Math 135, Extra Problems

for Final Exam

- 1. What is $\int_0^\infty e^{-px} (\sin x + x^2) dx$?
- 2. Find the Laplace transform of:

(a)
$$e^{-2x} \cos x$$

(b) $x^{-3/2}$

- 3. Find the inverse Laplace transform of $\frac{p+1}{p^2+4}$
- 4. Find $L[x^2]$ in three ways: by using the definition of the Laplace transform, by using the Laplace transform of x and the integral rule, and by using the Laplace transform of x^3 and the derivative rule.
- 5. Solve the differential equation xy'' (x+1)y' y = 0 with y(0) = 0
- 6. Solve the integral equation $e^x = y(x) \int_0^x \sin(x-t)y(t)dt$
- 7. What are the first three members of the Picard iteration for the equation $y(x) = 1 + \int_0^x \sqrt{y(t)} dt$?
- 8. Given an integral equation equivalent to y' = x + y, y(0) = 0, and find the first three steps of the corresponding Picard iteration.
- 9. Which of the following functions are Lipschitz on the interval $[0,\infty)$: $1/x, \frac{1}{x+1}, x^7, e^x$? Which are Lipschitz on the interval [0, 2]?
- 10. Find any two Fourier coefficients of e^{-x}
- 11. Find any two Fourier coefficients of x
- 12. Which of the following functions does Dirichlet's Theorem that the Fourier series converges pointwise at every point in the interval $[-\pi,\pi)$:
 - f(x) = x
 - $f(x) = \sin \frac{1}{x}$

 - $f(x) = x^3 \sin \frac{1}{x}$ $f(x) = \begin{cases} x^2 & if \pi \le x < 0\\ \cos x & if 0 \le x < \pi \end{cases}$

For which of these functions does Dirichlet's Theorem imply that the Fourier series converges pointwise at all but a finite number of points in the same interval? For which of these functions does the Fourier series converge in the mean?

- 13. Give the first two terms of the Fourier sine series for x
- 14. Give the first two terms of the Fourier cosine series for x^2
- 15. If $\theta_1, \ldots, \theta_n, \ldots$ is an orthonormal series on [a, b] and $n \neq m$, what is

$$\int_{a}^{b} [\theta_n + \theta_m]^2 dx.$$

- 16. Which of the following sequences might be the first elements of an orthonormal series:
 - $\cos x$, $\sin x + \sin 2x$, $\sin 3x$ on $[-\pi, \pi]$
 - x^2, x^4 on [-1, 1]
 - $1/\sqrt{2}, \frac{|x|}{x}\sqrt{|x|}$ on [-1, 1]
- 17. Find a, b so that $\int_{-1}^{1} (x a/\sqrt{2} b\frac{|x|}{x}\sqrt{|x|})^2 dx$ is minimal.
- 18. Recall that w(x,t), the heat of a thin cylindrical rod, is given by $w(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 a^2 t} \sin nx$ with $x \in [0,\pi]$. If the initial temperature w(x,0) = -x, what is w(x,t)?
- 19. Given an example of two elements of an orthonormal series with respect to to $\cos x$ on $[-\pi, \pi]$
- 20. If $\sin xy'' + \cos xy' + \lambda\sqrt{x}y = 0$ with $y(0) = y(\pi) = 0$ has two known solutions, y_1 when $\lambda = 1$ and y_2 when $\lambda = 4$, write down an integral involving y_1 and y_2 which is 0 in this case, but need not be 0 for arbitrary functions.
- 21. Find the stationary functions of $I(y) = \int_0^1 y(x) \cdot y'(x) + y(x) dx$ with y(0) = y(1) = 1.
- 22. Find the stationary functions of $I(y) = \int_0^1 y(x) \cdot (y'(x))^2 dx$ with y(0) = 1, y(1) = 0
- 23. Find the stationary functions of $I(y, z) = \int_{1}^{e} xy'(x)z'(x)dx$ with y(1) = 2, $y(e) = \pi$, z(1) = 3, z(e) = -1.