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Read all of the following information before starting the exam:

e Check your exam to make sure all pages are present.

e Show all work, clearly and in order, if you want to get full credit. I reserve the right to
take off points if I cannot see how you arrived at your answer (even if your final answer is
correct).

e Whenever you invoke a theorem to justify a result, make sure to clearly identify all premises
of the theorem, show that they are true, and specify which theorem you are using.

e Circle or otherwise indicate your final answers.

e Good luck!
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1. (20 points) Find the specified derivatives of the following fuctions:
(a) diesin Vtanz

T

(b) d (t+t4+T7)e! sint cost
dt Vit+3

(c) dif_1 x) where f(t) = fft’; (remember f~!(x) is the inverse of f(t), so f~1(f(t))

(d) % [7“7 + 78 + 57‘]
(e) j;—f&xez
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2. (20 points) A spotlight is 30 feet from a wall. A 6 foot tall person is between the spotlight
and the wall, walking towards the wall at 10 feet per minute. The person casts a shadow on the
wall, caused by the spotlight. (Note that this question has a total of 5 parts.)

Wall Pcr SOt 0

(a) Write an equation giving the relationship between the angle 6 and the distance
between the person and the spotlight.

(b) Write an equation giving the relationship between the angle # and the height of
the person’s shadow.

(c) When the person’s shadow is 18 feet tall, how far is the person from the spotlight?
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(d) Write an equation relating the rate of change of 6 to the distance between the
person and the spotlight and the rate the person is moving towards the wall.

(e) How quickly is the angle 6 changing when the person’s shadow is 18 feet tall, and
in which direction? (For full credit, do NOT leave unevaluated trig expressions in the answer.)

4 of 8



0.1-¢c

3. (20 points) Let c be a constant. Approximate the value of e using a linearization.

4. (20 points) (a) Consider the function f(z) = %3, so f(—1) = f(1) = 1, but
there is no point where f’(x) = 0. Why doesn’t this contradict the Mean Value Theorem?

(b) Sketch an example of a function which is defined on the interval [0, 1] and has
both a local minimum and a local maximum in this interval, but has neither a global minimum
nor a global maximum on this interval. (You don’t need to be able to write down a formula for
the function—you can make up any function as long as you can represent it in a sketch.)
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9. (20 points) This problem concerns the function

z+1
f(@) = 22 —2x+1
The following information may be useful:
i f/(x) = _(;:j_13)3
i f”(l’) = (2;:;1—11)2
(a) Identify the points where f is 0 or undefined, and the intervals where f is positive
or negative.
(b) Identify the critical points of f, and the intervals where f is increasing or decreasing.
(c) Identify the inflection points of f, and the intervals where f is concave up or

concave down.
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Determine lim,_,;- f(x)

Determine lim,_,1+ f(x)

Determine limy_, o f()

Determine lim,_,_ o f(2)

Describe all asymptotes (horizontal, vertical, or oblique) of f
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(i) Sketch a graph of f. Be sure to indicate all zeros, critical points, inflection points,
and asymptotes of f.
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