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Chapter 1

Introduction

Mirror symmetry is the phenomenon that string theory compactified

on two topologically distinct Calabi–Yau manifolds leads to the same super-

conformal field theory. Most known examples for Calabi–Yau manifolds are

constructed as hypersurfaces in toric varieties, and it turns out that this sym-

metry appears in toric geometry as exchanging the polyhedron with its dual.

Using this [1][2] showed how to obtain nonperturbative corrections

from exact expressions on the mirror. With their methods we can calculate

these Instantons from the Mori cone (the dual of the Kähler cone), which can

be calculated directly from the geometric data.

However one has to distinguish between the Mori cone of the toric

variety and of the hypersurface. While it is easy (and sufficient to obtain the

instanton expansion) to calculate the Mori cone for the ambient space, there is

no algorithm known for a generic Calabi–Yau hypersurface. Sheldon Katz [3]

conjectured a way to calculate it as the intersection of the Mori cones of various

ambient spaces, this is the approach i will follow.

1



Chapter 2

Kähler cone in Toric Geometry

The Kähler cone of a complex manifold X is defined as all J ∈

H1,1(X,R) that satisfy

∫

C
J > 0,

∫

S
J ∧ J > 0, . . . ,

∫

X
J ∧ · · · ∧ J > 0 (2.1)

where C ⊂ X is any curve, S ⊂ X any surface, etc. The name “cone” is

justified because if J satisfies 2.1 so does λJ ∀λ ∈ R>0, i.e. it is a cone.

By Poincaré duality we can identify the Kähler cone with the cone of ample

divisors.

In general it is a difficult problem to determine the Kähler cone and

there are examples where it is not a finitely generated cone. However if we

restrict ourselves to toric varieties this bad behaviour does not occur and there

is an easy way to calculate it. Since we are ultimately interested in Calabi–Yau

manifolds, where the largest class of examples is realized as hypersurface in

toric varieties, this restriction is justified.

So let me quickly review a few facts from toric geometry (or rather

one possible way to look at it) to fix notation. A better introduction can be

found in [4], for mathematical details see [5][6][7][8]. We start with a integral

lattice N ∼= Zd. Define a polyhedron in its real extension NR ∼= Rd by ∇ =

conv(∇(1)) ⊂ NR the convex hull of a finite number of integral points ∇(1) ⊂

2



3

N , such that the origin is the only internal point of ∇. Then the (rational,

polyhedral and complete) fan1 Σ is a collection of cones such that:

• The faces of each cone are themselves cones of the fan

• Any two cones of the fan intersect in a cone of the fan (possibly only the

origin)

• The fan subdivides the cones over faces of ∇, i.e. σ ∩ ∂∇ is contained in

a face of ∇ for each cone σ ∈ Σ.

• The one-faces Σ(1) are generated by integral points of ∇:

σ ∩∇ ∩N 6= ∅ ∀σ ∈ Σ(1) (2.2)

Assign to each one-cone σ1, . . . , σn ∈ Σ(1) a variable xi, and let ν∗i =

σi∩∇∩N be the corresponding integral point of ∇, let ν∗0 be the origin. Then

we get the toric variety XΣ by2

XΣ =
Cn −

{
xi1 · · · xim = 0

∣∣∣
〈
ν∗i1 , . . . , ν

∗
im

〉
6∈ Σ

}

(C∗)n−d
(2.3)

where the torus action is defined by

(x1, . . . , xn) ∼ (λq1x1, . . . , λ
qnxn) ∀λ ∈ C∗ (2.4)

with the linear relations
∑n

i=1 qiν
∗
i = 0 defining the q1, . . . , qn ∈ Z. The vector

space of linear relations among ν∗1 , . . . , ν
∗
n is n−d–dimensional, compare eq. 2.3.

