MIDTERM 2

Math 3B
2/16/2011
Name:
\qquad

Section:

\qquad

Signature:

\qquad

Read all of the following information before starting the exam:

- Check your exam to make sure all pages are present.
- You may use writing implements and a single 3 " $x 5$ " notecard.
- NO CALCULATORS!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	25	
2	18	
3	17	
4	20	
5	14	
6	16	
Total	110	

1. (25 points) Find the following integrals.
(a)

$$
\int_{-1 / 2}^{1 / 2} e^{\tan x} \sec ^{2} x d x
$$

$u=\tan x, d u=\sec ^{2} x d x$, so

$$
\int_{-1 / 2}^{1 / 2} e^{\tan \mathrm{x}} \sec ^{2} \mathrm{x} d \mathrm{x}=\int_{\tan (-1 / 2)}^{\tan (1 / 2)} e^{u} d u=\left.e^{u}\right|_{\tan (-1 / 2)} ^{\tan (1 / 2)}=e^{\tan (1 / 2)}-e^{\tan (-1 / 2)}
$$

(b)

$$
\int \frac{1}{(3 x+5)^{2}+1} d x
$$

$u=3 x+5, d u=3 d x$, so

$$
\int \frac{1}{(3 \mathrm{x}+5)^{2}+1} \mathrm{dx}=\int \frac{1}{\mathrm{u}^{2}+1} \frac{1}{3} \mathrm{du}=\frac{1}{3} \arctan \mathrm{u}+\mathrm{C}=\frac{1}{3} \arctan (3 \mathrm{x}+5)+\mathrm{C} .
$$

(c)

$$
\int \frac{x^{5}}{\sqrt[3]{x^{2}-7}} d x
$$

$u=x^{2}-7, d u=2 x d x, x^{4}=(u-7)^{2}=u^{2}-14 u+49$, so

$$
\begin{aligned}
\int \frac{x^{5}}{\sqrt[3]{x^{2}-7}} \mathrm{dx} & =\frac{1}{2} \int\left(\mathrm{u}^{2}-14 \mathrm{u}+49\right) \mathrm{u}^{-1 / 3} \mathrm{du} \\
& =\frac{1}{2} \int \mathrm{u}^{5 / 3}-14 \mathrm{u}^{2 / 3}+49 \mathrm{u}^{-1 / 3} \mathrm{du} \\
& =\frac{1}{2}\left[\frac{3}{8} \mathrm{u}^{8 / 3}-14 \frac{5}{3} \mathrm{u}^{5 / 3}+49 \frac{2}{3} \mathrm{u}^{2 / 3}\right]+\mathrm{C} \\
& =\frac{1}{2}\left[\frac{3}{8}\left(\mathrm{x}^{2}-7\right)^{8 / 3}-14 \frac{5}{3}\left(\mathrm{x}^{2}-7\right)^{5 / 3}+49 \frac{2}{3}\left(\mathrm{x}^{2}-7\right)^{2 / 3}\right]+\mathrm{C}
\end{aligned}
$$

(d)

$$
\begin{gathered}
\int \frac{x^{2}}{x^{2}+1} d x \\
\int \frac{x^{2}}{x^{2}+1} \mathrm{dx}=\int \frac{\mathrm{x}^{2}+1-1}{\mathrm{x}^{2}+1} \mathrm{dx}=\int 1-\frac{1}{\mathrm{x}^{2}+1} \mathrm{dx}=\mathrm{x}-\arctan \mathrm{x}+\mathrm{C}
\end{gathered}
$$

(e)

$$
\int \ln \left(x^{2}+1\right) d x
$$

We try integration by parts:

$$
\begin{array}{cl}
u=\ln \left(x^{2}+1\right) & v=x \\
d u=\frac{2 x}{x^{2}+1} & d v=d x
\end{array}
$$

So

$$
\begin{aligned}
& \qquad \int \ln \left(x^{2}+1\right) d x=x \ln \left(x^{2}+1\right)-\int \frac{2 x^{2}}{x^{2}+1} d x=x \ln \left(x^{2}+1\right)-2 x+2 \arctan \mathrm{x}+\mathrm{C} \\
& \text { because we can use part (d) to integrate } \int \frac{2 x^{2}}{x^{2}+1} d x=2 \int \frac{x^{2}}{x^{2}+1} d x
\end{aligned}
$$

2. (18 points) y_{0} and y_{1} are two different solutions to the equation $\frac{d y}{d t}=\tan (y+1)$.
(a) $\quad y_{0}(0)=1$. What is $\lim _{t \rightarrow \infty} y_{0}(t)$?

