Math 3B Homework5 Solutions (Winter 2011)

Section 7.3 Evaluate following integrals
14. $\int \frac{1}{x(2 x+1)} d x$

Solution The integrand is a proper rational function whose denominator is a product of two distinct linear functions. We claim that the integrand can be written in the form

$$
\begin{aligned}
\frac{1}{x(2 x+1)} & =\frac{A}{x}+\frac{B}{2 x+1} \\
& =\frac{A(2 x+1)+B x}{x(2 x+1)}
\end{aligned}
$$

where A and B are constants that we need to determine. Then we conclude that

$$
1=A(2 x+1)+B x=(2 A+B) x+A
$$

which implies

$$
\left\{\begin{array}{l}
2 A+B=0 \\
A=1
\end{array}\right.
$$

and thus

$$
\left\{\begin{array}{l}
A=1 \\
B=-2
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
\int \frac{1}{x(2 x+1)} d x & =\int \frac{1}{x}-\frac{2}{2 x+1} d x \\
& =\int \frac{1}{x} d x-\int \frac{1}{x+\frac{1}{2}} d x \\
& =\ln |x|-\ln \left|x+\frac{1}{2}\right|+C \\
& =\ln \left|\frac{x}{x+\frac{1}{2}}\right|+C \\
& =\ln \left|\frac{2 x}{2 x+1}\right|+C
\end{aligned}
$$

22. $\int \frac{3 x^{2}+4 x+3}{\left(x^{2}+1\right)^{2}} d x$

Solution The integrand is a proper rational function, since the numerator is a polynomial of degree 2 while the denominator is of degree 4 . The denominator contains the irreducible quadratic factor $x^{2}+1$ twice, so we claim that the integrand can be written in the form

$$
\begin{aligned}
\frac{3 x^{2}+4 x+3}{\left(x^{2}+1\right)^{2}} & =\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(x^{2}+1\right)^{2}} \\
& =\frac{(A x+B)\left(x^{2}+1\right)+C x+D}{\left(x^{2}+1\right)^{2}} \\
& =\frac{A x^{3}+B x^{2}+(A+C) x+(B+D)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

where A, B, C and D are constants that we need to determine. Then we conclude that

$$
3 x^{2}+4 x+3=A x^{3}+B x^{2}+(A+C) x+(B+D)
$$

which implies

$$
\left\{\begin{array}{l}
A=0 \\
B=3 \\
A+C=4 \\
B+D=3
\end{array}\right.
$$

and thus

$$
\left\{\begin{array}{c}
A=0 \\
B=3 \\
C=4 \\
D=0 \\
2
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
\int \frac{3 x^{2}+4 x+3}{\left(x^{2}+1\right)^{2}} d x & =\int \frac{3}{\left(x^{2}+1\right)}+\frac{4 x}{\left(x^{2}+1\right)^{2}} d x \\
& =\int \frac{3}{\left(x^{2}+1\right)} d x+\int \frac{4 x}{\left(x^{2}+1\right)^{2}} d x \\
& =3 \tan ^{-1} x+2 \int \frac{1}{u^{2}} d u \\
& =3 \tan ^{-1} x-\frac{2}{u}+C \\
& =3 \tan ^{-1} x-\frac{2}{x^{2}+1}+C
\end{aligned}
$$

where we use substitution $u=x^{2}+1$ with $d u=2 x d x$.
32. $\int \frac{1}{x^{2}-x+2} d x$

Solution The integrand is a proper rational function, and the denominator contains the irreducible quadratic factor $x^{2}-x+2$, which is irreducible, since the discriminant $\Delta=(-1)^{2}-4 \times 1 \times 2=-7<0$. Then

$$
\frac{1}{x^{2}-x+2}=\frac{1}{\left(x-\frac{1}{2}\right)^{2}+\frac{7}{4}}=\frac{4}{7} \frac{1}{\left(\frac{x-\frac{1}{2}}{\sqrt{\frac{7}{4}}}\right)^{2}+1}
$$

under which setting $u=\frac{x-\frac{1}{2}}{\sqrt{\frac{7}{4}}}$ with $d u=\sqrt{\frac{4}{7}} d x$ yields

$$
\begin{aligned}
\int \frac{1}{x^{2}-x+2} d x & =\int \frac{4}{7} \frac{1}{\left(\frac{x-\frac{1}{2}}{\sqrt{\frac{7}{4}}}\right)^{2}+1} d x \\
& =\sqrt{\frac{4}{7}} \int \frac{1}{1+u^{2}} d u \\
& =\sqrt{\frac{4}{7}} \tan ^{-1} u+C \\
& =\sqrt{\frac{4}{7}} \tan ^{-1}\left(\frac{x-\frac{1}{2}}{\sqrt{\frac{7}{4}}}\right)+C \\
& =\frac{2}{\sqrt{7}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{7}}\right)+C
\end{aligned}
$$

