Math 114, HW 4

Due Friday, May 8

- 1. Show that none of the following sentences are implied by the other two; this requires giving a model where the sentence in question is false while the other two are true.
 - (a) $\forall x, y, z(Pxy \rightarrow Pyz \rightarrow Pxz)$
 - (b) $\forall x, y(Pxy \land Pyx \to x = y)$
 - (c) $\forall x, y(Pxy \lor Pyx \lor x = y)$
- 2. Show that $\{\forall x(\alpha \to \beta), \forall x\alpha\} \models \forall x\beta$
- 3. Show that $\vDash \exists x [Dx \rightarrow \forall y Dy]$
- 4. A universal formula is a formula in the form $\forall x_1 \cdots \forall x_n \theta$ where θ is quantifier-free. (Such formulas are often called Π_1 .) An existential formula is a formula of the form $\exists x_1 \cdots \exists x_n \theta$ where θ is again quantifier-free. (Such formulas are often called Σ_1 .)

Let \mathfrak{A} be a substructure of \mathfrak{B} and let $s: V \to |\mathfrak{A}|$.

- (a) Show that if $\vDash_{\mathfrak{B}} \phi[s]$ and ϕ is universal then $\vDash_{\mathfrak{A}} \phi[s]$.
- (b) Show that if $\vDash_{\mathfrak{A}} \phi[s]$ and ϕ is existential then $\vDash_{\mathfrak{B}} \phi[s]$.
- (c) Show that the sentence $\forall x P x$ is not logically equivalent to any existential sentence.
- 5. Consider a language with equality, a constant symbol 0, a unary function S, and a binary relation <. Consider the model $(\mathbb{N}, 0, S, <)$ where 0, S, and < are given their usual meanings. Let \mathfrak{A} be some other model of this language such that $\mathfrak{A} \equiv (\mathbb{N}, 0, S, <)$. Show that there is an homomorphism $h : \mathbb{N} \to |\mathfrak{A}|$ and that \mathfrak{A} is an *end-extension* of \mathbb{N} : that is, for every $a \in \mathfrak{A}$, either there is an $n \in \mathbb{N}$ such that a = h(n), or for every $n \in \mathbb{N}$, h(n) < a.