Math 135, Extra Problem Solutions

for Final Exam

1. $\frac{1}{1+p^{2}}+\frac{2}{p^{3}}$
2. (a) $\frac{p+2}{1+(p+2)^{2}}$
(b) $L\left[x^{-3 / 2}\right]=L\left[-2 \cdot\left(x^{-1 / 2}\right)^{\prime}\right]=-2 p L\left[x^{-1 / 2}\right]=-2 \sqrt{\pi p}$
3. $\cos 2 x+\frac{1}{2} \sin 2 x$
4. ..
5. $x^{2} e^{x}$
6. $2 e^{x}-x-1$
7. $y_{0}=1, y_{1}=1+x, y_{2}=\frac{1}{3}+\frac{2}{3}(1+x)^{3 / 2}$
8. $y(x)=\int_{0}^{x} t+y(t) d t, y_{0}=0, y_{1}=x^{2} / 2, y_{2}=x^{2} / 2+x^{3} / 6$
9. Only $\frac{1}{x+1}$ is Lipschitz on $[0, \infty)$. Only $1 / x$ is NOT Lipschitz on [0, 2].
10. In general, $a_{n}=2 \frac{n \cosh (\pi) \sin (n \pi)+\cos (n \pi) \sinh (\pi)}{\left(1+n^{2}\right) \pi}$ and $b_{n}=2 \frac{-\cosh (\pi) \sin (n \pi)+\cos (n \pi) \sinh (\pi)}{\left(1+n^{2}\right) \pi}$. So a suitable answer might be $a_{0}=2 \sinh (\pi) / \pi, b_{1}=-\sinh (\pi) / \pi$.
11. In general, $a_{n}=0$ and $b_{n}=\frac{2 \sin (n \pi)-2 n \pi \cos (n \pi)}{n^{2} \pi}$
12. Only the first function converges at every point. The first and fourth converge at all but finitely many points. The second and third fail Dirichlet's Theorem because they have infinitely many minima and maxima. All four functions have Fourier series which converge to the function in the mean.
13. $b_{1}=2, b_{2}=-1$
14. $a_{0}=2 \pi^{2} / 3, a_{1}=-4$
15. $\int_{a}^{b}\left[\theta_{n}+\theta_{m}\right]^{2} d x=\int_{a}^{b} \theta_{n}^{2} d x+2 \int_{a}^{b} \theta_{n} \theta_{m} d x+\int_{a}^{b} \theta_{m}^{2} d x=1+0+1=2$
16. The first series is orthogonal, but not orthonormal. The second series is not orthogonal. The third series is orthonormal.
17. $a=\int_{-1}^{1} x / \sqrt{2} d x, b=\int_{-1}^{1} x \cdot \sqrt{x} d x$
18. $b_{n}=\frac{2}{\pi} \int_{0}^{\pi}-x \sin n x d x=(-1)^{n} \frac{2}{n}$, so $w(x, t)=\sum_{n=1}^{\infty}(-1)^{n} \frac{2 e^{-n^{2} a^{2} t}}{n} \sin n x$
19. For example $y_{1}=\frac{x}{2 \sqrt{\pi}}$ and $y_{2}=\frac{x^{2}}{\sqrt{48 \pi-8 \pi^{3}}}$, since $\int_{-\pi}^{\pi} \cos x y_{1}^{2} d x \neq 0$, $\int_{-\pi}^{\pi} \cos x y_{2}^{2} d x \neq 0$, but $\int_{-\pi}^{\pi} \cos x y_{1} y_{2} d x=0$.
20. $\int_{0}^{\pi} \sqrt{x} y_{1}(x) y_{2}(x) d x=0$
21. The only stationary function is $y(x)=1$
22. Euler's equation gives $y\left(y^{\prime}\right)^{2}=c$. This gives $\sqrt{y} \frac{d y}{=} \sqrt{c} d x$, so $\frac{2}{3} y^{3 / 2}=$ $\sqrt{c} x+d$, and therefore $y=(C x+D)^{2 / 3}$. Since $1=D^{2 / 3}, D=1$, and since $0=(C+1)^{2 / 3}, C$ must be -1 , so $y=(-x+1)^{2 / 3}$.
23. Euler's equation gives $x z^{\prime \prime}(x)+z^{\prime}(x)=0$ and $x y^{\prime \prime}(x)+y^{\prime}(x)=0$. So $y=c_{1} \ln x+c_{2}$ and $z=d_{1} \ln x+d_{2}$. The solutions are $y=(\pi-2) \ln x+2$, $z=-4 \ln x+3$.
