
University of Pennsylvania

Lab Session:

Using FiPIt to Solve a Model of

Macroprudential Policy
(application to Bianchi-Liu-Mendoza (2016))

Enrique G. Mendoza

University of Pennsylvania & NBER

Solving Macroprudential Policy Model

University of Pennsylvania

Introduction

▶ This presentation covers the algorithm Bianchi, Liu & Mendoza

(JIE, 2016) used to solve a macroprudential policy model with:

▶ Regime Switching in global liquidity.

▶ Noisy news about future income.

▶ DTI occasionally binding constraint.

▶ Matlab codes are provided together with a handout (step-by-step

guide) and a “readme” file listig the codes

▶ This presentation focuses mainly MPPsolve2new.m, which is the

main code for solving the model.

▶ MPPsolve2new.m is divided into seven sections (cells).

Solving Macroprudential Policy Model

University of Pennsylvania

Section 1

MPPsolve2new.m

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 1: Model & algorithm parameters

▶ Sets parameter values, creates state space, and sets values for

algorithm parameters controlling execution.

▶ 100 nodes in the grid for bonds.

▶ 3 nodes for tradable output yT shocks

▶ 3 nodes for news shocks: good, average and bad.

▶ 2 nodes for interest rates shocks: high, low.

▶ iter tol: maximum number of decision rule iterations

▶ tol: tolerance for convergence criterion of decision rules

▶ tol EEbind: tolerance for solution of nonlinear equation

Solving Macroprudential Policy Model

University of Pennsylvania

Baseline Parameterization

Parameter Value Parameter Value

yN 1 NyT 3

E[yT] 1 ρyT 0.54

σyT 0.059 β 0.91

γ 2 η 0.205

κL 0.32 ω 0.32

θ 2
3 Rh 1.0145

Rl 0.9672 Fhh 0.9333

Fll 0.6

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 2: Construction of Markov Chain

i) Discretize yT shocks using Tauchen and Hussey’s method.

▶ Implemented in function tauchenhussey.m

▶ Time-series properties of the yT process are estimates obtained by

Bianchi (2011) for Argentina, corresponding moments are reported

in Table 5.

ii) Incorporate news shocks according to the formulas in the Section

2.3 of the paper. Recall by Bayes rule:

p(yTt+1 = l|st = i, yTt = j) =
p(st = i|yTt+1 = l)p(yTt+1 = l|yTt = j)∑
n p(st = i|yTt+1 = n)p(yTt+1 = n|yTt = j)

(1)

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 2: Construction of Markov Chain

i) Discretize yT shocks using Tauchen and Hussey’s method.

▶ Implemented in function tauchenhussey.m

▶ Time-series properties of the yT process are estimates obtained by

Bianchi (2011) for Argentina, corresponding moments are reported

in Table 5.

ii) Incorporate news shocks according to the formulas in the Section

2.3 of the paper. Recall by Bayes rule:

p(yTt+1 = l|st = i, yTt = j) =
p(st = i|yTt+1 = l)p(yTt+1 = l|yTt = j)∑
n p(st = i|yTt+1 = n)p(yTt+1 = n|yTt = j)

(1)

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 2: Construction of Markov Chain

ii) (cont’d) Hence we can write:

Π(yTt+1, st+1, y
T
t , st) ≡ p(st+1 = k, yTt+1 = l|st = i, yTt = j)

= p(yTt+1 = l|st = i, yTt = j)p(st+1 = k|yTt+1 = l)

= p(yTt+1 = l|st = i, yTt = j)× . . .

. . .
∑
m

[
p(yTt+2 = m|yTt+1 = l)p(st+1 = k|yTt+2 = m)

]
(2)

iii) Finally, add global liquidity shocks to construct entire transition

matrix, assuming yT shocks and liquidity shocks are independent.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 2: Construction of Markov Chain

ii) (cont’d) Hence we can write:

Π(yTt+1, st+1, y
T
t , st) ≡ p(st+1 = k, yTt+1 = l|st = i, yTt = j)

= p(yTt+1 = l|st = i, yTt = j)p(st+1 = k|yTt+1 = l)

= p(yTt+1 = l|st = i, yTt = j)× . . .

