
Math 3B Homework5 Solutions (Winter 2011)

Section 7.3 Evaluate following integrals

14.
∫

1
x(2x+1)

dx

Solution The integrand is a proper rational function whose denominator
is a product of two distinct linear functions. We claim that the integrand
can be written in the form

1

x(2x+ 1)
=

A

x
+

B

2x+ 1

=
A(2x+ 1) +Bx

x(2x+ 1)

where A and B are constants that we need to determine. Then we conclude
that

1 = A(2x+ 1) +Bx = (2A+B)x+ A,

which implies  2A+B = 0

A = 1

and thus  A = 1

B = −2

Therefore ∫
1

x(2x+ 1)
dx =

∫
1

x
− 2

2x+ 1
dx

=

∫
1

x
dx−

∫
1

x+ 1
2

dx

= ln |x| − ln

∣∣∣∣x+
1

2

∣∣∣∣+ C

= ln

∣∣∣∣ x

x+ 1
2

∣∣∣∣+ C

= ln

∣∣∣∣ 2x

2x+ 1

∣∣∣∣+ C

�

22.
∫

3x2+4x+3
(x2+1)2

dx
1



Solution The integrand is a proper rational function, since the numerator
is a polynomial of degree 2 while the denominator is of degree 4. The
denominator contains the irreducible quadratic factor x2 + 1 twice, so we
claim that the integrand can be written in the form

3x2 + 4x+ 3

(x2 + 1)2
=

Ax+B

(x2 + 1)
+

Cx+D

(x2 + 1)2

=
(Ax+B)(x2 + 1) + Cx+D

(x2 + 1)2

=
Ax3 +Bx2 + (A+ C)x+ (B +D)

(x2 + 1)2

where A, B, C and D are constants that we need to determine. Then we
conclude that

3x2 + 4x+ 3 = Ax3 +Bx2 + (A+ C)x+ (B +D),

which implies



A = 0

B = 3

A+ C = 4

B +D = 3

and thus



A = 0

B = 3

C = 4

D = 0
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Therefore∫
3x2 + 4x+ 3

(x2 + 1)2
dx =

∫
3

(x2 + 1)
+

4x

(x2 + 1)2
dx

=

∫
3

(x2 + 1)
dx+

∫
4x

(x2 + 1)2
dx

= 3 tan−1 x+ 2

∫
1

u2
du

= 3 tan−1 x− 2

u
+ C

= 3 tan−1 x− 2

x2 + 1
+ C

where we use substitution u = x2 + 1 with du = 2xdx. �

32.
∫

1
x2−x+2

dx

Solution The integrand is a proper rational function, and the denominator
contains the irreducible quadratic factor x2 − x + 2, which is irreducible,
since the discriminant ∆ = (−1)2 − 4× 1× 2 = −7 < 0. Then

1

x2 − x+ 2
=

1

(x− 1
2
)2 + 7

4

=
4

7

1(
x− 1

2√
7
4

)2

+ 1

under which setting u =
x− 1

2√
7
4

with du =
√

4
7
dx yields∫

1

x2 − x+ 2
dx =

∫
4

7

1(
x− 1

2√
7
4

)2

+ 1

dx

=

√
4

7

∫
1

1 + u2
du

=

√
4

7
tan−1 u+ C

=

√
4

7
tan−1

x− 1
2√

7
4

+ C

=
2√
7
tan−1

(
2x− 1√

7

)
+ C

�

50.
∫

1
(x2−x−2)2

dx
3



Solution The integrand is a proper rational function, and the denominator
contains two repeated linear factors, so we claim that the integrand can be
written in the form

1

(x2 − x− 2)2
=

1

(x+ 1)2(x− 2)2

=
A

x+ 1
+

B

(x+ 1)2
+

C

x− 2
+

D

(x− 2)2

=
[A(x+ 1) +B](x− 2)2 + [C(x− 2) +D](x+ 1)2

(x+ 1)2(x− 2)2

= [(A+ C)x3 + (−3A+B +D)x2 + (−4B − 3C + 2D)x

+(4A+ 4B − 2C +D)] · 1

(x+ 1)2(x− 2)2

where A, B, C and D are constants that we need to determine. Then we
conclude that

