
Question 7.2.a.1

Derive a reduction formula for
∫

sinn x dx which expresses this integral in terms
of
∫

cos2 x sinn−2 x dx.
Applying integration by parts to

∫
sinn x dx with u = sinn−1 x and dv =

sinxdx, we have∫
sinn x dx = − cosx sinn−1 x+

∫
(n− 1) cos2 x sinn−2 x dx.

Question 7.2.a.2

Using the previous part and the substitution cos2 x = 1− sin2 x, give a formula
for

∫
sinn x dx in terms of

∫
sinn−2 x dx.

∫
sinn x dx = − cosx sinn−1 x+

∫
(n− 1) cos2 x sinn−2 x dx

= − cosx sinn−1 x+ (n− 1)
∫

(1− sin2 x) sinn−2 x dx

= − cosx sinn−1 x+ (n− 1)
∫

sinn−2 x dx− (n− 1)
∫

sinn x dx

and by pulling
∫

sinn x dx to the left, we have

n

∫
sinn x dx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x dx

or ∫
sinn x dx = − 1

n
cosx sinn−1 x+

n− 1
n

∫
sinn−2 x dx

Question 7.2.a.2

Find
∫

sin6 dx using the formula from the previous part.∫
sin6 dx = −1

6
cosx sin5 x+

5
6

∫
sin4 x dx

= −1
6

cosx sin5 x+
5
6

[
−1

4
cosx sin3 x+

3
4

∫
sin2 x dx

]
= −1

6
cosx sin5 x+

5
6

[
−1

4
cosx sin3 x+

3
4

[
−1

2
cosx sinx+

1
2

∫
sin0 x dx

]]
= −1

6
cosx sin5 x+

5
6

[
−1

4
cosx sin3 x+

3
4

[
−1

2
cosx sinx+

1
2

∫
1 dx

]]
= −1

6
cosx sin5 x+

5
6

[
−1

4
cosx sin3 x+

3
4

[
−1

2
cosx sinx+

x

2

]]
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Question 7.2.b

g is an unknown continuous function with the property that g′′′ = g. Find∫
g(lnx)dx

Applying integration by parts with u = g(lnx) and dv = dx, we have∫
g(lnx)dx = x · g(lnx)−

∫
g′(lnx)dx

= x · g(lnx)− x · g′(lnx) +
∫
g′′(lnx)dx

= x · g(lnx)− x · g′(lnx) + x · g′′(lnx)−
∫
g′′′(lnx)dx

and since g′′′ = g, we can pull the last term to the left hand side to get

2
∫
g(lnx)dx = x · g(lnx)− x · g′(lnx) + x · g′′(lnx)

and so ∫
g(lnx)dx =

1
2

[x · g(lnx)− x · g′(lnx) + x · g′′(lnx)] .

Question 7.3.d

Find r, s so that
1

(x+ r)(x+ s)
=

1
x+ r

− 1
x+ s

Multiply both sides by (x+ r)(x− s) to get

1 = x+ s− x− r.

This gives two equations:

0 = x− x
1 = s− r

so any choice with s = 1 + r will suffice. For example:

1
(x+ 1)(x+ 2)

=
1

x+ 1
− 1
x+ 2

.
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Questions from Section 7.4.1

Find
∫∞
0
ex2

dx or indicate that it deserves.
We know limx→∞ ex2

=∞. So there is an infinite amount of area under its
curve.

Question 7.4.a

For which values of p > 0 does ∫ ∞
e

1
x lnp x

dx

converge.

∫ ∞
e

1
x lnp x

dx = lim
a→∞

∫ a

e

1
x lnp x

dx

and setting u = lnx, du = 1
xdx, this is equal to

lim
a→∞

∫ ln a

1

1
up
du

If p 6= 1, this is equal to

lim
a→∞

−(p− 1)
up−1

∣∣∣∣ln a

1

= lim
a→∞

−(p− 1)
(ln a)p−1

+ p− 1.