1The definition of a fan is more general, but this is sufficient for our purposes
2〈a1, . . . , am〉 denotes — depending on the context — either the simplex {a1, . . . , am} or

the cone spanned by {a1, . . . , am}
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In general the resulting toric variety will be singular. We are inter-

ested in Calabi–Yau hypersurfaces, so we want to resolve all singularities that

are not points in XΣ (which will be missed by a generic hypersurface). For

the combinatorical data taking finer subdivisions of the fans corresponds to

resolving singularities, and the integral points in the interior of codimension

one faces (facets) correspond to singular points of the ambient space. We will

be therefor be interested in the case where all points of ∇ ∩ N that are not

interior to facets are rays of the fan, and Σ is simplicial (each cone is a cone

over a simplex).

To each integral point ν∗i , i = 0 . . . n of ∇ one can associate a di-

visor Di. One can see the exceptional divisors Di, i = 1 . . . n as the xi = 0

hypersurface in eq. 2.3. The homology classes of divisors satisfy the linear

equivalence
[∑

aiDi

]
=

[∑
(ai + 〈ν

∗
i |m〉)Di

]
(2.5)

for all m ∈ Hom(N,Z) def
= M ∼= Zd.

Now we are interested in constructing Calabi–Yau hypersurfaces in

XΣ. Define the dual polyhedron of ∇ by

∆ =
{
m ∈MR

∣∣∣ 〈ν∗i |m〉 ≥ −1 ∀ν
∗
i ∈ ∇

}
⊂MR (2.6)

then the zero locus of the polynomial

p =
∑

m∈∆∩M

n∏

i=1

x
〈ν∗i |m〉+1

i (2.7)

is known to be a Calabi–Yau manifold if ∆ is reflexive. Apart from my require-

ments for ∇, reflexive means that ∆ is again a integral polyhedron.
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Note that the dual of ∆ is again ∇. Historically Batyrev started from

∆, so ∇ is called the dual polyhedron and N the dual lattice.

According to [9] the Kähler cone of XΣ is isomorphic to the cone of

convex piecewise linear functions on Σ, denoted cpl(Σ). Piecewise linear means

that it is linear on each cone of the fan, convex means that its graph is the

lower boundary of a convex polytope.

Definition 2.1 f : NR → R is a convex piecewise linear function, f ∈ cpl(Σ),

if for all cones σ ∈ Σ there exists a mσ ∈MR, cσ ∈ R such that

i) f(x) = 〈mσ|x〉+ cσ ∀x ∈ σ

ii) f(x) > 〈mσ|x〉+ cσ ∀x 6∈ σ

Note that this implies that the function is continuous everywhere,

since the intersection of two cones of Σ is again a cone of Σ.
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Figure 2.1: A simple example for ∆, ∇ and Σ. The maximal–dimensional cones
are 〈ν∗1 , ν

∗
2〉 , 〈ν

∗
1 , ν

∗
3〉 , 〈ν

∗
2 , ν

∗
3〉

In this easy example we can simply read off the condition for a piece-

wise linear function f to be convex. The graph f is a surface in R3, and one can
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easily see that the function is convex if the point (ν∗0 , f(ν
∗
0)) is under (thinking

of NR as horizontal, the function value giving the height) the plane spanned by

the three points (ν∗i , f(ν
∗
i )), i = 1, 2, 3. That is

f(ν∗0) <
1

3

(
f(ν∗1)+ f(ν∗2)+ f(ν∗2)

)
⇔ −3f(ν∗0)+ f(ν∗1)+ f(ν∗2)+ f(ν∗2) > 0

(2.8)

Then toric geometry translates this result into the Kähler cone K(XΣ) by

taking the f(ν∗i ) to be the coefficients of Di associated to the point ν∗i , i.e. by

linear equivalence:

K(XΣ) =
{
−

3∑

i=0

aiDi

∣∣∣ −3a0 + a1 + a2 + a3 > 0
}
=

=
{
−(a0 −

1
3
a1 −

1
3
a2 −

1
3
a3)D0

∣∣∣ −3a0 + a1 + a2 + a3 > 0
}
=

= R>D0 (2.9)

We can immediately read off the Mori cone from 2.8, it is generated by the

single coefficient vector

` = (−3, 1, 1, 1) (2.10)

One can think of the Mori cone as linear functionals on the divisors, that is as

a cone of curves. The components of any generator are the intersections with

the corresponding divisor.