. . .
∑
m

[
p(yTt+2 = m|yTt+1 = l)p(st+1 = k|yTt+2 = m)

]
(2)

iii) Finally, add global liquidity shocks to construct entire transition

matrix, assuming yT shocks and liquidity shocks are independent.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium (DE)

▶ Solves DE using FiPIt algorithm

▶ Iterate on cT (b, z) and B(b, z) that satisfy:

PN (b, z) =
1− ω

ω

(
cT (b, z)

yN

)1+η

(3)

uT (c
T (b, z), yN) ≥ βR(z)Ez[uT (c

T (B(b, z), z′), yN)] (4)

B(b, z) ≥ −κR(z)(PN (b, z)yN + yT (z)) (5)

cT (b, z) + q(z)B(b, z) = b+ yT (z) (6)

▶ z: triple (yT , s, q) includes realizations of the three shocks

(endowment yT , the news signal s, and bond price q).

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium (DE)

▶ Solves DE using FiPIt algorithm

▶ Iterate on cT (b, z) and B(b, z) that satisfy:

PN (b, z) =
1− ω

ω

(
cT (b, z)

yN

)1+η

(3)

uT (c
T (b, z), yN) ≥ βR(z)Ez[uT (c

T (B(b, z), z′), yN)] (4)

B(b, z) ≥ −κR(z)(PN (b, z)yN + yT (z)) (5)

cT (b, z) + q(z)B(b, z) = b+ yT (z) (6)

▶ z: triple (yT , s, q) includes realizations of the three shocks

(endowment yT , the news signal s, and bond price q).

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium (DE)

▶ Solves DE using FiPIt algorithm

▶ Iterate on cT (b, z) and B(b, z) that satisfy:

PN (b, z) =
1− ω

ω

(
cT (b, z)

yN

)1+η

(3)

uT (c
T (b, z), yN) ≥ βR(z)Ez[uT (c

T (B(b, z), z′), yN)] (4)

B(b, z) ≥ −κR(z)(PN (b, z)yN + yT (z)) (5)

cT (b, z) + q(z)B(b, z) = b+ yT (z) (6)

▶ z: triple (yT , s, q) includes realizations of the three shocks

(endowment yT , the news signal s, and bond price q).

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

▶ Subscript “j” is index for iterations. Then construct the

fixed-point iteration loop as follows:

Step 1: Define initial decision rule conjectures (for j = 1)

▶ If the constraint does not bind:

B1(b, z) = b

cT1 (b, z) = b+ yT (z)− (1/R(z))B1(b, z) from eq. (6),

pN1 (b, z) =
1− ω

ω

(
cT1 (b, z)

yN

)1+η

from eq. (3)

▶ If the constraint binds at price set above:

Bmax
1 (b, z) = −κR(z)(pN1 (b, z)yN + yT (z)) from eq. (5),

cbind,T1 (b, z) = b+ yT (z)− (1/R(z))Bmax
1 (b, z) from eq. (6),

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

▶ Subscript “j” is index for iterations. Then construct the

fixed-point iteration loop as follows:

Step 1: Define initial decision rule conjectures (for j = 1)

▶ If the constraint does not bind:

B1(b, z) = b

cT1 (b, z) = b+ yT (z)− (1/R(z))B1(b, z) from eq. (6),

pN1 (b, z) =
1− ω

ω

(
cT1 (b, z)

yN

)1+η

from eq. (3)

▶ If the constraint binds at price set above:

Bmax
1 (b, z) = −κR(z)(pN1 (b, z)yN + yT (z)) from eq. (5),

cbind,T1 (b, z) = b+ yT (z)− (1/R(z))Bmax
1 (b, z) from eq. (6),

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

▶ Subscript “j” is index for iterations. Then construct the

fixed-point iteration loop as follows:

Step 1: Define initial decision rule conjectures (for j = 1)

▶ If the constraint does not bind:

B1(b, z) = b

cT1 (b, z) = b+ yT (z)− (1/R(z))B1(b, z) from eq. (6),

pN1 (b, z) =
1− ω

ω

(
cT1 (b, z)

yN

)1+η

from eq. (3)

▶ If the constraint binds at price set above:

Bmax
1 (b, z) = −κR(z)(pN1 (b, z)yN + yT (z)) from eq. (5),

cbind,T1 (b, z) = b+ yT (z)− (1/R(z))Bmax
1 (b, z) from eq. (6),

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 2: Start FiPIt loop, construct u′j(b, z) and E[u′j(Bj(b, z), z
′)]

Step 3: Compute Euler Equation gap assuming constraint binds at t:

EE(b, z) ≡ uT (c
bind,T
j+1 (b, z), yN)− βR(z)Ez

[
uT (c

T
j (Bj(b, z), z

′), yN)
]

▶ This is the multiplier µ on the credit constraint if it does bind.

