.

Cell 4. Social Planner : Solves the social planner’s problem. The algorithm is a fixed-point

iteration code very similar to the one that solves the decentralized equilibrium (DE).

The SP’s solution uses the DE solutions as the conjectures for the planner’s decision

rules in the first iteration. The main difference with the cell that solves the DE is

that for the SP, the marginal benefit of consuming an additional unit of cT at date t

is not just the marginal utility of cTt but it includes also the externality term µSP
t ψt,

where µSP is the multiplier on the collateral constraint for the planner (µSP ≥ 0,

with strict inequality if the collateral constraint (5) binds) and ψ is the externality

term given by:

κ(η + 1)

(
1− ω

ω

)(
cT

yN

)η

(7)

It is important to note that, because of this difference in the marginal benefit of cTt
of the planner, the Euler equation gap of the planner becomes:

EESP ≡
uT (c

T
K+1(b, z), y

N)− βR(z)Ez

[
uT (c

T
K(BK(b, z), z

′), yN)
]

1− ψ(b, z)

The rest of the algorithm that solves the SP decision rules is essentially the same

as for the DE case. The updating coefficient for forming the new decision rules as

4

convex combinations of the current iteration’s conjectures and solutions puts signif-

icantly more way on the conjectures, which means the decision rules are updating

at a much slower pace. This was found to be useful for speeding up the algorithm’s

execution time.

Cell 5. Welfare Calculation: Uses the decision rules of the DE and SP solutions and com-

putes the corresponding value functions that measure expected lifetime utility for

each coordinate in the state space. This is done by iterating to convergence on the

recursive sums that take the subjective present value of the utility flows in each

solution. We then calculate the welfare gain as in Bianchi (2011).

Cell 6. Optimal Tax : Calculates the optimal macro-prudential debt tax that recreates the

SP solution as a DE solution of an economy with a debt tax. With taxes on debt

τt, the first-order condition of the Decentralized Equilibrium is:

uT (t)− µDE
t = (1 + τt)

β

qt
Et [uT (t+ 1)] (8)

The optimal tax must recreate the planner’s allocations, and the SP’s allocations

satisfy the planner’s Euler Equation, which is:

uT (t) + µSP
t (ψt + 1) =

β

qt
Et

[
uT (t+ 1) + µSP

t+1ψt+1

]
. (9)

The optimal tax is constructed in two stages. First, the optimal tax when the

constraint is not binding at present (µDE
t = 0).1 In this case, we impose the plan-

ner’s allocations on the DE Euler equation and solve for the value of the optimal

macroprudential debt tax as follows:

1 + τt =
qt
β

uT (t)

Et [uT (t+ 1)]
= 1 +

Et [µt+1ψt+1]

Et [uT (t+ 1)]
(10)

where the first equality is obtained by solving from (8) and the second replaces uT (t)

by equation (9). This is equation (15) in the paper. Second, when the collateral

constraint binds at t, we verify if the constraint binds with a zero debt tax, and if

it does we set the tax to zero. The allocations are independent of the tax when the

collateral constraint binds, since feasible consumption for a given state (b, z) is the

identical in the DE and SP solutions if the constraint binds. The results from the

SP problem and the optimal taxes are stored in the file named “MPPpolicies.mat”.

Cell 7. This cell makes figures of the optimal macro-prudential tax across different scenarios.

Compare to Figures 6 and 7 in the paper.
1The multipliers for the two problems µDE

t and µSP
t do not need to be equal. However if for some allocation

the constraint is not binding in the Decentralized Equilibrium, then it will not bind in the planners problem

either.

5

2 MPPsimulation.m

The file MPPsimulation.m loads the results from MPPsolve2new.m and simulates the econ-

omy to obtain moments and to perform an event analysis. This is a standard procedure and

we describe it briefly:

Cell 1. Allocates vectors and initial period values for simulations. 200,000 periods will be

simulated and the first 1,000 will be discarded. Hence, vectors of size 201,000 for

all exogenous and endogenous variables are created, as well as values for debt and

the exogenous shock in the first period of the simulation. This cell also calls the

function markov.m which simulates a Markov chain given a transition matrix and a

initial state. Here the transition matrix built in cell 2 of MPPsolve2new.m is used

and the evolution of the exogenous states is obtained.