50. $\int \frac{1}{\left(x^{2}-x-2\right)^{2}} d x$

Solution The integrand is a proper rational function, and the denominator contains two repeated linear factors, so we claim that the integrand can be written in the form

$$
\begin{aligned}
\frac{1}{\left(x^{2}-x-2\right)^{2}}= & \frac{1}{(x+1)^{2}(x-2)^{2}} \\
= & \frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}} \\
= & \frac{[A(x+1)+B](x-2)^{2}+[C(x-2)+D](x+1)^{2}}{(x+1)^{2}(x-2)^{2}} \\
= & {\left[(A+C) x^{3}+(-3 A+B+D) x^{2}+(-4 B-3 C+2 D) x\right.} \\
& +(4 A+4 B-2 C+D)] \cdot \frac{1}{(x+1)^{2}(x-2)^{2}}
\end{aligned}
$$

where A, B, C and D are constants that we need to determine. Then we conclude that
$1=(A+C) x^{3}+(-3 A+B+D) x^{2}+(-4 B-3 C+2 D) x+(4 A+4 B-2 C+D)$,
which implies

$$
\left\{\begin{array}{l}
A+C=0 \\
-3 A+B+D=0 \\
-4 B-3 C+2 D=0 \\
4 A+4 B-2 C+D=1
\end{array}\right.
$$

and thus

$$
\left\{\begin{array}{l}
A=\frac{2}{27} \\
B=\frac{1}{9} \\
C=-\frac{2}{27} \\
D=\frac{1}{9}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
\int \frac{1}{\left(x^{2}-x-2\right)^{2}} d x & =\int \frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}} d x \\
& =\frac{2}{27} \int \frac{1}{x+1} d x+\frac{1}{9} \int \frac{1}{(x+1)^{2}} d x-\frac{2}{27} \int \frac{1}{x-2} d x+\frac{1}{9} \int \frac{1}{(x-2)^{2}} d x \\
& =\frac{2}{27} \ln |x+1|-\frac{1}{9} \frac{1}{x+1}-\frac{2}{27} \ln |x-2|-\frac{1}{9} \frac{1}{x-2}+C \\
& =\frac{2}{27} \ln \left|\frac{x+1}{x-2}\right|-\frac{1}{9} \frac{2 x-1}{(x+1)(x-2)}+C
\end{aligned}
$$

Section 7.4 Improper Integrals
4. $\int_{e}^{\infty} \frac{d x}{x(\ln x)^{2}}$

Solution Since the integration interval $[e, \infty)$ is unbounded,this integral is improper. Next define

$$
A(z)=\int_{e}^{z} \frac{d x}{x(\ln x)^{2}}=-\left.\frac{1}{\ln x}\right|_{e} ^{z}=1-\frac{1}{\ln z}
$$

Then from the definition of improper integral

$$
\int_{e}^{\infty} \frac{d x}{x(\ln x)^{2}}=\lim _{z \rightarrow \infty} A(z)=\lim _{z \rightarrow \infty}\left(1-\frac{1}{\ln z}\right)=1
$$

10. $\int_{-\infty}^{\infty} x^{3} e^{-x^{4}} d x$

Solution Since the integration interval $(-\infty, \infty)$ is unbounded,this integral is improper. Next splitting up the integral at $x=0$ yields

$$
\int_{-\infty}^{\infty} x^{3} e^{-x^{4}} d x=\int_{0}^{\infty} x^{3} e^{-x^{4}} d x+\int_{-\infty}^{0} x^{3} e^{-x^{4}} d x
$$

