Math 114, HW 3

Due Friday, April 24

• Consider the following corollary of the compactness theorem:

If $\Sigma \vDash \tau$ then there is a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \tau$.

Give a short proof of the compactness theorem from this.

- Let Σ be an effectively enumerable set of wffs. Assume that for each wff τ , either $\Sigma \vDash \tau$ or $\Sigma \vDash \neg \tau$. Show that the set of tautological consequences of Σ is decidable.
- Show that {∧, ↔, +} is complete but that no proper subset is complete. (Recall that + is the exclusive or connective: α + β is true if exactly one of α and β is true.)