MIDTERM

Name: \qquad

Section:

\qquad

Signature:

\qquad

Read all of the following information before starting the exam:

- Check your exam to make sure all pages are present.
- NO CALCULATORS!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

1	5	
2	5	
3	9	
4	9	
5	9	
6	9	
7	9	
8	6	
9	9	
10	8	
11	8	
12	8	
13	6	
Total	100	

1. (5 points) On the graph provided, indicate the region satisfying the conditions $1 \leq r \leq 2, \pi / 3 \leq \theta \leq 2 \pi / 3$.

2. (5 points) On the graph provided, indicate (and label) the following points (which are given in the form (r, θ) :
(a) $(1, \pi / 2)$
(b) $(-1,5 \pi / 2)$
(c) $(-1 / 2,17 \pi / 4)$

3. (9 points) Solve the following integral. You may use any coordinate system you choose.

$$
\iint_{B}\left(x e^{y}\right) d A
$$

where $B=[1,2] \times[4,6]$.

$$
\int_{1}^{2} \int_{4}^{6} x e^{y} d y d x=\left.\int_{1}^{2} x e^{y}\right|_{4} ^{6} d x=\int_{1}^{2} x\left(e^{6}-e^{4}\right) d x=\left.\frac{1}{2} x^{2}\left(e^{6}-e^{4}\right)\right|_{1} ^{2}=\frac{3}{2}\left(e^{6}-e^{4}\right)
$$

4. (9 points) Solve the following integral. You may use any coordinate system you choose.

$$
\iiint_{E}\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+z\right) d V
$$

where $E=\left\{(x, y, z) \mid x^{2}+y^{2} \leq z, 0 \leq z \leq 1\right\}$.

$$
\begin{array}{r}
\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{1} r^{2}\left(r^{2}+z\right) r d z d r d \theta \\
=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{1} r^{5}+r^{3} z d z d r d \theta \\
=\int_{0}^{2 \pi} \int_{0}^{1} r^{5} z+\left.\frac{1}{2} r^{3} z^{2}\right|_{r^{2}} ^{1} d r d \theta \\
=\int_{0}^{2 \pi} \int_{0}^{1} r^{5}+\frac{1}{2} r^{3}-\frac{3}{2} r^{7} d r d \theta \\
=\int_{0}^{2 \pi} \frac{1}{6} r^{6}+\frac{1}{8} r^{4}-\left.\frac{3}{16} r^{8}\right|_{0} ^{1} d \theta \\
=2 \pi\left(\frac{1}{6}+\frac{1}{8}-\frac{3}{16}\right) \\
=\frac{5 \pi}{24}
\end{array}
$$

5. (9 points) Solve the following integral. You may use any coordinate system you choose.

$$
\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V
$$

where $D=\left\{(x, y, z) \mid 0 \leq x^{2}+y^{2}+z^{2} \leq 4\right.$ and $\left.z^{2} \leq x^{2}+y^{2}\right\}$.
This is naturally expressed in spherical coordinates. The first condition says that $0 \leq \rho \leq 2$ while the second says $\rho^{2} \cos ^{2} \phi \leq \rho^{2} \sin ^{2} \phi$; that is, $\cos ^{2} \phi \leq \sin ^{2} \phi$. This occurs whenever $\pi / 4 \leq \phi \leq 3 \pi / 4$. So the integral is:

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{\pi / 4}^{3 \pi / 4} \rho^{3} \sin \phi \mathrm{~d} \phi \mathrm{~d} \rho \mathrm{~d} \theta=2 \pi \int_{0}^{2} \rho^{3} \mathrm{~d} \rho \int_{\pi / 4}^{3 \pi / 4} \sin \phi \mathrm{~d} \phi=2 \pi \cdot 4 \cdot \frac{\sqrt{2}}{2}
$$

6. (9 points) Solve the following integral. You may use any coordinate system you choose.

$$
\iiint_{C} y d V
$$

where $C=\left\{(x, y, z) \mid 0 \leq x^{2}+y^{2}+z^{2} \leq 4\right.$ and $\left.x \leq z\right\}$.
The region is symmetric around the $x z-\mathrm{plane}$, and the function is simply y, so the integral must be 0: the $-y$ part will exactly cancel the $+y$ part.
7. (9 points) Solve the following integral. You may use any coordinate system you choose.

