## Physics 590 Homework, Week 2

## Week 2, Homework 1

## Prob. 2.1.1

A race car can be slowed with a deceleration of $-11 . \mathrm{m} / \mathrm{s} 2$. (a) If it is going +55 . $\mathrm{m} / \mathrm{s}$, how many meters will it take to stop? (b) Repeat part (a) for a car going 110 $\mathrm{m} / \mathrm{s}$.

> a) $v_{f}^{2}=v_{i}^{2}+2 \mathrm{ad}$ $v$ final $=0 \mathrm{~m} / \mathrm{s}$
> $v$ initial $=55 . \mathrm{m} / \mathrm{s}$
> $\mathrm{a}=-11 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
> $d=?$

$(o \mathrm{~m} / \mathrm{s})^{\wedge} 2=(55 . \mathrm{m} / \mathrm{s})^{\wedge} 2+2\left(-11 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right) \mathrm{d}$
$0=\left(3025 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)-22 \mathrm{~m} / \mathrm{s}^{\wedge} 2^{*} \mathrm{~d}$
$\left(-3025 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)=-22 \mathrm{~m} / \mathrm{s}^{\wedge} 2^{*} \mathrm{~d}$
$\frac{\left(-3025 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)}{\left(-22 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)}=\mathrm{d} \rightarrow 137.5 \mathrm{~m}=\mathrm{d} \rightarrow \mathbf{d}=\mathbf{1 . 4 \times 1 0 ^ { \wedge } \mathbf { 2 } \mathbf { ~ m }}$
b) $\mathbf{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{ad}$
v final $=0 \mathrm{~m} / \mathrm{s}$
v initial $=110 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=-11 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{d}=$ ?
$(0 \mathrm{~m} / \mathrm{s})^{\wedge} 2=(110 \mathrm{~m} / \mathrm{s})^{\wedge} 2+2\left(-11 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right) \mathrm{d}$
$0=\left(12100 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)-22 \mathrm{~m} / \mathrm{s}^{\wedge} 2^{*} \mathrm{~d}$

$$
\begin{aligned}
& \left(-12100 m^{\wedge} 2 / s^{\wedge} 2\right)=-22 \mathrm{~m} / \mathrm{s}^{\wedge} 2^{*} \mathrm{~d} \\
& \frac{\left(-12100 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)}{-22 \mathrm{~m} / \mathrm{s}^{\wedge} 2}=\mathrm{d} \rightarrow 550 \mathrm{~m}=\mathrm{d} \rightarrow
\end{aligned}
$$

## Prob. 2.1.2

An astronaut dropped a feather from 1.2 m above the surface of the moon. If the acceleration of gravity on the moon is $1.6 \mathrm{~m} / \mathrm{s} 2$, how long did it take to hit the surface?
$d=v_{i}{ }^{*} t+1 / 2 a t^{2}$
$\mathrm{d}=1.2 \mathrm{~m}$
$a=1.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$v$ initial $=0 \mathrm{~m} / \mathrm{s}$
$t=$ ?

$1.2 \mathrm{~m}=(0 \mathrm{~m} / \mathrm{s})^{*} \mathrm{t}+1 / 2\left(1.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)^{*} \mathrm{t}^{\wedge} 2$
$1.2 \mathrm{~m}=1 / 2\left(1.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right){ }^{*} \mathrm{t}^{\wedge} 2$
$(1.2 \mathrm{~m})^{*} 2=\left(1.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)^{*} \mathrm{t}^{\wedge} 2$
$(2.4 \mathrm{~m})=\left(1.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)^{*} \mathrm{t}^{\wedge} 2$
2.4 m
$=t^{\wedge} 2$
$\left(1.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$
$1.5 \mathrm{~s}^{\wedge} 2=\mathrm{t}^{\wedge} 2$
$1.2247 \mathrm{~s}=\mathrm{t} \rightarrow \quad \mathrm{t}=\mathbf{1 . 2 \times 1 0 ^ { \wedge } \mathbf { 0 } \mathrm { s }}$

Prob. 2.1.3
Find the uniform acceleration that will cause an object's speed to change from $32 . \mathrm{m} / \mathrm{s}$ to $96 . \mathrm{m} / \mathrm{s}$ in an 8.0 s period.


```
\(96 \mathrm{~m} / \mathrm{s}=32 \mathrm{~m} / \mathrm{s}+\mathrm{a}(8.0 \mathrm{~s})\)
\(96 \mathrm{~m} / \mathrm{s}-32 \mathrm{~m} / \mathrm{s}=\mathrm{a}(8.0 \mathrm{~s})\)
\(64 \mathrm{~m} / \mathrm{s}=\mathrm{a}(8.0 \mathrm{~s})\)
\(\underline{64 \mathrm{~m} / \mathrm{s}}=\mathrm{a} \rightarrow \quad \mathrm{a}=8.0 \times 10^{\wedge} 0 \mathrm{~m} / \mathrm{s}^{\wedge} 2\)
8.0 s
```