▶ Linear interpolation of uT (c
T
j (Bj(b, z), z

′), yN) over Bj(b, z)

Step 4: If EE(b, z) > tol EEbind, the constraint binds and new

decision rules are set to Bj+1 = Bmax
j (b, z) and cTj+1 = cbind,Tj (b, z)

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 2: Start FiPIt loop, construct u′j(b, z) and E[u′j(Bj(b, z), z
′)]

Step 3: Compute Euler Equation gap assuming constraint binds at t:

EE(b, z) ≡ uT (c
bind,T
j+1 (b, z), yN)− βR(z)Ez

[
uT (c

T
j (Bj(b, z), z

′), yN)
]

▶ This is the multiplier µ on the credit constraint if it does bind.

▶ Linear interpolation of uT (c
T
j (Bj(b, z), z

′), yN) over Bj(b, z)

Step 4: If EE(b, z) > tol EEbind, the constraint binds and new

decision rules are set to Bj+1 = Bmax
j (b, z) and cTj+1 = cbind,Tj (b, z)

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 2: Start FiPIt loop, construct u′j(b, z) and E[u′j(Bj(b, z), z
′)]

Step 3: Compute Euler Equation gap assuming constraint binds at t:

EE(b, z) ≡ uT (c
bind,T
j+1 (b, z), yN)− βR(z)Ez

[
uT (c

T
j (Bj(b, z), z

′), yN)
]

▶ This is the multiplier µ on the credit constraint if it does bind.

▶ Linear interpolation of uT (c
T
j (Bj(b, z), z

′), yN) over Bj(b, z)

Step 4: If EE(b, z) > tol EEbind, the constraint binds and new

decision rules are set to Bj+1 = Bmax
j (b, z) and cTj+1 = cbind,Tj (b, z)

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 5: If EE(b, z) ≤ tol EEbind, the constraint does not bind.

▶ Find cTj+1(b, z) by solving Euler equation (4) with equality.

▶ fzero nonlinear solver

▶ Linear interpolation of uT (Bj(b, z), z
′, yN) over Bj(b, z) in RHS of

Euler eq.

▶ Same as FiPIt but needs nonlinear solver because of CES(cT , cN)

▶ Could be avoided using duality uT (c
T , cN) = u′(CES)/P c(·)

▶ Compute Bj+1(b, z) using resource constraint (6) and making

sure is inside bonds grid.

▶ Compute pNj+1(b, z) using equation (3).

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 5: If EE(b, z) ≤ tol EEbind, the constraint does not bind.

▶ Find cTj+1(b, z) by solving Euler equation (4) with equality.

▶ fzero nonlinear solver

▶ Linear interpolation of uT (Bj(b, z), z
′, yN) over Bj(b, z) in RHS of

Euler eq.

▶ Same as FiPIt but needs nonlinear solver because of CES(cT , cN)

▶ Could be avoided using duality uT (c
T , cN) = u′(CES)/P c(·)

▶ Compute Bj+1(b, z) using resource constraint (6) and making

sure is inside bonds grid.

▶ Compute pNj+1(b, z) using equation (3).

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 5: If EE(b, z) ≤ tol EEbind, the constraint does not bind.

▶ Find cTj+1(b, z) by solving Euler equation (4) with equality.

▶ fzero nonlinear solver

▶ Linear interpolation of uT (Bj(b, z), z
′, yN) over Bj(b, z) in RHS of

Euler eq.

▶ Same as FiPIt but needs nonlinear solver because of CES(cT , cN)

▶ Could be avoided using duality uT (c
T , cN) = u′(CES)/P c(·)

▶ Compute Bj+1(b, z) using resource constraint (6) and making

sure is inside bonds grid.

▶ Compute pNj+1(b, z) using equation (3).

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 6: Execute Steps 1-5 for all (b, z), which yields new functions

cTj+1(b, z) Bj+1(b, z)

that will generally differ from conjectures cTj (b, z), Bj(b, z).

▶ Check convergence criterion:

d2 = sup |xj+1 − xj | ≤ tol, for x ∈
{
B, c

}
.

▶ If it fails, update conjectures as convex combinations of new

solutions cTj+1(·), Bj+1(·) and initial conjectures cTj (·),Bj(·), and
return to Step 1.