When $\mathrm{y}_{0}(0)=1, \tan \left(\mathrm{y}_{0}+1\right)=\tan (1+1)=\tan 2 . \tan \theta$ is negative when θ is more than $\pi / 2$ and less than π, so $y_{0}^{\prime}(0)$ is negative, so yo is decreasing. yo decreases towards $\pi / 2-1$, going faster and faster as it gets close. However $\lim _{y \rightarrow(\pi / 2-1)+} \tan (\mathrm{y}+1)$ does not exist, so $\lim _{\mathrm{t} \rightarrow \infty} \mathrm{y}_{0}(\mathrm{t})$ does not exist.
(b) $\quad y_{1}(0)=-1$. What is $\lim _{t \rightarrow \infty} y_{1}(t)$?

When $\mathrm{y}_{1}(0)=-1, \mathrm{y}_{1}^{\prime}(0)=\tan \left(\mathrm{y}_{1}(0)+1\right)=\tan 0=0$. So y_{1} is constant, so $\lim _{\mathrm{t} \rightarrow \infty} \mathrm{y}_{1}(0)=-1$.
3. (17 points) Consider the differential equation $\frac{d y}{d t}=e^{t} y \ln y$.
(a) What is the general solution of this equation?

$$
\frac{d y}{y \ln y}=e^{t} d t \text { or } y=0 \text { or } y=1
$$

so

$$
\ln |\ln y|=e^{t}+C \text { or } y=0 \text { or } y=1
$$

so

$$
\mathrm{y}=\mathrm{e}^{\mathrm{e}^{\mathrm{t}}+\mathrm{c}} \text { or } \mathrm{y}=\mathrm{e}^{-\mathrm{e}^{\mathrm{t}+\mathrm{c}}} \text { or } \mathrm{y}=0 \text { or } \mathrm{y}=1 \text {. }
$$

(b) What is the particular solution of this equation such that $y(0)=2$?

$$
2=\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{0}+\mathrm{c}}}=\mathrm{e}^{\mathrm{e}^{1+c}}
$$

so

$$
\mathrm{C}=\ln \ln 2-1 .
$$

Therefore $\mathrm{y}=\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{0}+\ln \ln 2-1}}$.
(c) What is the particular solution of this equation such that $y(0)=1$?

This is an equilibrium, so $\mathrm{y}=1$.
4. (20 points) (a) Find the partial fraction decomposition for

$$
\frac{1}{(x-1)^{3}(4 x+1)\left(x^{2}+2\right)^{2}} .
$$

You do not need to solve for the values!

$$
\frac{1}{(x-1)^{3}(4 x+1)\left(x^{2}+2\right)^{2}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}+\frac{D}{4 x+1}+\frac{E x+F}{x^{2}+2}+\frac{G x+H}{\left(x^{2}+2\right)^{2}} .
$$

(b) Find and solve the partial fraction decomposition for

$$
\begin{gathered}
\frac{7 x}{(x+2)(2 x-3)} \\
\frac{7 \mathrm{x}}{(\mathrm{x}+2)(2 \mathrm{x}-3)}=\frac{\mathrm{A}}{\mathrm{x}+2}+\frac{\mathrm{B}}{2 \mathrm{x}-3} \\
7 \mathrm{x}=2 \mathrm{Ax}-3 \mathrm{~A}+\mathrm{Bx}+2 \mathrm{~B} \\
7=2 \mathrm{~A}+\mathrm{B}, \quad 0=-3 \mathrm{~A}+2 \mathrm{~B}
\end{gathered}
$$

Doubling the first equation, $14=4 \mathrm{~A}+2 \mathrm{~B}$, and adding this to the second gives $14=\mathrm{A}$. Setting this in the first, $B=7-2 A=7-28=-21$.
(c) Solve

$$
\int \frac{2}{(2 x+1)^{2}}+\frac{3}{x^{2}+2 x+4} d x
$$

Setting $u=2 x+1, d u=2 d x$ and $v=\frac{x+1}{\sqrt{3}}, d v=\frac{1}{\sqrt{3}} d x$, we have