Prob. 2.1.4
A rocket traveling at $+155 . \mathrm{m} / \mathrm{s}$ is decelerated at a rate of $-31 . \mathrm{m} / \mathrm{s} 2$. (a) How long will it take before the instantaneous speed is $0 \mathrm{~m} / \mathrm{s}$ ? (b) How far will it travel during this time? (c) What will be its velocity after 8.0 s?
a) $v_{f}=v_{i}+a t$
$v$ initial $=155 \mathrm{~m} / \mathrm{s}$
$v$ final $=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=-31 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

$0 \mathrm{~m} / \mathrm{s}=155 \mathrm{~m} / \mathrm{s}+\left(-31 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)^{*} \mathrm{t}$ $-155 \mathrm{~m} / \mathrm{s}=\left(-31 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)^{*} \mathrm{t}$
$155 \mathrm{~m} / \mathrm{s}=\mathrm{t}$
(-31 m/s^2)
$5 \mathrm{~s}=\mathrm{t} \rightarrow \mathrm{t}=5.0 \times 10^{\wedge} 1 \mathrm{~s}$
b) $d=\frac{v_{i}+v_{f}}{2} * t$


$$
\begin{aligned}
& v \text { initial }=55 \mathrm{~m} / \mathrm{s} \\
& v \text { final }=0 \mathrm{~m} / \mathrm{s} \\
& t=5.0 \mathrm{~s} \\
& d=\frac{(155 \mathrm{~m} / \mathrm{s})+(0 \mathrm{~m} / \mathrm{s})}{2} * 5.0 \mathrm{~s} \\
& d=\frac{(155 \mathrm{~m} / \mathrm{s})}{2} * 5.0 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& d=77.5 \mathrm{~m} / \mathrm{s} * 5.0 \mathrm{~s} \\
& \mathrm{~d}=387.5 \mathrm{~m} \rightarrow \quad \mathrm{~d}=\mathbf{3 . 9 \times 1 0 ^ { \wedge } \mathbf { 2 } \mathrm { m }}
\end{aligned}
$$

$$
\text { c) } v_{f}=v_{i}+a t
$$


$v$ initial $=155 \mathrm{~m} / \mathrm{s}$
$v$ initial $=155 \mathrm{~m} / \mathrm{s}$
$a=-31 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$a=-31 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{t}=8.0 \mathrm{~s}$
$\mathrm{t}=8.0 \mathrm{~s}$
$v$ final $=155 \mathrm{~m} / \mathrm{s}+\left(-31 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)(8.0 \mathrm{~s})$
$v$ final $=155 \mathrm{~m} / \mathrm{s}+\left(-31 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)(8.0 \mathrm{~s})$
$v$ final $=155 \mathrm{~m} / \mathrm{s}-248 \mathrm{~m} / \mathrm{s}$
$v$ final $=155 \mathrm{~m} / \mathrm{s}-248 \mathrm{~m} / \mathrm{s}$
v final $=\mathbf{- 9 . 3 \times 1 0 \wedge 1 m / s}$
prob. 2.1.5
A car with a velocity of $22 . \mathrm{m} / \mathrm{s}$ is accelerated uniformly at the rate of $1.6 \mathrm{~m} / \mathrm{s} 2$ for 6.8 s . What is its final velocity?

```
vf
v initial = 22 m/s
a = 1.6 m/s^2
t=6.8 s
```


$v$ final $=22 \mathrm{~m} / \mathrm{s}+\left(1.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)(6.8 \mathrm{~s})$
$v$ final $=22 \mathrm{~m} / \mathrm{s}+10.88 \mathrm{~m} / \mathrm{s}$
$v$ final $=32.88 \mathrm{~m} / \mathrm{s} \rightarrow \quad v$ final $=\mathbf{3 . 3 \times 1 0} \times 1 \mathrm{~m} / \mathrm{s}$

Prob. 2.1.6
Determine the displacement of a plane that is uniformly accelerated from $66 \mathrm{~m} / \mathrm{s}$ to $88 . \mathrm{m} / \mathrm{s}$ in 12.0 s .

First solve for the acceleration with the formula $\mathbf{v}_{\mathrm{f}}=\mathbf{v}_{\mathbf{i}} \boldsymbol{+}$ at $v$ final $=88 . \mathrm{m} / \mathrm{s}$
v initial $=66 . \mathrm{m} / \mathrm{s}$
$\mathrm{t}=12.0 \mathrm{~s}$

$88 \mathrm{~m} / \mathrm{s}=66 \mathrm{~m} / \mathrm{s}+\mathrm{a}(12.0 \mathrm{~s})$
$22 \mathrm{~m} / \mathrm{s}=\mathrm{a}(12.0 \mathrm{~s})$
$1.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Use the acceleration that was solved for in the previous section in the following formula: $d=v_{i}{ }^{*} t+1 / 2 a t^{2}$


Prob. 2.1.7
A car comes to rest after uniform deceleration at the rate of $9.0 \mathrm{~m} / \mathrm{s} 2$ for 8.0 s . What distance does it travel during this time?