1 = (A+C)x3+(−3A+B+D)x2+(−4B−3C+2D)x+(4A+4B−2C+D),

which implies



A+ C = 0

−3A+B +D = 0

−4B − 3C + 2D = 0

4A+ 4B − 2C +D = 1

and thus



A = 2
27

B = 1
9

C = − 2
27

D = 1
9
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Therefore∫
1

(x2 − x− 2)2
dx =

∫
A

x+ 1
+

B

(x+ 1)2
+

C

x− 2
+

D

(x− 2)2
dx

=
2

27

∫
1

x+ 1
dx+

1

9

∫
1

(x+ 1)2
dx− 2

27

∫
1

x− 2
dx+

1

9

∫
1

(x− 2)2
dx

=
2

27
ln |x+ 1| − 1

9

1

x+ 1
− 2

27
ln |x− 2| − 1

9

1

x− 2
+ C

=
2

27
ln

∣∣∣∣x+ 1

x− 2

∣∣∣∣− 1

9

2x− 1

(x+ 1)(x− 2)
+ C

�

Section 7.4 Improper Integrals

4.
∫∞
e

dx
x(lnx)2

Solution Since the integration interval [e,∞) is unbounded,this integral is
improper. Next define

A(z) =

∫ z

e

dx

x(lnx)2
= − 1

ln x

∣∣∣∣z
e

= 1− 1

ln z

Then from the definition of improper integral∫ ∞

e

dx

x(lnx)2
= lim

z→∞
A(z) = lim

z→∞

(
1− 1

ln z

)
= 1

�

10.
∫∞
−∞ x3e−x4

dx

Solution Since the integration interval (−∞,∞) is unbounded,this integral
is improper. Next splitting up the integral at x = 0 yields∫ ∞

−∞
x3e−x4

dx =

∫ ∞

0

x3e−x4

dx+

∫ 0

−∞
x3e−x4

dx

and then ∫ ∞

0

x3e−x4

dx = lim
z→∞

∫ z

0

x3e−x4

dx

= lim
z→∞

(
−1

4
e−x4

∣∣∣∣z
0

)
= lim

z→∞

1

4

(
1− e−z4

)
=

1

4
5



and ∫ 0

−∞
x3e−x4

dx = lim
z→−∞

∫ 0

z

x3e−x4

dx

= lim
z→−∞

(
−1

4
e−x4

∣∣∣∣0
z

)
= lim

z→−∞

1

4

(
−1 + e−z4

)
= −1

4
Then from the definition of improper integral∫ ∞

−∞
x3e−x4

dx =

∫ ∞

0

x3e−x4

dx+

∫ 0

−∞
x3e−x4

dx =
1

4
− 1

4
= 0

�
18.

∫∞
1

1

x
1
3
dx

Solution Since the integration interval [1,∞) is unbounded,this integral is
improper. Next define

A(z) =

∫ ∞

1

1

x
1
3

dx =
3

2
x

2
3

∣∣∣∣z
1

=
3

2

(
z

2
3 − 1

)
Then from the definition of improper integral∫ ∞

1

1

x
1
3

dx = lim
z→∞

A(z) = lim
z→∞

3

2

(
z

2
3 − 1

)
= ∞,

i.e., DNE, which follows that
∫∞
1

1

x
1
3
dx diverges. �

32.
∫∞
−∞

c
1+x2dx

Solution Since the integration interval (−∞,∞) is unbounded,this integral
is improper. Next splitting up the integral at x = 0 yields∫ ∞

−∞

c

1 + x2
dx =

∫ ∞

0

c

1 + x2
dx+

∫ 0

−∞

c

1 + x2
dx

and then ∫ ∞

0

c

1 + x2
dx = lim

z→∞

∫ z

0

c

1 + x2
dx

= lim
z→∞

(
c tan−1 x

∣∣z
0

)
= lim

z→∞
c tan−1 z

=
π

2
c
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and ∫ 0

−∞

c

1 + x2
dx = lim

z→−∞

∫ 0

z

c

1 + x2
dx

= lim
z→−∞

(
c tan−1 x

∣∣0
z

)
= lim

z→−∞
(−c tan−1 z)