$$
\iiint_{F} x+2 z d V
$$

where $F=\left\{(x, y, z) \mid 0 \leq x \leq \cos y \leq z \leq 1,-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}\right\}$.

$$
\begin{gathered}
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos y} \int_{\cos y}^{1} x+2 z d z d x d y=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos y} x z+\left.z^{2}\right|_{\cos y} ^{1} d x d y= \\
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos y} x+1-x \cos y-\cos ^{2} y d x d y=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos y} x-x \cos y+\sin ^{2} y d x d y= \\
\int_{-\pi / 2}^{\pi / 2} x^{2} / 2-x^{2} / 2 \cos y+\left.x \sin ^{2} y\right|_{0} ^{\cos y} d y=\int_{-\pi / 2}^{\pi / 2} \cos ^{2} y / 2-\cos ^{3} y / 2+\cos y \sin ^{2} y d y= \\
\int_{-\pi / 2}^{\pi / 2} \cos ^{2} y / 2-\cos y\left(1-\sin ^{2} y\right) / 2+\cos y \sin ^{2} y d y= \\
\frac{1}{4}\left(y+\frac{1}{2} \sin 2 y\right)-\frac{1}{8}\left(3 \sin y+\frac{1}{3} \sin 3 y\right)+\left.\frac{1}{3} \sin ^{3} y\right|_{-\pi / 2} ^{\pi / 2}= \\
\frac{\pi}{8}-\frac{1}{8}\left(3-\frac{1}{3}\right)-\frac{1}{3}-\left(-\frac{\pi}{8}-\frac{1}{8}\left(-3+\frac{1}{3}\right)-\frac{1}{3}\right)=\frac{\pi}{4}-\frac{2}{9}+\frac{2}{9}=\frac{\pi}{4}
\end{gathered}
$$

8. (6 points) Consider the integral

$$
\int_{0}^{1} \int_{0}^{2} \int_{x}^{1-x} f(x, y) d z d y d x
$$

Describe the region being integrated over.
Alternatively, a verbal discription that covered the major features sufficed. A perfect description should have indicated: 1) that the shape was a triangular wedge (an appropriate comparison---say, to a roof or another object with a similar shape, worked as well), 2) that one side was flush with the $y z$-plane in the $+y,+z$ quadrant, 3) that the other two sides converged to an apex pointing in the $+x$ direction, above the $x z$-plane. (We weren't looking for a description in precisely those terms, of course; evidence that the writer knew that was what was happening was sufficient.) The most common problem was not realizing (or not indicating) that the middle corner was lifted off the $x z$-plane.
9. (9 points) Consider the region D between the functions $y=x^{2}$ and $y=1-x^{2}$ (as shown on the diagram). Consider the double integral $\iint_{D} x y d A$.
(a) Write down an iterated integral which is equal to this double integral, and where x is the variable in the outermost equation. (That is, an equation of the form $\iint x y d y d x$.)

$$
\int_{-\sqrt{2} / 2}^{\sqrt{2} / 2} \int_{x^{2}}^{1-x^{2}} x y d y d x
$$

(b) Write down an iterated integral which is equal to this double integral, and where y is the variable in the outermost equation. (That is, an equation of the form $\iint x y d x d y$.)

$$
\int_{0}^{\sqrt{2} / 2} \int_{-\sqrt{y}}^{\sqrt{y}} x y d x d y+\int_{\sqrt{2} / 2}^{1} \int_{-\sqrt{1-y}}^{\sqrt{1-y}} x y d x d y
$$

(c) Solve either of the equations in the previous parts to give a value for this integral.

$$
\int_{-1}^{1} \int_{x^{2}}^{1-x^{2}} x y d y d x=\left.\frac{1}{2} \int_{-1}^{1} x y^{2}\right|_{x^{2}} ^{1-x^{2}} d y d x=\frac{1}{2} \int_{-1}^{1} x\left(\left(1-x^{2}\right)^{2}-x^{4}\right) d x=\frac{1}{2} \int_{-1}^{1} x-2 x^{3} d x=\frac{1}{4}\left(x^{2}-x^{4}\right)_{-1}^{1}=0
$$