The goal of this work will be to repeat this analysis for a different

(and by far bigger) Calabi–Yau, given by a reflexive dual polyhedron ∇ with

18 integral points in 5 dimensions. This is an example for a class of Calabi–Yau

fourfolds previously discussed by [10] where the dual polyhedron is relatively

small (compared to the polyhedron ∆ which contains 2861 integral points).
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There are 4 points in the interior of codimension one faces. The

remaining 14 points are labelled ν∗0 , . . . , ν
∗
13. This specific polyhedron is in-

teresting because there are various [11] fibrations visible as projections and

slices, for example the elliptic fibration X = (E , BX) as the slice (0, 0, 0, z4, z5)

which is the dual polyhedron of P(1,2,3)[6]. The same polyhedron also appears

as the projection onto the last two coordinates (ẑ1, ẑ2, ẑ3, z4, z5), so the mirror

manifold X̃ = (Ẽ , BX̃) is also an elliptic fibration.

∇

(z1,z2,z3,z4,z5)

(-1, 0, 0, 2, 3)
( 0,-1, 0, 2, 3)
( 0, 0,-1, 2, 3)
( 0, 0,-1, 1, 2)
( 0, 0, 0,-1, 0)
( 0, 0, 0, 0,-1)
( 0, 0, 0, 0, 0)
( 0, 0, 0, 0, 1)
( 0, 0, 0, 1, 1)
( 0, 0, 0, 1, 2)
( 0, 0, 0, 2, 3)
( 0, 0, 1, 1, 2)
( 0, 0, 1, 2, 3)
( 0, 0, 2, 2, 3)
( 0, 0, 1, 1, 1)
( 0, 1, 2, 2, 3)
( 0, 1, 3, 2, 3)
( 1, 2, 4, 2, 3)

ν∗0 = ( 0, 0, 0, 0, 0)

ν∗1 = (−1, 0, 0, 2, 3)

ν∗2 = ( 0,−1, 0, 2, 3)

ν∗3 = ( 0, 0,−1, 2, 3)

ν∗4 = ( 0, 0,−1, 1, 2)

ν∗5 = ( 0, 0, 0,−1, 0)

ν∗6 = ( 0, 0, 0, 0,−1)

ν∗7 = ( 0, 0, 0, 2, 3)

ν∗8 = ( 0, 0, 1, 2, 3)

ν∗9 = ( 0, 0, 2, 2, 3)

ν∗10 = ( 0, 0, 1, 1, 1)

ν∗11 = ( 0, 1, 2, 2, 3)

ν∗12 = ( 0, 1, 3, 2, 3)

ν∗13 = ( 1, 2, 4, 2, 3)

(2.11)



Chapter 3

Triangulations

The first step is to determine all fans. I do not know any algorithm to

do that directly, however there is a way to systematically find all regular (see

below) triangulations of a point set [12]. Since a triangulation is more general

than the triangulation that follows from intersecting the dual polyhedron with

the fan we will need to exclude “bad” triangulations.

Definition 3.1 A triangulation is called a star triangulation if all maximal–

dimensional simplices contain a common point. That is if T is the correspond-

ing simplicial complex then there exists a vertex v ∈ T such that St(v) = T

In our case there is exactly one point (the origin) inside the convex

hull of the point set. From the definition one can easily see that the facets

of the maximal–dimensional simplices of the triangulation that do not contain

the origin subdivide the facets of the convex hull, so there is a 1–1 correspon-

dence between the the fans Σ that subdivide the cones over facets of the dual

polyhedron, and star triangulations TΣ.

