Final Exam Guidelines

The final exam will cover:

- Sections 1.0-1.5, 1.7
- Section 2.0-2.2, 2.4-2.6, 2.8
- Section 3.1 up to Corollary 31E

In addition to all textbook problems from the chapters above, here are a selection of additional practice problems. Sample answers to these problems will be posted prior to the exam.

- 1. Construct a set Σ of formulas of sentential logic, and for each integer n, a formula τ_n , such that $\Sigma \vDash \tau_n$ but whenever $\Sigma_0 \subseteq \Sigma$ and $\Sigma_0 \vDash \tau_n$, $|\Sigma_0| \ge n$. (For instance, τ_3 is not implied by any subset of Σ of size 2. It will be helpful to start by constructing examples Σ and τ_n for small n before addressing the general case.)
- 2. Consider a first order language with a binary predicate symbol < and a unary function symbol f. Express the statement

$$\lim_{x \to x_0} f(x) = y$$

as a formula of first order logic using the standard $\epsilon - \delta$ definition of a limit, in such a way that the formula will be true if and only if the limit does go to y when the underlying model is the usual real numbers.

- 3. Consider a language with a constant symbol 0, a function symbol S, and a binary predicate <, and the standard model given by \mathbb{N} . Describe an elementarily equivalent model properly extending \mathbb{N} and a homomorphism from \mathbb{N} into this model.
- 4. Give an example showing that if we drop axiom group 4, the resulting calculus is no longer complete.
- 5. Consider an expansion of first order logic by a new quantifier \exists_{∞} , and extend \vDash to formulas in this language by adding the clause

$$\vDash_{\mathfrak{A}} \exists_{\infty} x \phi[s] \Leftrightarrow \{a \in |\mathfrak{A}| \mid \vDash_{\mathfrak{A}} \phi[s(x \mapsto a)]\}$$
 is infinite.

Show that there are no additional axiom groups which could be added to make the Completeness Theorem go through for the expanded language. (Hint: recall that the Completeness Theorem implies the Compactness Theorem.)

- 6. Consider a language with a single binary predicate P. Consider the model with universe \mathbb{N} such that P is interpreted by the empty set (that is, $\langle n, m \rangle \notin P^{\mathbb{N}}$ for any n, m). Show that the theory of this model is complete.
- 7. Show that for every $r \in \mathbb{R}$, there is a $q \in {}^*\mathbb{Q}$ such that st(q) = r. (Note that the elements of ${}^*\mathbb{Q}$ are exactly ratios n/m where $n, m \in {}^*\mathbb{N}$.