Homework 4

3.4, 1. Show that $-x^{2} \leq x^{2} \cos \frac{1}{x} \leq x^{2}$ holds for $x \neq 0$.

Solution: Since $-1 \leq \cos \frac{1}{x} \leq 1$, multiply all three parts by $x^{2}>0$, we get:

$$
-x^{2} \leq x^{2} \cos \frac{1}{x} \leq x^{2}
$$

and since $\lim _{x \rightarrow 0} x^{2}=\lim _{x \rightarrow 0}\left(-x^{2}\right)=0$, then by Sandwich theorem, we get:

$$
\lim _{x \rightarrow 0} x^{2} \cos \frac{1}{x}=0
$$

2b. Use the sandwich theorem to show that $\lim _{x \rightarrow 0} x \cos \frac{1}{x}=0$.
Solution: Since $-1 \leq \cos \frac{1}{x} \leq 1$. If $x>0$, multiply all three parts by $x>0$, we get:

$$
-x \leq x \cos \frac{1}{x} \leq x
$$

and since $\lim _{x \rightarrow 0+} x=\lim _{x \rightarrow 0+}(-x)=0$, then by Sandwich theorem, we get:

$$
\lim _{x \rightarrow 0+} x \cos \frac{1}{x}=0
$$

If $x<0$, multiply all three parts by $x<0$, we get:

$$
-x \geq x \cos \frac{1}{x} \geq x
$$

and since $\lim _{x \rightarrow 0-} x=\lim _{x \rightarrow 0-}(-x)=0$, then by Sandwich theorem, we get:

$$
\lim _{x \rightarrow 0-} x \cos \frac{1}{x}=0
$$

Therefore, we get

$$
\lim _{x \rightarrow 0} x \cos \frac{1}{x}=0
$$

7.

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=\lim _{x \rightarrow 0} 5 \cdot \frac{\sin 5 x}{5 x}=5 \lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}=5 .
$$

8.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{-x}=-\lim _{x \rightarrow 0} \frac{\sin x}{x}=-1
$$

3.5, 5. Use the intermediate-value theorem to show that $e^{-x}=x$ has a solution in $(0,1)$.

Solution: Let $f(x)=e^{-x}-x$, then $f(0)=1>0$, and $f(1)=e^{-1}-1<0$, thus by I-V theorem, there is c in $(0,1)$, such that $f(c)=0$, that is $e^{-c}=c$.
6. Use the intermediate-value theorem to show that $\cos x=x$ has a solution in $(0,1)$.

Solution: Let $f(x)=\cos x-x$, then $f(0)=1>0$, and $f(1)=\cos 1-1<0$, thus by I-V theorem, there is c in $(0,1)$, such that $f(c)=0$, that is $\cos c=c$.

13 Explain why a polynomial of degree 3 has at least one root.
Solution: Suppose $f(x)=a x^{3}+b x^{2}+c x+d$ is a polynomial of degree 3 , where a, b, c, d are constants.
If $a>0$ then, there is a number $t \gg 0$ big enough, such that $f(t)>0$, and there is a number $s \ll 0$ small
enough, such that $f(s)<0$, therefore by I-V theorem, we get there is l in (s, t), satisfies that $f(l)=0$, that is $f(x)$ has at least one root l.
Similarly, if $a<0$ then, there is a number $t \gg 0$ big enough, such that $f(t)<0$, and there is a number $s \ll 0$ small enough, such that $f(s)>0$, therefore by I-V theorem, we get there is l in (s, t), satisfies that $f(l)=0$, that is $f(x)$ has at least one root l.

14 Explain why a polynomial of degree n , where n is an odd number has at least one root.
Solution: Suppose $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ is a polynomial of degree n , where $a_{n}, a_{n-1}, \cdots, a_{0}$ are constants.
Because n is odd, if $a_{n}>0$ then, there is a number $t \gg 0$ big enough, such that $f(t)>0$, and there is a number $s \ll 0$ small enough, such that $f(s)<0$, therefore by I-V theorem, we get there is l in (s, t), satisfies that $f(l)=0$, that is $f(x)$ has at least one root l.
Similarly, if $a_{n}<0$ then, there is a number $t \gg 0$ big enough, such that $f(t)<0$, and there is a number $s \ll 0$ small enough, such that $f(s)>0$, therefore by I-V theorem, we get there is l in (s, t), satisfies that $f(l)=0$, that is $f(x)$ has at least one root l.
15. Explain why $y=x^{2}-4$ has at least two roots.