Every such fan defines a toric variety, but for mirror symmetry we are

interested in those that subdivide the polyhedron as far as possible.

Definition 3.2 A triangulation of a points set A is called maximal if every

point in A is a vertex of the triangulation.

8
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Figure 3.1: Different triangulations, from left to right: star and not maximal,
nonstar and not maximal, nonstar and maximal

So we want to calculate all maximal star triangulations of the points

of the dual polyhedron that are not in codimension one faces. We will also

demand that the Kähler cone is not empty. This is equivalent to demanding

regularity:

Definition 3.3 A triangulation of a point set A = {a1, . . . , ak}, ai ∈ Rd is reg-

ular if it can be obtained by the lower convex hull of a d+1–dimensional polyhe-

dron. That is choose λ1, . . . , λk ∈ R, and let W = conv((a1, λ1), . . . , (ak, λk)) ⊂

Rd+1. The triangulation is regular if for every maximal simplex
〈
ai1 , . . . , aid+1

〉

there is a facet
〈
(ai1 , λi1), . . . , (aid+1

, λid+1
)
〉
⊃ W (3.1)

such that the outer facet normal ~n is pointing downward, i.e. (~n)d+1 < 0

Nonregular triangulations do exist, one example can be seen in Fig.

3.2. By adding a everywhere linear function one can assume that the value of

a piecewise linear function is constant on the inner triangle. Then following

the outer points clockwise, the function value must always be bigger that the
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Figure 3.2: A regular (left) and a nonregular (right) triangulation

previous value such that the adjacent trapezoid is triangulated in the given

way, leading to a contradiction. A star triangulation can also be nonregular,

e.g. if the above nonregular triangulation appears in a face.

We will define a operation on the triangulations to get new trian-

gulations out of known ones. For that we need the circuits (also known as

primitive relations) of the point set put on a generic hyperplane (not through

the origin). If the original point set is {a1, . . . , ak} we will use {ā1, . . . , āk} =

{(1, a1), . . . , (1, ak)}.

Definition 3.4 A circuit Z ⊂ A of the set of points A = {ā1, . . . , āk} is a

linear dependent subset such that every proper subset is linear independent.

There is a (up to a constant) unique linear relation
∑

i λiāi = 0 between the

points in Z, which divides it in the disjoint sets Z+ = {āi|λi > 0} and Z− =

{āi|λi < 0}. This is known as the circuits of the oriented matroid represented

by A, see e.g. [13].
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For example let

A = {ā1, ā2, ā3, ā4, ā5}
def
=

def
= {(1, 0, 0, 0), (1, 0, 2, 0), (1, 0, 0, 2), (1, 0, 2, 2), (1, 1, 1, 1)} (3.2)

There is only one circuit Z = Z+ ∪ Z− with Z− = {a1, a4}, Z+ = {a2, a3}.

Given a circuit there are always two triangulations of conv(Z), called t±(Z) =

{Z − {p}|p ∈ Z±}

Suppose A it is triangulated by the maximal–dimensional simplices

{〈a1, a2, a4, a5〉 , 〈a1, a3, a4, a5〉}. Note that this is t+(Z) where a5 is added to

each simplex. The obvious operation on this triangulation given the circuit Z

is to replace the subsets t+(Z) by t−(Z).

Or in general if for a triangulation T of A

∃ B ⊂ A− Z :
{
B ∪ τ |τ ∈ t+(Z)

}
⊂ T (3.3)

then we want to replace all such {B ∪ τ |τ ∈ t+(Z)} by {B ∪ τ |τ ∈ t−(Z)}. If

there is more than one such B ⊂ A − Z we have to do this for all of them,

or the result is no simplicial complex. And if there is a B ⊂ A − Z such that

B ∪ τ ∈ T for one τ ∈ t+(Z) but not for all then we cannot perform this

operation.