▶ If it holds, a solution to the DE in recursive form has been found.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Decentralized Equilibrium

Step 6: Execute Steps 1-5 for all (b, z), which yields new functions

cTj+1(b, z) Bj+1(b, z)

that will generally differ from conjectures cTj (b, z), Bj(b, z).

▶ Check convergence criterion:

d2 = sup |xj+1 − xj | ≤ tol, for x ∈
{
B, c

}
.

▶ If it fails, update conjectures as convex combinations of new

solutions cTj+1(·), Bj+1(·) and initial conjectures cTj (·),Bj(·), and
return to Step 1.

▶ If it holds, a solution to the DE in recursive form has been found.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 4: Social Planner’s Problem (SP)

▶ Code similar to DE but with the difference that marginal benefit

of cTt is not just uT (t) but adds to it the term µSPt ψt

▶ µSP ≥ 0, with > 0 if collateral constraint (5) binds.

▶ ψ is the externality term given by

ψ(b, z) = κ(η + 1)

(
1− ω

ω

)(
cTj (b, z), y

N)

yN

)η

(7)

▶ Start conjectures at DE solution

▶ SP’s Euler equation gap:

EESP ≡
uT (c

bind,T
j+1 (b, z), yN)− βR(z)Ez

[
uT (c

T
j (Bj(b, z), z

′), yN)
]

1− ψ(b, z)

▶ Follow steps 1-6 to solve as in Decentralized Equilibrium.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 4: Social Planner’s Problem (SP)

▶ Code similar to DE but with the difference that marginal benefit

of cTt is not just uT (t) but adds to it the term µSPt ψt

▶ µSP ≥ 0, with > 0 if collateral constraint (5) binds.

▶ ψ is the externality term given by

ψ(b, z) = κ(η + 1)

(
1− ω

ω

)(
cTj (b, z), y

N)

yN

)η

(7)

▶ Start conjectures at DE solution

▶ SP’s Euler equation gap:

EESP ≡
uT (c

bind,T
j+1 (b, z), yN)− βR(z)Ez

[
uT (c

T
j (Bj(b, z), z

′), yN)
]

1− ψ(b, z)

▶ Follow steps 1-6 to solve as in Decentralized Equilibrium.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 4: Social Planner’s Problem (SP)

▶ Code similar to DE but with the difference that marginal benefit

of cTt is not just uT (t) but adds to it the term µSPt ψt

▶ µSP ≥ 0, with > 0 if collateral constraint (5) binds.

▶ ψ is the externality term given by

ψ(b, z) = κ(η + 1)

(
1− ω

ω

)(
cTj (b, z), y

N)

yN

)η

(7)

▶ Start conjectures at DE solution

▶ SP’s Euler equation gap:

EESP ≡
uT (c

bind,T
j+1 (b, z), yN)− βR(z)Ez

[
uT (c

T
j (Bj(b, z), z

′), yN)
]

1− ψ(b, z)

▶ Follow steps 1-6 to solve as in Decentralized Equilibrium.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 5: Welfare gain of optimal policy

▶ Calculate value functions for DE and SP as recursive discounted

sums of expected lifetime utility flows of each case:

1. Start with a conjecture V K(b, z).

2. Take the optimal policy functions cT , B derived from cells 3 for

DE and 4 for SP.

3. For each state find the new value function:

V K+1(b, z) = u
(
cT (b, z)

)
+ β E

[
V K
(
B(b, z), z′

)
|z
]

4. Continue until |V K+1(b, z)− V K(b, z)| ≤ tol

▶ Calculate welfare gain as compensating variation in CES

consumption that equates lifetime utility in DE and SP:(
V SP (b, z))/V DE(b, z)

) 1
1−σ − 1

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Assume financial regulator imposes a debt tax τt.

▶ The Euler equation in the Decentralized Equilibrium would be:

uT (t)− µDE
t = (1 + τt)

β

qt
Et [uT (t+ 1)] (8)

▶ The optimal taxes should yield the SP’s allocations as the DE eq.

with taxes (i.e., make SP’s allocations solve equation (8)).

▶ The planner’s allocations solve the SP’s Euler Equation:

uT (t) + µSPt (ψt + 1) =
β

qt
Et

[
uT (t+ 1) + µSPt+1ψt+1

]
. (9)

▶ The tax policy should make those two equations the same.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Assume financial regulator imposes a debt tax τt.