and then

$$
\begin{aligned}
\int_{0}^{\infty} x^{3} e^{-x^{4}} d x & =\lim _{z \rightarrow \infty} \int_{0}^{z} x^{3} e^{-x^{4}} d x \\
& =\lim _{z \rightarrow \infty}\left(-\left.\frac{1}{4} e^{-x^{4}}\right|_{0} ^{z}\right) \\
& =\lim _{z \rightarrow \infty} \frac{1}{4}\left(1-e^{-z^{4}}\right) \\
& =\frac{1}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{0} x^{3} e^{-x^{4}} d x & =\lim _{z \rightarrow-\infty} \int_{z}^{0} x^{3} e^{-x^{4}} d x \\
& =\lim _{z \rightarrow-\infty}\left(-\left.\frac{1}{4} e^{-x^{4}}\right|_{z} ^{0}\right) \\
& =\lim _{z \rightarrow-\infty} \frac{1}{4}\left(-1+e^{-z^{4}}\right) \\
& =-\frac{1}{4}
\end{aligned}
$$

Then from the definition of improper integral

$$
\int_{-\infty}^{\infty} x^{3} e^{-x^{4}} d x=\int_{0}^{\infty} x^{3} e^{-x^{4}} d x+\int_{-\infty}^{0} x^{3} e^{-x^{4}} d x=\frac{1}{4}-\frac{1}{4}=0
$$

18. $\int_{1}^{\infty} \frac{1}{x^{\frac{1}{3}}} d x$

Solution Since the integration interval $[1, \infty)$ is unbounded,this integral is improper. Next define

$$
A(z)=\int_{1}^{\infty} \frac{1}{x^{\frac{1}{3}}} d x=\left.\frac{3}{2} x^{\frac{2}{3}}\right|_{1} ^{z}=\frac{3}{2}\left(z^{\frac{2}{3}}-1\right)
$$

Then from the definition of improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{\frac{1}{3}}} d x=\lim _{z \rightarrow \infty} A(z)=\lim _{z \rightarrow \infty} \frac{3}{2}\left(z^{\frac{2}{3}}-1\right)=\infty
$$

i.e., DNE, which follows that $\int_{1}^{\infty} \frac{1}{x^{\frac{1}{3}}} d x$ diverges.
32. $\int_{-\infty}^{\infty} \frac{c}{1+x^{2}} d x$

Solution Since the integration interval $(-\infty, \infty)$ is unbounded,this integral is improper. Next splitting up the integral at $x=0$ yields

$$
\int_{-\infty}^{\infty} \frac{c}{1+x^{2}} d x=\int_{0}^{\infty} \frac{c}{1+x^{2}} d x+\int_{-\infty}^{0} \frac{c}{1+x^{2}} d x
$$

and then

$$
\begin{aligned}
\int_{0}^{\infty} \frac{c}{1+x^{2}} d x & =\lim _{z \rightarrow \infty} \int_{0}^{z} \frac{c}{1+x^{2}} d x \\
& =\lim _{z \rightarrow \infty}\left(\left.c \tan ^{-1} x\right|_{0} ^{z}\right) \\
& =\lim _{z \rightarrow \infty} c \tan ^{-1} z \\
& =\frac{\pi}{2} c
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{0} \frac{c}{1+x^{2}} d x & =\lim _{z \rightarrow-\infty} \int_{z}^{0} \frac{c}{1+x^{2}} d x \\
& =\lim _{z \rightarrow-\infty}\left(\left.c \tan ^{-1} x\right|_{z} ^{0}\right) \\
& =\lim _{z \rightarrow-\infty}\left(-c \tan ^{-1} z\right) \\
& =\frac{\pi}{2} c
\end{aligned}
$$

Then from the definition of improper integral

$$
1=\int_{-\infty}^{\infty} \frac{c}{1+x^{2}} d x=\int_{0}^{\infty} \frac{c}{1+x^{2}} d x+\int_{-\infty}^{0} \frac{c}{1+x^{2}} d x=\frac{\pi}{2} c+\frac{\pi}{2} c=c \pi
$$

which implies $c=\frac{1}{\pi}$
33. $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ for $0<p<\infty$

Solution (a) For $z>1$, set

$$
\begin{aligned}
A(z) & =\int_{1}^{z} \frac{1}{x^{p}} d x \\
& = \begin{cases}\left.\ln x\right|_{1} ^{z} & p=1 \\
\left.\frac{1}{1-p} x^{1-p}\right|_{1} ^{z} & p \neq 1\end{cases} \\
& =\left\{\begin{array}{lr}
\ln z & p=1 \\
\frac{1}{1-p}\left(z^{1-p}-1\right) & p \neq 1
\end{array}\right.
\end{aligned}
$$