$$
\begin{aligned}
\int \frac{2}{(2 \mathrm{x}+1)^{2}}+\frac{3}{\mathrm{x}^{2}+2 \mathrm{x}+4} d x & =\int \frac{1}{\mathrm{u}^{2}} \mathrm{du}+\int \frac{3}{(\mathrm{x}+1)^{2}+3} \mathrm{dx} \\
& =\frac{-1}{\mathrm{u}}+\int \frac{1}{\frac{(\mathrm{x}+1)^{2}}{3}+3} \mathrm{dx} \\
& =\frac{-1}{2 \mathrm{x}+1}+\int \frac{1}{\left(\frac{\mathrm{x}+1}{\sqrt{3})^{2}+1} \mathrm{dx}\right.} \\
& =\frac{-1}{2 \mathrm{x}+1}+\sqrt{3} \int \frac{1}{\mathrm{v}^{2}+1} \mathrm{dx} \\
& =\frac{-1}{2 \mathrm{x}+1}+\sqrt{3} \arctan \mathrm{v}+\mathrm{C} \\
& =\frac{-1}{2 \mathrm{x}+1}+\sqrt{3} \arctan \frac{\mathrm{x}+1}{\sqrt{3}}+\mathrm{C}
\end{aligned}
$$

5. (14 points) Find the following integrals if they exist, otherwise state that they diverge.
(a)

$$
\int_{-\infty}^{\infty} \frac{x}{1+x^{4}} d x
$$

(Hint: use the substitution $u=x^{2}$.)
$u=x^{2}, d u=2 x d x$, so

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx} & =\int_{-\infty}^{0} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx}+\int_{0}^{\infty} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx} \\
& =\lim _{\mathrm{a} \rightarrow-\infty} \int_{\mathrm{a}}^{0} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx}+\lim _{\mathrm{b} \rightarrow \infty} \int_{0}^{\mathrm{b}} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx} \\
& =\lim _{\mathrm{a} \rightarrow-\infty} \frac{1}{2} \int_{\mathrm{a}^{2}}^{0} \frac{1}{1+\mathrm{u}^{2}} \mathrm{dx}+\lim _{\mathrm{b} \rightarrow \infty} \frac{1}{2} \int_{0}^{\mathrm{b}^{2}} \frac{1}{1+\mathrm{u}^{2}} \mathrm{dx} \\
& =\left.\lim _{\mathrm{a} \rightarrow-\infty} \frac{1}{2} \arctan \mathrm{u}\right|_{a^{2}} ^{0}+\left.\lim _{\mathrm{b} \rightarrow \infty} \frac{1}{2} \arctan \mathrm{u}\right|_{0} ^{\mathrm{b}^{2}} \\
& =\frac{1}{2}\left[\lim _{\mathrm{a} \rightarrow-\infty} \arctan 0-\arctan \mathrm{a}^{2}+\lim _{\mathrm{b} \rightarrow \infty} \arctan \mathrm{~b}^{2}-\arctan 0\right] \\
& =\frac{1}{2}\left[\lim _{\mathrm{a} \rightarrow-\infty}-\arctan \mathrm{a}^{2}+\lim _{\mathrm{b} \rightarrow \infty} \arctan \mathrm{~b}^{2}\right] \\
& =\frac{1}{2}[-\pi / 2+\pi / 2] \\
& =0
\end{aligned}
$$

Note that it's very important to handle the limits correctly in this problem. We have to remember that the lower bound of the first integral is $u=a^{2}$---in particular, it's always positive---and therefore goes to $\pi / 2$.
(b)

$$
\begin{gathered}
\int_{1}^{\infty} \frac{3}{x^{3}} \\
\int_{1}^{\infty} \frac{3}{x^{3}} d x=\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{3}{x^{3}} d x=\left.\lim _{a \rightarrow \infty} \frac{-3}{2 x^{2}}\right|_{1} ^{a}=\lim _{a \rightarrow \infty} \frac{-3}{2 a^{2}}-\frac{-3}{2}=\frac{3}{2}
\end{gathered}
$$

6. (16 points) The function $\frac{e^{t}}{t}$ cannot be integrated in terms of functions you know. Ei is a new function defined by

$$
\operatorname{Ei}(x)=\int_{1}^{x} \frac{e^{t}}{t} d t
$$

Evaluate $\int_{e}^{x} \frac{1}{\ln t} d t$ in terms of the function Ei (and other functions you know).
$\mathrm{u}=\ln \mathrm{t}, \mathrm{du}=\frac{1}{\mathrm{t}} \mathrm{dt}$, and therefore $\mathrm{t}=\mathrm{e}^{\mathrm{u}}$ and $e^{u} d u=d t$, so

$$
\begin{aligned}
\int_{\mathrm{e}}^{\mathrm{x}} \frac{1}{\ln \mathrm{t}} \mathrm{dt} & =\int_{1}^{\ln x} \frac{e^{u}}{u} d u \\
& =\operatorname{Ei}(\ln x)
\end{aligned}
$$