▶ The Euler equation in the Decentralized Equilibrium would be:

uT (t)− µDE
t = (1 + τt)

β

qt
Et [uT (t+ 1)] (8)

▶ The optimal taxes should yield the SP’s allocations as the DE eq.

with taxes (i.e., make SP’s allocations solve equation (8)).

▶ The planner’s allocations solve the SP’s Euler Equation:

uT (t) + µSPt (ψt + 1) =
β

qt
Et

[
uT (t+ 1) + µSPt+1ψt+1

]
. (9)

▶ The tax policy should make those two equations the same.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Assume financial regulator imposes a debt tax τt.

▶ The Euler equation in the Decentralized Equilibrium would be:

uT (t)− µDE
t = (1 + τt)

β

qt
Et [uT (t+ 1)] (8)

▶ The optimal taxes should yield the SP’s allocations as the DE eq.

with taxes (i.e., make SP’s allocations solve equation (8)).

▶ The planner’s allocations solve the SP’s Euler Equation:

uT (t) + µSPt (ψt + 1) =
β

qt
Et

[
uT (t+ 1) + µSPt+1ψt+1

]
. (9)

▶ The tax policy should make those two equations the same.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Assume financial regulator imposes a debt tax τt.

▶ The Euler equation in the Decentralized Equilibrium would be:

uT (t)− µDE
t = (1 + τt)

β

qt
Et [uT (t+ 1)] (8)

▶ The optimal taxes should yield the SP’s allocations as the DE eq.

with taxes (i.e., make SP’s allocations solve equation (8)).

▶ The planner’s allocations solve the SP’s Euler Equation:

uT (t) + µSPt (ψt + 1) =
β

qt
Et

[
uT (t+ 1) + µSPt+1ψt+1

]
. (9)

▶ The tax policy should make those two equations the same.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Assume financial regulator imposes a debt tax τt.

▶ The Euler equation in the Decentralized Equilibrium would be:

uT (t)− µDE
t = (1 + τt)

β

qt
Et [uT (t+ 1)] (8)

▶ The optimal taxes should yield the SP’s allocations as the DE eq.

with taxes (i.e., make SP’s allocations solve equation (8)).

▶ The planner’s allocations solve the SP’s Euler Equation:

uT (t) + µSPt (ψt + 1) =
β

qt
Et

[
uT (t+ 1) + µSPt+1ψt+1

]
. (9)

▶ The tax policy should make those two equations the same.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Recall we are interested in the optimal macroprudential tax (in

good times, when µDE
t = 0)

▶ Multipliers µDE
t and µSPt do not need to be equal.

▶ But if for some allocation the constraint is not binding in the DE,

it won’t bind in SP’s (since there is overborrowing in DE)

▶ Optimal macroprudential tax is:

1 + τt =
qt
β

uT (t)

Et [uT (t+ 1)]
= 1 +

Et [µt+1ψt+1]

Et [uT (t+ 1)]
(10)

▶ First equality is obtained from (8).

▶ Second one replaces uT (t) by equation (9) (eq. (23) in the paper).

▶ When µDE
t > 0, SP and DE allocations are identical. Set τt = 0

if this is consistent with µDE
t > 0

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Recall we are interested in the optimal macroprudential tax (in

good times, when µDE
t = 0)

▶ Multipliers µDE
t and µSPt do not need to be equal.

▶ But if for some allocation the constraint is not binding in the DE,

it won’t bind in SP’s (since there is overborrowing in DE)

▶ Optimal macroprudential tax is:

1 + τt =
qt
β

uT (t)

Et [uT (t+ 1)]
= 1 +

Et [µt+1ψt+1]

Et [uT (t+ 1)]
(10)

▶ First equality is obtained from (8).

▶ Second one replaces uT (t) by equation (9) (eq. (23) in the paper).

▶ When µDE
t > 0, SP and DE allocations are identical. Set τt = 0

if this is consistent with µDE
t > 0

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Recall we are interested in the optimal macroprudential tax (in

good times, when µDE
t = 0)

▶ Multipliers µDE
t and µSPt do not need to be equal.

▶ But if for some allocation the constraint is not binding in the DE,

it won’t bind in SP’s (since there is overborrowing in DE)

▶ Optimal macroprudential tax is:

1 + τt =
qt
β

uT (t)

Et [uT (t+ 1)]
= 1 +

Et [µt+1ψt+1]

Et [uT (t+ 1)]
(10)

▶ First equality is obtained from (8).

