Math 114, HW 6

Due Friday, May 29

1. Consider a language with a single binary predicate symbol P and two constant symbols c, d. Show that there is no formula ϕ such that $\vDash_{\mathfrak{A}} \phi$ iff there exist $c^{\mathfrak{A}}=y_{1}, \ldots, y_{n}=d^{\mathfrak{A}} \in|\mathfrak{A}|$ such that $\left\langle y_{i}, y_{i+1}\right\rangle \in P^{\mathfrak{A}}$ for all $i<n$.
2. Assume a language has only finitely many functions symbols and predicate symbols. Let Σ be a set of sentences such that for any $\sigma \in \Sigma$, if σ has a counterexample (that is, there is a \mathfrak{A} with $\vDash_{\mathfrak{A}} \neg \sigma$) then σ has such a counterexample with $|\mathfrak{A}|$ finite. Find an effective procedure which, given any $\sigma \in \Sigma$, will decide whether or not σ is valid.
3. Let $\Gamma=\left\{\neg \forall v_{1} P v_{1}, P v_{2}, P v_{3}, \ldots\right\}$. Is Γ consistent? Is Γ satisfiable?
4. Carefully write up the proof of Step 4 in the proof of the completeness theorem (that when Δ is a complete set of formulas in the expanded language, there is a model \mathfrak{A} satisfying ϕ^{*} whenever $\phi \in \Delta$). You may refer to the book and your notes, but write the argument up in your own words.