10. (8 points) Consider the integral

$$
\iint_{G}\left(x^{2}+y^{2}\right) d A
$$

where $G=\left\{(x, y) \mid 0 \leq x^{2}+y^{2} \leq 1\right.$ and $\left.x \geq 0\right\}$.
(a) Write this as an integral in polar coordinates. You do not need to solve this integral.
$\int_{-\pi / 2}^{\pi / 2} \int_{0}^{1} r^{2} \cdot r d r d \theta$
(b) Approximate your integral from the previous part using a Riemann sum with $m=n=3$. You should evaluate this integral to the point that you are adding up a long string of numbers, but you do not need to actually calculate their sum.
$\sum_{i=1}^{3} \sum_{j=1}^{3}\left(r_{i}^{*}\right)^{2} \cdot r_{i}^{*} \Delta r \Delta \theta=\left(\left(\frac{1}{6}\right)^{3}+\left(\frac{1}{2}\right)^{3}+\left(\frac{5}{6}\right)^{3}\right) 3 \cdot \frac{1}{3} \cdot \frac{\pi}{3}$
(Here we have used the midpoints, $1 / 6,1 / 2,5 / 6$, but other choices for the sample points were also correct.)
11. (8 points) Suppose we have a thin circular disc of radius 1 centered on the origin. Suppose the density of this disc at each point (x, y) is $x^{2}+y^{4}$.
(a) Write (but you need not solve or simplify) an integral giving the total mass of this disc.

$$
\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cos ^{2} \theta+r^{4} \sin ^{4} \theta d r d \theta
$$

(b) Write (but you need not solve or simplify) an integral giving the moment about the x-axis.

$$
\int_{0}^{2 \pi} \int_{0}^{1}(\mathrm{r} \sin \theta)\left(\mathrm{r}^{2} \cos ^{2} \theta+\mathrm{r}^{4} \sin ^{4} \theta\right) \mathrm{dr} \mathrm{~d} \theta
$$

(c) Write (but you need not solve or simplify) an integral giving the moment of inertia about the origin.

$$
\int_{0}^{2 \pi} \int_{0}^{1} r^{2}\left(r^{2} \cos ^{2} \theta+r^{4} \sin ^{4} \theta\right) d r d \theta
$$

12. (8 points) The random variable X is distributed with probability density function $e^{(x-1)^{2}}$. The random variable Y is always ≥ 1, and is distributed with probability density function $\frac{1}{y^{2}}$. Write down (but do not solve) an integral expressing the probability that $|X-Y| \leq 10$.
$\int_{1}^{\infty} \int_{y-10}^{y+10} \frac{e^{(x-1)^{2}}}{y^{2}} d x d y$
13. (6 points) Consider the coordinate transformation $u=-\frac{1}{2} \ln \frac{y}{x}, v=\sqrt{x y}$. Let R be the triangle bounded by the lines $y=1, y=x$, and $y=4 x$. What is the image of R under the transformation?

The line $y=1$ corresponds to $u=-\frac{1}{2} \ln \frac{1}{x}=\ln \sqrt{x}$ while $v=\sqrt{x}$, so $v=e^{u}$; since x ranges from $1 / 4$ to 1 on this line, u ranges from $-\frac{1}{2} \ln 4=-\ln 2$ to $-\frac{1}{2} \ln 1=0$.

The line $y=x$ corresponds to $u=-\frac{1}{2} \ln \frac{x}{x}=0$ while $v=\sqrt{x^{2}}=x$. Since x ranges from 0 to 1 on this line, this is a vertical line at $u=0$ with v ranging from 0 to 1 .

The line $y=4 x$ corresponds to $u=-\frac{1}{2} \ln 4=-\ln 2$ while $v=\sqrt{4 x^{2}}=2 x$. This corresponds to the vertical line at $u=-\ln 2$ with v ranging from 0 to $1 / 2$.

Combined, these three lines form three of the four lines of a trapezoid to the left of the u-axis. Combined with the fact that $v \geq 0$ (since $v=\sqrt{x y}$ is never negative), the region R maps to the resulting trapezoid.