Cell 2. Makes the recursive loop given the random simulations of exogenous states and

the policy functions that generate values for the next period debt. After all the

simulation, the first 1000 periods are discarded to get rid of potential dependence

on the arbitrary first state.

Cell 3. Calculates aggregate moments of this economy and prints results. Compare with

Table 2 in the paper. Also defines Sudden Stops as periods when the borrowing

constraint binds and the current account is more than two standard deviations

above its mean. Sudden Stops events are identified in the vector SS such that

SS(t) = 1 if and only if there was a Sudden Stop in the simulation period t.

Cell 4. Calculates moments conditional on a Sudden Stop and prints results. This is ba-

sically calculating means, variances and covariances taking into account only those

periods with SS(t) = 1. Compare with baseline model (3) of Table 3 in the paper.

Cell 5. Identifies Sudden Stop events for analysis. Variable nbd=3 indicates the window

goes from 3 periods before to 3 periods after the sudden stop. Given that, two

periods with a Sudden Stop are considered the same event if they are less than 3

periods apart. Variable nE has the number of Sudden Stop events. Once identified,

the cell makes matrices of size 7×nE for each variable to store its evolution and

calculate average evolution paths around Sudden Stop events.

Cell 6. Makes figures for event analysis. Compare to Figures 2, 3 and 4 in the paper.

6

3 Problems

1. Existing empirical studies for developing countries show that the elasticity of substi-

tution
(

1
1+η

)
is less than unitary, ranging between 0.4 and 0.83. In the lab session

we considered the upper bound value. How do the results (long-run moments, crisis

frequencies, crisis moments & dynamics) differ when you consider the lower bound?

Provide intuition for your answer.

2. Write an additional section for the code where you compute welfare gains of the con-

strained problem with respect to the unconstrained problem.2 Is it evident that values

of κ such that the collateral constraint binds generate cases where we observe welfare

losses with respect to the unconstrained case? Explain your results.

3. (Hard) We saw in the lab that the optimal macro-prudential tax was computed ac-

cording to equation (11). This optimal tax can be hard to implement as it may need

to be varied frequently over time. A simpler rule would be to consider a constant tax

(this is, the same tax rate for every pair (b, z)).

(a) Fix a grid for a constant tax rate τ . For each value of the grid solve the problem

with constant taxes and compute the welfare gains with respect to the decentral-

ized solution. What is the value of τ that maximizes the welfare gains with respect

to the decentralized case? Are the welfare gains larger than the ones obtained

with the optimal macro-prudential tax?

(b) Once you have identified the constant tax from the previous question, compute

the long-run and crisis moments and compare them with those obtained when

using the optimal macro-prudential tax. When are crisis more frequent? Explain

your findings.

(c) Using the welfare-maximizing constant tax identified above compute the crisis

dynamics and compare them with those of the decentralized case. Are crisis more

or less severe with the constant tax than with the optimal macro-prudential tax?

Why?

2There are many ways of doing so. One alternative is to produce a new section that starts by calling the

results of the unconstrained solution, and then solve for the constrained model. With the results of both

specifications you can simulate the economy and compute welfare gains.

7

References

Bianchi, J. (2011). “Overborrowing and Systemic Externalities in the Business Cycle”,

American Economic Review, Vol. 101, No. 7, pp. 3400-3426.

Tauchen, G., and R. Hussey (1991). “Quadrature-based Methods for Obtaining Approximate

Solutions to Nonlinear Asset Pricing Models”, Econometrica, Vol. 59, No. 2, pp. 371-396.

8

https://www.aeaweb.org/articles?id=10.1257/aer.101.7.3400&within%5Btitle%5D=on&within%5Babstract%5D=on&within%5Bauthor%5D=on&journal=1&q=Overborrowing+and+Systemic+Externalities+in+the+Business+Cycle&from=j
https://www.econometricsociety.org/publications/econometrica/1991/03/01/quadrature-based-methods-obtaining-approximate-solutions

	MPPsolve2new.m
	MPPsimulation.m
	Problems