Definition 3.5 The triangulation T is supported on the circuit Z ⊂ A if

i)t+(Z) ⊂ T

ii)If σ ⊃ τ for some maximal–dimensional σ ∈ T , τ ∈ t+(Z) then

{
(σ − τ) ∪ τ ′|τ ′ ∈ t+(Z)

}
⊂ T (3.4)
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Definition 3.6 If the circuit Z ⊂ A supports the triangulation T , then there is

another triangulation flipZ(T ), the flip of T , obtained by replacing all simplices

of the form B ∪ τ , τ ∈ t+(Z) by B ∪ τ , τ ∈ t−(Z)

Then we use a Theorem by Gel’fand, Kapranov and Zelevinsky that

all regular triangulations are connected by flips. There is only a finite number

of flips one can perform on each triangulation (and of course the total num-

ber of triangulations of a finite point set is finite), so one can get all regular

triangulations from a single regular triangulation (which is easy to find).

Now we can apply this algorithm to the integral points 2.11 of the

dual polyhedron that are not in codimension one faces. For this special point

set Ξ i will call the maximal triangulations the simplified triangulations, and

the fans from maximal star triangulations the simplified fans.

Puntos [12] is a implementation of this algorithm in Maple. I rewrote

the main loop in C++ and performed some minor optimisations. The modified

version triangulates the points 2.11 in less than 30 minutes on a modern PC.

I find 15176 triangulations, of which 2752 are maximal. 990 of all found and

165 of the maximal triangulations are star triangulations.

Using Schubert we can calculate the intersection numbers for each

hypersurface in the 165 simplified fans. There are 7 distinct possibilities for

the 330 intersection numbers. As we will see later the hypersurfaces are in

fact isomorphic in each of the 7 classes. We are particularly interested in

a special class of 20 Fans that contains 4 special triangulations that project

nicely (see [11]).



Chapter 4

Calculating the Mori cone of XΣ

Again let ν̄∗i = (1, ν∗i ), i = 0 . . . n. Then we can rewrite the condition

for f ∈ cpl(Σ) as

∀σ ∈ Σ ∃mσ = (cσ,mσ) ∈ R×MR :

{
f(x) = 〈mσ|x̄〉 ∀x ∈ σ

f(x) > 〈mσ|x̄〉 ∀x 6∈ σ
(4.1)

There are two useful ways to describe f ∈ cpl(Σ), either specify the f(ν∗i )
def
= ui

or specify a dual vector mσ for each maximum–dimensional cone σ ∈ Σ. The

first way guarantees piecewise linearity, and we need the second form to check

convexity. For any such σ =
〈
ν∗i1 , . . . , ν

∗
id

〉
finding mσ from given u0, . . . , un

amounts to solving the linear system of equations




u0

ui1
...

uid




=




ν̄∗0
ν̄∗i1
...

ν̄∗id




mσ (4.2)

Inserting the solution mσ = mσ(u0, . . . , un) in 4.1 gives a system of n − d

linear inequalities for each maximal–dimensional cone. In our example there are

simplified triangulations with up to 58 maximal–dimensional simplices, which

leads to a system of 464 linear inequalities. This system is highly degenerate,

and can in all 165 cases be reduced to a system of 8 to 10 inequalities. Each

Mori cone is nonempty (all 165 triangulations are regular) and 8 = n − d

dimensional.

13
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I use cdd [14] to find the essential inequalities. cdd implements the

double description method, which is an algorithm to convert from the hyper-

plane representation

P =
{
Ax > b

∣∣∣ x ∈ Rm
}

(4.3)

of any polytope P to the vertex/ray representation

P = conv({v1, . . . , vν}) +
µ∑

i=1

Rri (4.4)

efficiently for degenerate systems of linear inequalities. I have written [15]

Maple-functions to generate the input files for cdd and on top of that a program

to calculate the Mori cone of XΣ.

