Molecular Mechanics/Excel Problem Set

Conformations of Ethane

Ethane was made in Chem3D and then positioned in an eclipsed position. The energy was minimized with the energy minimizer under the MM2, Minimize Energy command. The Compute Steric Energy command calculated and the torsion energy, 1,4 vdw energy, and the total energy was recorded in an excel spreadsheet. The methyl was rotated by 15 degrees each time and the various energy was recorded.

The torsion energy, the $1,4 \mathrm{vdw}$ energy, and the total energy was plotted as a function of rotational angle using EXCEL. The data is shown below in Table 1. The plotted chart is located below (Chart 1).

TABLE 1: Energy data for the rotation of Ethane

Number of Rotation	Degrees of Rotation of Ethane		Torsion Energy (kcal/mol)	$1,4 \mathrm{vdw}$ Energy (kcal/mol)
1	0	2.133	Total Energy (kcal/mol)	
2	15	1.8206	1.3058	3.5804
3	30	1.0665	0.9853	3.173
4	45	0.3124	0.7657	2.1935
5	60	0	0.6764	1.2198
6	75	0.3134	0.7657	0.8181
7	90	1.0665	0.9853	1.2198
8	105	1.8206	1.2107	2.1935
9	120	2.133	1.3058	3.173
10	135	1.8206	1.2107	3.5804
11	150	1.0665	0.9853	3.173
12	165	0.3124	0.7657	2.1935
13	180	0	0.6764	1.2197
14	195	0.3124	0.7657	0.8181
15	210	1.0665	0.9853	1.2197
16	225	1.8206	1.2107	2.1935
17	240	2.133	1.3058	3.173
18	255	1.8206	1.2107	3.5804
19	270	1.0665	0.9853	3.173
20	285	0.3124	0.7657	2.1935
21	300	0	0.6764	1.2198
22	315	0.3124	0.7657	0.8181
23	330	1.0665	0.9853	1.2198
24	345	1.8206	1.2107	2.1935
25	360	2.133	1.3058	3.173
				3.5804

Newman Projections Minimum

$60^{\circ} \mathrm{C}$

Newman Projections Maximum

$300^{\circ} \mathrm{C}$

$240{ }^{\circ} \mathrm{C}$

Conformations of Butane
Butane was made in Chem3D and then positioned in the eclipsed position. The energy was minimized with the energy minimizer under the MM2, Minimize Energy command. The Compute Steric Energy command calculated and the torsion energy, 1,4 vdw energy, non-1,4 vdw energy and the total energy was recorded in an excel spreadsheet. The $\mathrm{C}_{2}-\mathrm{C}_{3}$ rotated by 15 degrees each time and the various energy was recorded.

The torsion energy, the $1,4 \mathrm{vdw}$ energy, the non-1,4 vdw energy and the total energy was plotted as a function of torsional angle using EXCEL. The data is shown below in Table 2. The plotted chart is located below (Chart 2).

TABLE 2: Energy data for the rotation of Butane

Number of Rotation	Degrees of Rotation of butane (torsion angle)	Torsion Energy (kcal/mol)	non-1,4 vdw Energy (kcal/mol)	1,4 vdw Energy (kcal/mol)	Total Energy (kcal/mol)
1	0	2.3353	1.6938	3.3448	8.3151
2	15	2.1065	1.2128	3.2184	7.4788
3	30	1.4338	0.5133	2.8678	5.7561
4	45	0.722	0.0656	2.5042	4.2329
5	60	0.4012	-0.264	2.3195	3.3979
6	75	0.67	-0.4596	2.3918	3.5433
7	90	1.3743	-0.4511	2.665	4.5292
8	105	2.0937	-0.3776	2.9736	5.6309
9	120	2.3878	-0.3585	3.1216	6.092
10	135	2.0561	-0.3923	3.007	5.6119
11	150	1.2606	-0.4493	2.6986	4.4511
12	165	0.4378	-0.501	2.3823	3.2603
13	180	0.0487	-0.4962	2.2344	2.728
14	195	0.3137	-0.4102	2.3307	3.1753
15	210	1.0852	-0.304	2.6189	4.3412
16	225	1.932	-0.2711	2.9371	5.5391
17	240	2.3878	-0.3312	3.0927	6.0904
18	255	2.2178	-0.4339	2.9888	5.7138
19	270	1.5497	-0.4961	2.6983	4.6931
20	285	0.7941	-0.3189	2.4082	3.8245
21	300	0.4012	0.312	2.2961	3.9505
22	315	0.5979	1.0486	2.4412	5.0289
23	330	1.2584	1.349	2.7897	6.3382
24	345	1.9824	1.5587	3.1641	7.6463
25	360	2.3353	1.6938	3.3448	8.3151

Newman Projections Minimum

$60^{\circ} \mathrm{C}$

$180^{\circ} \mathrm{C}$

$300^{\circ} \mathrm{C}$

Newman Projections Maximum

$0^{\circ} \mathrm{C} \& 360^{\circ} \mathrm{C}$ \square $240{ }^{\circ} \mathrm{C}$

Comparison of Ethane and Butane

When comparing the plots of the energies of Ethane and the energies of Butane, there are similarities and differences. The torsion energy vales for both compounds are nearly identical. The 1,4 -vdw energies are similar in their wave-like nature, but the butane has higher energy values and has higher "highs" and lower "lows". The same is true for the total energy. Because of the 1,4 -vdw energies being so high, the total energy of butane is higher overall than ethane. The similar wave-like line is just higher in energy, as seen in Chart 1 and Chart 2.

