Definition 0.1. A sequent is a sequence of formulas $\sigma_0, \ldots, \sigma_n \vdash \tau$, which we write as $\sigma_0, \ldots, \sigma_n \vdash \tau$. The list $\sigma_0, \ldots, \sigma_n$ may be empty, which we write as $\vdash \tau$.

The rules for the sequent calculus we are using are:

- Axiom:
 - For any wff, $\alpha \vdash \alpha$ is an axiom.
- Structural Rules:
 - (Weakening) From $\sigma_0, \ldots, \sigma_n \vdash \alpha$, deduce $\sigma_0, \ldots, \sigma_n, \tau \vdash \alpha$
 - (Contraction) From $\sigma_0, \ldots, \sigma_n, \alpha, \alpha \vdash \beta$, deduce $\sigma_0, \ldots, \sigma_n, \alpha \vdash \beta$
 - (Exchange) From $\sigma_0, \ldots, \sigma_i, \sigma_{i+1}, \ldots, \sigma_n \vdash \alpha$, deduce $\sigma_0, \ldots, \sigma_{i+1}, \sigma_i, \ldots, \sigma_n \vdash \alpha$
- Logical Rules:
 - $-(\wedge_I)$ From $\sigma_0, \ldots, \sigma_n \vdash \alpha$ and $\tau_0, \ldots, \tau_m \vdash \beta$, deduce $\sigma_0, \ldots, \sigma_n, \tau_0, \ldots, \tau_m \vdash \alpha \land \beta$
 - $-(\wedge_E)$ From $\sigma_0,\ldots,\sigma_n\vdash\alpha\land\beta$, deduce $\sigma_0,\ldots,\sigma_n\vdash\alpha$
 - $-(\wedge_E)$ From $\sigma_0, \ldots, \sigma_n \vdash \alpha \land \beta$, deduce $\sigma_0, \ldots, \sigma_n \vdash \beta$
 - $-(\vee_I)$ From $\sigma_0,\ldots,\sigma_n\vdash\alpha$, deduce $\sigma_0,\ldots,\sigma_n\vdash\alpha\vee\beta$
 - $-(\vee_I)$ From $\sigma_0,\ldots,\sigma_n\vdash\beta$, deduce $\sigma_0,\ldots,\sigma_n\vdash\alpha\vee\beta$
 - (\vee_E) From $\sigma_0, \ldots, \sigma_n \vdash \alpha \lor \beta$ and $\tau_0, \ldots, \tau_m, \alpha \vdash \gamma$ and $v_0, \ldots, v_k, \beta \vdash \gamma$, deduce $\sigma_0, \ldots, \sigma_n, \tau_0, \ldots, \tau_m, v_0, \ldots, v_k \vdash \gamma$
 - $-(\rightarrow_I)$ From $\sigma_0,\ldots,\sigma_n,\alpha\vdash\beta$, deduce $\sigma_0,\ldots,\sigma_n\vdash\alpha\to\beta$
 - $-(\rightarrow_E)$ From $\sigma_0, \ldots, \sigma_n \vdash \alpha \rightarrow \beta$ and $\tau_0, \ldots, \tau_m \vdash \alpha$, deduce $\sigma_0, \ldots, \sigma_n, \tau_0, \ldots, \tau_m \vdash \beta$
 - $-(\neg_I)$ From $\sigma_0, \ldots, \sigma_n, \alpha \vdash \beta$ and $\tau_0, \ldots, \tau_m, \alpha \vdash \neg \beta$, deduce $\sigma_0, \ldots, \sigma_n, \tau_0, \ldots, \tau_m \vdash \neg \alpha$
 - $-(\neg_E)$ From $\sigma_0,\ldots,\sigma_n\vdash\neg\neg\alpha$, deduce $\sigma_0,\ldots,\sigma_n\vdash\alpha$

Sample deductions:

1.
$$\alpha \vdash \alpha$$
 (Ax)

2.
$$\vdash \alpha \to \alpha \ (\to_I)$$

1.
$$\alpha \vdash \alpha$$
 (Ax)

2.
$$\alpha, \beta \vdash \alpha$$
 (W)

3.
$$\alpha \vdash \beta \rightarrow \alpha \ (\rightarrow_I)$$

4.
$$\vdash \alpha \to (\beta \to \alpha) (\to_I)$$

1.
$$(\alpha \land \beta) \rightarrow \gamma \vdash (\alpha \land \beta) \rightarrow \gamma \text{ (Ax)}$$

2.
$$\alpha \vdash \alpha$$
 (Ax)

3.
$$\beta \vdash \beta$$
 (Ax)

4.
$$\alpha, \beta \vdash \alpha \land \beta \ (\land_I \text{ from } 2,3)$$

5.
$$(\alpha \land \beta) \rightarrow \gamma, \alpha, \beta \vdash \gamma (\rightarrow_E \text{ from } 1,4)$$

6.
$$(\alpha \land \beta) \rightarrow \gamma, \alpha \vdash \beta \rightarrow \gamma (\rightarrow_I)$$

7.
$$(\alpha \land \beta) \rightarrow \gamma \vdash \alpha \rightarrow (\beta \rightarrow \gamma) (\rightarrow_I)$$

8.
$$\vdash ((\alpha \land \beta) \to \gamma) \to (\alpha \to (\beta \to \gamma)) (\to_I)$$