In order to solve for distance, $v$ initial needs to be solved for first by using the formula: $\mathbf{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$
$v$ final $=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=9.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{t}=8.0 \mathrm{~s}$

$0 \mathrm{~m} / \mathrm{s}=\mathrm{v}$ initial $+\left(-9.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)(8.0 \mathrm{~s})$
$v$ initial $=-\left(-9.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)(8.0 \mathrm{~s})$
v initial $=72 \mathrm{~m} / \mathrm{s}$
Now that I have $v$ initial; I will use it in the formula: $d=v_{i}{ }^{*} t+1 / 2$ at $^{2}$ To solve for distance

$d=(72 \mathrm{~m} / \mathrm{s})(8.0 \mathrm{~s})+1 / 2\left(-9.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)(8.0 \mathrm{~s})^{\wedge} 2$
$d=576 \mathrm{~m}+\left(-4.5 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)\left(64 \mathrm{~s}^{\wedge} 2\right)$
$d=576 m-288 m$
$d=288 \mathrm{~m} \rightarrow \mathrm{~d}=2.9 \times 10^{\wedge} \mathbf{2} \mathrm{m}$

Prob. 2.1.8
A plane travels a distance of $5.0 \times 102 \mathrm{~m}$ while being accelerated uniformly from rest at the rate of $+5.0 \mathrm{~m} / \mathrm{s} 2$. What final speed does it attain?

$$
v_{f}^{2}=v_{i}^{2}+2 a d
$$

v initial $=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=+5.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{d}=5.0 \times 10^{\wedge} 2 \mathrm{~m}$

$\mathrm{v}_{\mathrm{f}}{ }^{2}=(0 \mathrm{~m} / \mathrm{s})^{\wedge} 2+2\left(5.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)\left(5.0 \times 10^{\wedge} 2 \mathrm{~m}\right)$
$v_{f}^{2}=\left(10.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)\left(5.0 \times 10^{\wedge} 2 \mathrm{~m}\right)$
$\mathrm{v}_{\mathrm{f}}^{2}=50.0 \times 10^{\wedge} 2 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2$
$v$ final $=70.7107 \mathrm{~m} / \mathrm{s} \rightarrow \quad V$ final $=7.1 \times 10^{\wedge} 1 \mathrm{~m} / \mathrm{s}$

Prob. 2.1.9
A stone falls freely from rest for 8.0 s . (a) Calculate its final velocity. (b) What distance does the stone fall during this time?
a) $v_{f}=v_{i}+a t$
$v$ initial $=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{t}=8.0 \mathrm{~s}$

$v$ final $=0 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)(8.0 \mathrm{~s})$
$v$ final $=-78.4 \mathrm{~m} / \mathrm{s} \rightarrow V$ final $=-7.8 \times 10^{\wedge} 1 \mathrm{~m} / \mathrm{s}$
b) distance $d=(v$ final $-v$ initial)/2 * time

$(780 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}) / 2$ * $8.0 \mathrm{~s}=310 \mathrm{~m}$.
distance $=3.1 \times 10^{\wedge} 2 \mathrm{~m}$

Prob. 2.1.10
A weather balloon is floating at a constant height above the earth when it releases a pack of instruments. (a) If the pack hits the ground with a speed of $73.5 \mathrm{~m} / \mathrm{s}$, how far does the pack fall? (b) How long does the pack fall?
a) $v_{f}^{2}=v_{i}^{2}+2 a d$

```
v initial = 0 m/s
v final = 73.5 m/s
a = 9.8 m/s^2
```



$(0 \mathrm{~m} / \mathrm{s})^{\wedge} 2=-(73.5 \mathrm{~m} / \mathrm{s})^{\wedge} 2+2\left(-9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right) \mathrm{d}$
$(0 \mathrm{~m} / \mathrm{s})^{\wedge} 2=-5402.25 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2+\left(-19.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right) \mathrm{d}$
$5402.25 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2=\left(-19.6 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right) \mathrm{d}$
$5402.25 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2=\mathrm{d}$ (-19.6 m/s^2)
$-275.625 \mathrm{~m}=\mathrm{d} \rightarrow \mathbf{d}=\mathbf{- 2 . 7 6 \times 1 0 \wedge} \mathbf{2 m}$
c) $v_{f}=v_{i}+a t$

$-73.5 \mathrm{~m} / \mathrm{s}=0 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right) \mathrm{t}$
$-73.5 \mathrm{~m} / \mathrm{s}=\left(-9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right) \mathrm{t}$
$\frac{-73.5 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2}=\mathrm{t}$
$7.5 \mathrm{~s}=\mathrm{t} \rightarrow \mathrm{t}=7.50 \times 10^{\wedge} \mathbf{0} \mathrm{s}$