=
π

2
c

Then from the definition of improper integral

1 =

∫ ∞

−∞

c

1 + x2
dx =

∫ ∞

0

c

1 + x2
dx+

∫ 0

−∞

c

1 + x2
dx =

π

2
c+

π

2
c = cπ

which implies c = 1
π

�

33.
∫∞
1

1
xpdx for 0 < p < ∞

Solution (a) For z > 1, set

A(z) =

∫ z

1

1

xp
dx

=


lnx|z1 p = 1

1
1−p

x1−p
∣∣∣z
1

p ̸= 1

=


ln z p = 1

1
1−p

(z1−p − 1) p ̸= 1

(b) When p = 1,

lim
z→∞

A(z) = lim
z→∞

ln z = ∞;

when 0 < p < 1, i.e., 1− p > 0 implies

lim
z→∞

A(z) = lim
z→∞

1

1− p
(z1−p − 1) = ∞.

(b) When p > 1, i.e., 1− p < 0 implies

lim
z→∞

A(z) = lim
z→∞

1

1− p
(z1−p − 1) =

1

p− 1
.

�
Section 8.1 Solving Differential Equations

2. dy
dx

= e−3x, where y0 = 10 for x0 = 0
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Solution

y(x) = y(0) +

∫ x

x0

e−3udu

= 10 +

∫ x

0

e−3udu

= 10 +

(
−1

3
e−3u

)∣∣∣∣x
0

= 10 +
1

3
(1− e−3x)

=
31

3
− 1

3
e−3x

�

12. dy
dx

= 2(1− y), where y0 = 2 for x0 = 0

Solution Separating variables and then integrating follow∫
dx =

∫
dy

2(1− y)

which implies

−1

2
ln |1− y| = x+ C1

and thus
1− y = Ce−2x

where C is a constant. Last plugging the initial condition yields

C = 1− 2 = −1.

So
y = 1 + e−2x

�

22. dL
dt

= k(34− L(t)) with L(0) = 2

Solution (a) Separating variables and then integrating follow∫
dt =

∫
dL

k(34− L(t))

which implies

−1

k
ln |34− L(t)| = t+ C1

and thus
34− L(t) = Ce−kt

8



where C is a constant. Last plugging the initial condition yields

C = 34− 2 = 32.

So

L(t) = 34− 32e−kt

(b) If L(4) = 10, 34− 32e−4k = 10 implies

k = −1

4
ln

3

4

See last page for graph.

(c) L(10) = 34− 32e−10k = 34− 32e10×
1
4
ln 3

4 = 34− 9
√
3

(d) Since 1
4
ln 3

4
< 0,

lim
t→∞

L(t) = lim
t→∞

(
34− 32et

1
4
ln 3

4

)
= 34

�

28. dy
dx

= (y − 1)(y − 2), where y0 = 0 for x0 = 0

Solution Separating variables and then integrating by partial-fraction fol-
low ∫

dx =

∫
dy

(y − 1)(y − 2)
=

∫
1

y − 2
− 1

y − 1
dx

which implies

ln

∣∣∣∣y − 2

y − 1

∣∣∣∣ = x+ C1

and thus
y − 2

y − 1
= Cex

where C is a constant. Last plugging the initial condition yields

C =
0− 2

0− 1
= 2.

So

y =
2− 2ex

1− 2ex

�

44. dy
dx

= 2 y
x
, where y0 = 1 for x0 = 1

Solution Separating variables and then integrating follow∫
2

x
dx =

∫
1

y
dy

9



which implies
ln |y| = 2 ln |x|+ C1

and thus
y = Cx2

where C is a constant. Last plugging the initial condition yields

C = 1.

So
y = x2

�

10
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