When p > 1, p − 1 > 0, so since ln a → ∞, also (ln a)p−1 → ∞, and therefore
−(p−1)
(ln a)p−1 → 0, so the limit approaches p− 1.

When p < 1, p− 1 < 0, so since ln a→∞, −(p−1)
(ln a)p−1 →∞, and therefore the

limit diverges.
When p = 1, the original limit is equal to

lim
a→∞

lnu|ln a
1 = lim

a→∞
ln ln a− 0 = lim

a→∞
ln ln a =∞.

So the integral converges when p > 1.

Question 7.4.b

Suppose that f is a function which is continuous everywhere and that for some
a, ∫ a

−∞
f(x)dx and

∫ ∞
a

f(x)dx
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both exist. Prove that for any b,∫ b

−∞
f(x)dx and

∫ ∞
b

f(x)dx

both exist and∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx =
∫ b

−∞
f(x)dx+

∫ ∞
b

f(x)dx.

∫ b

−∞
f(x)dx = lim

c→∞

∫ b

−c

f(x)dx

= lim
c→∞

[∫ a

−c

f(x)dx+
∫ b

a

f(x)dx

]

= lim
c→∞

[∫ a

−c

f(x)dx
]

+
∫ b

a

f(x)dx

=
∫ a

−∞
f(x)dx+

∫ b

a

f(x)dx

and since both terms exist, this limit exists. The case for
∫∞

b
f(x)dx is similar.

∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx =
[

lim
c→∞

∫ a

−c

f(x)dx
]

+
[

lim
c→∞

∫ c

a

f(x)dx
]

=

[
lim

c→∞

∫ b

−c

f(x)dx+
∫ a

b

f(x)dx

]
+

[
lim

c→∞

∫ c

b

f(x)dx+
∫ b

a

f(x)dx

]

=

[
lim

c→∞

∫ b

−c

f(x)dx

]
+
[

lim
c→∞

∫ c

b

f(x)dx
]

+
∫ a

b

f(x)dx+
∫ b

a

f(x)dx

=
∫ b

−∞
f(x)dx+

∫ ∞
b

f(x)dx+
∫ a

b

f(x)dx−
∫ a

b

f(x)dx

=
∫ b

−∞
f(x)dx+

∫ ∞
b

f(x)dx

Question 8.2.a.1

Identify, and classify as stable or unstable, the equilibria of:

dA

dt
= (A− 4) ln(|A|+ 1/2)
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g(A) = (A− 4) ln(|A|+ 1/2), so the equilibria are at 4, 1/2,−1/2.
We can’t take a single derivaive. We could find the derivative for A > 0 and

for A < 0 separately, and deal with g′ as a piecewise function, or we could just
determine the values by inspection.

When A is slightly less than 4, say A = 4− ε, g(A) = −ε ln(4− ε+ 1/2) < 0
while when A = 4+ε, g(A) = ε ln(4+ε+1/2) > 0, so 4 is an unstable equilibrium.

When A is near either 1/2 or −1/2, A−4 will be negative. When A is slightly
less than 1/2, ln(|A|+ 1/2) = ln(A+ 1/2) = ln(1/2− ε+ 1/2) = ln(1− ε) < 0,
while when A is slightly greater than 1/2, ln(|A|+ 1/2) = ln(1 + ε) > 0. Since
g(A) is a negative number times ln(|A|+ 1/2), 1/2 is a stable equilibrium.

When A is near −1/2, A − 4 is still negative. When A is slightly less than
−1/2, ln(|A| + 1/2) = ln(−A + 1/2) = ln(1/2 + ε + 1/2) = ln(1 + ε) > 0, and
similarly when A is slightly more than −1/2, ln(|A| + 1/2) < 0. So −1/2 is
unstable.

Question 8.2.a.2

You know that A(t) satisfies the equation dA
dt = (A−4) ln(|A|+1/2) and A(0) =

2. What is limt→∞A(t)?
We have already noticed that between 1/2 and 4, g(A) is negative, so A will

approach the stable equilibrium below it: limt→∞A(t) = 1/2.
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