▶ Second one replaces uT (t) by equation (9) (eq. (23) in the paper).

▶ When µDE
t > 0, SP and DE allocations are identical. Set τt = 0

if this is consistent with µDE
t > 0

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 6: Optimal Macroprudential Tax

▶ Recall we are interested in the optimal macroprudential tax (in

good times, when µDE
t = 0)

▶ Multipliers µDE
t and µSPt do not need to be equal.

▶ But if for some allocation the constraint is not binding in the DE,

it won’t bind in SP’s (since there is overborrowing in DE)

▶ Optimal macroprudential tax is:

1 + τt =
qt
β

uT (t)

Et [uT (t+ 1)]
= 1 +

Et [µt+1ψt+1]

Et [uT (t+ 1)]
(10)

▶ First equality is obtained from (8).

▶ Second one replaces uT (t) by equation (9) (eq. (23) in the paper).

▶ When µDE
t > 0, SP and DE allocations are identical. Set τt = 0

if this is consistent with µDE
t > 0

Solving Macroprudential Policy Model

University of Pennsylvania

Section 2

MPPsimulation.m

Solving Macroprudential Policy Model

University of Pennsylvania

Simulating the model

The file MPPsimulation.m:

▶ Loads the results from MPPsolve2new.m.

▶ Simulates the economy recursively

▶ Exogenous states (yT , s, q) are simulated as a Markov chain.

▶ Endogenous state b is simulated using the policy function found

with MPPsolve2new.m.

▶ Produces unconditional moments of the economy.

▶ Also moments conditional on Sudden Stops.

▶ Performs event analysis of Sudden Stops.

▶ Produces figures.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 1: Initialization

▶ Preallocates vectors and initial period values for simulations.

▶ 201,000 periods are simulated.

▶ The first 1,000 will be discarded.

▶ Vectors of size 201,000 for all exogenous and endogenous

variables are created.

▶ The initial state of the economy t = 1 also is set.

▶ Debt, tradables output, news and bond price: (b1, y
T
1 , s1, q1),

▶ Calls the function markov.m which simulates a Markov chain

given a transition matrix and a initial state.

▶ the transition matrix was built in cell 2 of MPPsolve2new.m.

▶ A sample path for the evolution of the exogenous states is

obtained.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 2: Simulation Loop

Makes the recursive loop. Each period:

▶ Enter with current debt.

▶ Reads exogenous state from path created by previous cell.

▶ Use policy function to obtain next period debt.

▶ Solves all other endogenous variables for the period.

After the simulation is done, the first 1000 periods are discarded to

remove potential dependence on the arbitrary first state.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 3: Aggregate Moments

Calculates aggregate moments of this economy and prints results.

▶ Basically means, variances and covariances of vectors created by

the simulations.

▶ Output used by Table 2 in the paper.

Also defines Sudden Stops:

▶ Defined as periods where two things occur:

i. The borrowing constraint binds.

ii. The current account is more than two standard deviations above

its mean.

▶ Sudden Stops events are identified in the vector SS.

▶ SS(t) = 1 if and only if there was a Sudden Stop in period t.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 4: Sudden Stop Moments

▶ Calculates moments conditional on a Sudden Stop.

▶ Means, variances and covariances taking into account only those

periods with SS(t) = 1.

▶ Printed output used by Table 3 of the paper.

▶ Baseline model (3) with initial configuration θ = 0.66.

▶ We can change the news parameter θ to non informative θ = 0.33

or almost perfectly informative θ = 0.95 news to obtain other

columns in Table 3.

Solving Macroprudential Policy Model

University of Pennsylvania

Cell 5: Sudden Stop Event Analysis

▶ Identifies Sudden Stop events for analysis.

▶ Variable nbd=3 indicates the window:

▶ From 3 periods before to 3 periods after the sudden stop.

▶ Two periods with a Sudden Stop indicator (SS(t) = 1) are

considered the same event if they are less than 3 periods apart.

▶ Variable nE has the number of Sudden Stop events.

▶ Makes matrices of size 7×nE for each variable to store its

evolution and calculate average evolution paths around Sudden

Stop events.

Cell 6: Makes figures for event analysis. Compare to Figures 2, 3

and 4 in the paper.

Solving Macroprudential Policy Model

University of Pennsylvania

News Signal Comparison

Solving Macroprudential Policy Model

	MPPsolve2new.m
	MPPsimulation.m