Solution: Since $y(3)=5>0$, and $y(1)=-3<0$, then by I-V theorem, there is a number c_{1} in $(1,3)$, such that $y\left(c_{1}\right)=c_{1}^{2}-4=0$. Also since $y(-3)=5>0$, and $y(-1)=-3<0$, then by I-V theorem, there is a number c_{2} in $(-3,-1)$, such that $y\left(c_{2}\right)=c_{2}^{2}-4=0$, and because c_{1} and c_{2} are in disjoint sets respectively, so they are different, therefore $y=x^{2}-4$ has at least 2 roots c_{1}, c_{2}.
4.1, 25. Use the formal definition to find the derivative of $y=\sqrt{x}$, for $x>0$.

Solution: Denote $f(x)=\sqrt{x}$, then by the formal definition of derivative, for $x>0$, we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

26. Use the formal definition to find the derivative of $f(x)=\frac{1}{x+1}$ for $x \neq-1$.

Solution: Denote $f(x)=\sqrt{x}$, then by the formal definition of derivative, for $x \neq-1$, we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+1+h}-\frac{1}{x+1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x+1-(x+1+h)}{(x+1+h)(x+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+1+h)(x+1)}=\lim _{h \rightarrow 0} \frac{-1}{(x+1+h)(x+1)}=\frac{-1}{(x+1)^{2}}
\end{aligned}
$$

27. Find the equation of the tangent line to the curve $y=3 x^{2}$ at the point $(1,3)$.

Solution: $y^{\prime}(x)=6 x$, then $y^{\prime}(1)=6$, which is the slope of the tangent line. Since the tangent line pass the point $(1,3)$, thus the equation of the tangent line is: $y-3=6(x-1)$, that is $y=6 x-3$.
28. Find the equation of the tangent line to the curve $y=2 / x$ at the point $(2,1)$.

Solution: $y^{\prime}(x)=-\frac{2}{x^{2}}$, then $y^{\prime}(2)=-\frac{1}{2}$, which is the slope of the tangent line. Since the tangent line pass the point $(2,1)$, thus the equation of the tangent line is: $y-1=-\frac{1}{2}(x-2)$, that is $y=-\frac{1}{2} x+2$.
51. Which of the following statements is true:
(A) If $f(x)$ is continuous, then $f(x)$ is differentiable.
(B) If $f(x)$ is differentiable, then $f(x)$ is continuous.

Solution: (A) is false. Counterexample: $f(x)=x^{1 / 3}$ is continuous at $x=0$, but not differentiable at $x=0$. (B) is true, the proof is in page 141-142.
52. Explain the relation between continuity and differentability.

Solution: If f is differentiable at $x=c$, then f is also continuous at $x=c$; but if f is continuous at $x=c$, then f need not be differentiable at $x=c$.
4.2, 7. Differentiate the function $g(s)=5 s^{7}+2 s^{3}-5 s$.

Solution: $g^{\prime}(s)=5 \cdot 7 s^{6}+2 \cdot 3 s^{2}-5=35 s^{6}+6 s^{2}-5$.
8. Differentiate the function $g(s)=3-4 s^{2}-4 s^{3}$.

Solution: $g^{\prime}(s)=-4 \cdot 2 s-4 \cdot 3 s^{2}=-8 s-12 s^{2}$.
29. Differentiate $f(x)=r s^{2} x^{3}-r x-s$ with respect to x . Assume that r and s are constant.

Solution: $f^{\prime}(s)=r s^{2} \cdot 3 x^{2}-r=3 r s^{2} x^{2}-r$.
30 Differentiate $f(x)=\frac{r+x}{r s^{2}}-r s x+(r+s) x-r s$ with respect to x . Assume that r and s are nonzero constants.
Solution: $f^{\prime}(x)=\left(\frac{r}{r s^{2}}-r s+\frac{x}{r s^{2}}-r s x+(r+s) x\right)^{\prime}=\frac{1}{r s^{2}}-r s+r+s$.
81. Suppose that $P(x)$ is a polynomial of degree 4. Is $P^{\prime}(x)$ a polynomial as well? If yes, what is the degree.
Solution: Yes. Because if $P(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$, where a, b, c, d, e are all constants. then $P^{\prime}(x)=4 a x^{3}+3 b x^{2}+2 c x+d$, therefore degree of $P^{\prime}(x)$ is 3 .
82. Suppose that $P(x)$ is a polynomial of degree k. Is $P^{\prime}(x)$ a polynomial as well? If yes, what is the degree?
Solution: Suppose $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$, then $P^{\prime}(x)=n a_{n} x^{n-1}+(n-$ 1) $a_{n-1} x^{n-2}+\cdots+2 a_{2} x+a_{1}$, thus the degree of $P^{\prime}(x)$ is $n-1$.
4.3, 31. Differentiate $f(x)=2 a\left(x^{2}-a\right)^{2}+a$ with respect to x . Assume that a is a positive constant. Solution: Use the product rule to $f(x)=2 a\left(x^{2}-a\right)\left(x^{2}-a\right)+a$:

$$
f^{\prime}(x)=2 a \cdot 2 x \cdot\left(x^{2}-2\right)+2 a \cdot 2 x \cdot\left(x^{2}-2\right)=8 a x\left(x^{2}-a\right)=8 a x^{3}-8 a^{2} x .
$$

32 Differentiate $f(x)=\frac{3(x-1)^{2}}{2+a}$ with respect to x. Assume that a is a positive constant.
Solution: Use the product rule to $f(x)=\frac{3}{2+a}(x-1)(x-1)$, we get:

$$
f^{\prime}(x)=\frac{3}{2+a}((x-1)+(x-1))=\frac{6}{2+3}(x-1)
$$

Differentiate the following functions:
67. $g(s)=\frac{s^{1 / 3}-1}{s^{2 / 3}-1}$.

Solution:

$$
g^{\prime}(s)=\frac{\frac{1}{3} s^{-2 / 3}\left(s^{2 / 3}-1\right)-\frac{2}{3}\left(s^{1 / 3}-1\right) s^{-1 / 3}}{\left(s^{2 / 3}-1\right)^{2}}=\frac{\frac{1}{3}-\frac{1}{3} s^{-2 / 3}-\frac{2}{3}+\frac{2}{3} s^{-1 / 3}}{\left(s^{2 / 3}-1\right)^{2}}=\frac{-\frac{1}{3}-\frac{1}{3} s^{-2 / 3}+\frac{2}{3} s^{-1 / 3}}{\left(s^{2 / 3}-1\right)^{2}} .
$$

68.gs $=\frac{s^{1 / 7}-s^{2 / 7}}{s^{3 / 7}+s^{4 / 7}}$.

Solution:

$$
\begin{aligned}
g^{\prime}(s) & =\frac{\left(\frac{1}{7} s^{-6 / 7}-\frac{2}{7} s^{-5 / 7}\right)\left(s^{3 / 7}+s^{4 / 7}\right)-\left(s^{1 / 7}-s^{2 / 7}\right)\left(\frac{3}{7} s^{-4 / 7}+\frac{4}{7} s^{-3 / 7}\right)}{\left(s^{3 / 7}+s^{4 / 7}\right)^{2}} \\
& =\frac{2}{7} \cdot \frac{-s^{-3 / 7}-s^{-2 / 7}+s^{-1 / 7}}{\left(s^{3 / 7}+s^{4 / 7}\right)^{2}}
\end{aligned}
$$

Assume that $f(x)$ is differentiable. Find an expression for the derivative of y at $x=2$, assuming that $f(2)=-1$ and $f^{\prime}(2)=1$:
84. $y=\frac{f(x)}{x^{2}+1}$.

Solution: $y^{\prime}(x)=\frac{f^{\prime}(x)\left(x^{2}+1\right)-2 x f(x)}{\left(x^{2}+1\right)^{2}}$, then:

$$
y^{\prime}(2)=\frac{f^{\prime}(2)\left(2^{2}+1\right)-4 f(2)}{\left(2^{2}+1\right)^{2}}=\frac{5+4}{25}=\frac{9}{25}
$$

85. $y=\frac{x^{2}+4 f(x)}{f(x)}$

Solution: $y^{\prime}(x)=\frac{\left(2 x+4 f^{\prime}(x)\right) f(x)-\left(x^{2}+4 f(x)\right) f^{\prime}(x)}{\left(f(x)^{2}\right)}$, thus:

$$
y^{\prime}(2)=\frac{\left(4+4 f^{\prime}(2)\right) f(2)-\left(2^{2}+4 f(2)\right) f^{\prime}(2)}{\left(f(2)^{2}\right)}=\frac{8 \cdot(-1)-0}{1}=-8
$$

