Math 114, HW 7

Due Friday, June 5th

1. Prove that any two countable dense linear orderings without endpoints are isomorphic. (See the hint in the textbook.)
2. Give prenex normal forms for:
(a) $\exists x(P x \rightarrow \forall y P y)$
(b) $\forall x \exists y R x y \rightarrow \exists x \forall y P x y$
3. Assume that σ is true in all infinite models of a theory T. Show that there is a finite number k such that σ is true in all models \mathfrak{A} of T such that $|\mathfrak{A}|$ has at least k elements.
4. Let T_{1}, T_{2} be theories such that $T_{1} \subseteq T_{2}, T_{1}$ is complete, and T_{2} is satisfiable. Show that $T_{1}=T_{2}$. Given examples showing that all three conditions are necessary. (That is, for each of the three conditions, given an example of two non-equal theories satisfying the other two conditions but not that one.)