(b) When $p=1$,

$$
\lim _{z \rightarrow \infty} A(z)=\lim _{z \rightarrow \infty} \ln z=\infty ;
$$

when $0<p<1$, i.e., $1-p>0$ implies

$$
\lim _{z \rightarrow \infty} A(z)=\lim _{z \rightarrow \infty} \frac{1}{1-p}\left(z^{1-p}-1\right)=\infty
$$

(b) When $p>1$, i.e., $1-p<0$ implies

$$
\lim _{z \rightarrow \infty} A(z)=\lim _{z \rightarrow \infty} \frac{1}{1-p}\left(z^{1-p}-1\right)=\frac{1}{p-1}
$$

Section 8.1 Solving Differential Equations
2. $\frac{d y}{d x}=e^{-3 x}$, where $y_{0}=10$ for $x_{0}=0$

Solution

$$
\begin{aligned}
y(x) & =y(0)+\int_{x_{0}}^{x} e^{-3 u} d u \\
& =10+\int_{0}^{x} e^{-3 u} d u \\
& =10+\left.\left(-\frac{1}{3} e^{-3 u}\right)\right|_{0} ^{x} \\
& =10+\frac{1}{3}\left(1-e^{-3 x}\right) \\
& =\frac{31}{3}-\frac{1}{3} e^{-3 x}
\end{aligned}
$$

12. $\frac{d y}{d x}=2(1-y)$, where $y_{0}=2$ for $x_{0}=0$

Solution Separating variables and then integrating follow

$$
\int d x=\int \frac{d y}{2(1-y)}
$$

which implies

$$
-\frac{1}{2} \ln |1-y|=x+C_{1}
$$

and thus

$$
1-y=C e^{-2 x}
$$

where C is a constant. Last plugging the initial condition yields

$$
C=1-2=-1 .
$$

So

$$
y=1+e^{-2 x}
$$

22. $\frac{d L}{d t}=k(34-L(t))$ with $L(0)=2$

Solution (a) Separating variables and then integrating follow

$$
\int d t=\int \frac{d L}{k(34-L(t))}
$$

which implies

$$
-\frac{1}{k} \ln |34-L(t)|=t+C_{1}
$$

and thus

$$
34-L(t)_{8}=C e^{-k t}
$$

where C is a constant. Last plugging the initial condition yields

$$
C=34-2=32
$$

So

$$
L(t)=34-32 e^{-k t}
$$

(b) If $L(4)=10,34-32 e^{-4 k}=10$ implies

$$
k=-\frac{1}{4} \ln \frac{3}{4}
$$

See last page for graph.
(c) $L(10)=34-32 e^{-10 k}=34-32 e^{10 \times \frac{1}{4} \ln \frac{3}{4}}=34-9 \sqrt{3}$
(d) Since $\frac{1}{4} \ln \frac{3}{4}<0$,

$$
\lim _{t \rightarrow \infty} L(t)=\lim _{t \rightarrow \infty}\left(34-32 e^{t \frac{1}{4} \ln \frac{3}{4}}\right)=34
$$

28. $\frac{d y}{d x}=(y-1)(y-2)$, where $y_{0}=0$ for $x_{0}=0$

Solution Separating variables and then integrating by partial-fraction follow

$$
\int d x=\int \frac{d y}{(y-1)(y-2)}=\int \frac{1}{y-2}-\frac{1}{y-1} d x
$$

which implies

$$
\ln \left|\frac{y-2}{y-1}\right|=x+C_{1}
$$

and thus

$$
\frac{y-2}{y-1}=C e^{x}
$$

where C is a constant. Last plugging the initial condition yields

$$
C=\frac{0-2}{0-1}=2 .
$$

So

$$
y=\frac{2-2 e^{x}}{1-2 e^{x}}
$$

44. $\frac{d y}{d x}=2 \frac{y}{x}$, where $y_{0}=1$ for $x_{0}=1$

Solution Separating variables and then integrating follow

$$
\int \frac{2}{x} d x=\int \frac{1}{y} d y
$$

which implies

$$
\ln |y|=2 \ln |x|+C_{1}
$$

and thus

$$
y=C x^{2}
$$

where C is a constant. Last plugging the initial condition yields

$$
C=1 .
$$

So

$$
y=x^{2}
$$