For example for the triangulation T where the maximal dimensional

simplices are
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〈ν∗1 ,ν
∗
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∗
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∗
6 , ν

∗
11〉 〈ν∗1 ,ν
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13〉 〈ν∗3 ,ν

∗
4 ,ν

∗
6 , ν

∗
11,ν

∗
13〉 〈ν∗3 ,ν

∗
4 ,ν

∗
7 , ν

∗
11,ν

∗
13〉

〈ν∗3 ,ν
∗
6 ,ν

∗
7 , ν

∗
11,ν

∗
13〉 〈ν∗4 ,ν

∗
5 ,ν

∗
6 , ν

∗
11,ν

∗
13〉 〈ν∗2 ,ν

∗
5 ,ν

∗
8 , ν

∗
9 , ν

∗
13〉 〈ν∗1 ,ν

∗
2 ,ν

∗
4 , ν

∗
5 , ν

∗
7 〉

〈ν∗1 ,ν
∗
2 ,ν

∗
5 , ν

∗
6 , ν

∗
10〉 〈ν∗1 ,ν

∗
2 ,ν

∗
5 , ν

∗
7 , ν

∗
8 〉 〈ν∗2 ,ν

∗
3 ,ν

∗
4 , ν

∗
6 , ν

∗
13〉 〈ν∗1 ,ν

∗
2 ,ν

∗
3 , ν

∗
4 , ν

∗
7 〉

〈ν∗1 ,ν
∗
2 ,ν

∗
3 , ν

∗
6 , ν

∗
7 〉 〈ν∗2 ,ν

∗
4 ,ν

∗
5 , ν

∗
6 , ν

∗
13〉 〈ν∗1 ,ν

∗
2 ,ν

∗
4 , ν

∗
5 , ν

∗
6 〉 〈ν∗1 ,ν

∗
2 ,ν

∗
3 , ν

∗
4 , ν

∗
6 〉

〈ν∗1 ,ν
∗
4 ,ν

∗
5 , ν

∗
11,ν

∗
12〉 〈ν∗1 ,ν

∗
4 ,ν

∗
7 , ν

∗
11,ν

∗
12〉 〈ν∗1 ,ν

∗
2 ,ν

∗
5 , ν

∗
8 , ν

∗
9 〉 〈ν∗1 ,ν

∗
2 ,ν

∗
5 , ν

∗
9 , ν

∗
10〉

〈ν∗1 ,ν
∗
2 ,ν

∗
8 , ν

∗
9 , ν

∗
10〉 〈ν∗4 ,ν

∗
7 ,ν

∗
11,ν

∗
12,ν

∗
13〉 〈ν∗6 ,ν

∗
7 ,ν

∗
10,ν

∗
12,ν

∗
13〉 〈ν∗7 ,ν

∗
8 ,ν

∗
10,ν

∗
12,ν

∗
13〉

〈ν∗1 ,ν
∗
4 ,ν

∗
5 , ν

∗
7 , ν

∗
12〉 〈ν∗4 ,ν

∗
5 ,ν

∗
7 , ν

∗
12,ν

∗
13〉 〈ν∗4 ,ν

∗
5 ,ν

∗
11,ν

∗
12,ν

∗
13〉 〈ν∗1 ,ν

∗
2 ,ν

∗
7 , ν

∗
8 , ν

∗
10〉

〈ν∗1 ,ν
∗
6 ,ν

∗
7 , ν

∗
10,ν

∗
12〉 〈ν∗1 ,ν

∗
7 ,ν

∗
8 , ν

∗
10,ν

∗
12〉 〈ν∗2 ,ν

∗
6 ,ν

∗
7 , ν

∗
10,ν

∗
13〉 〈ν∗2 ,ν

∗
7 ,ν

∗
8 , ν

∗
10,ν

∗
13〉

〈ν∗6 ,ν
∗
7 ,ν

∗
11,ν

∗
12,ν

∗
13〉 〈ν∗8 ,ν

∗
9 ,ν

∗
10,ν

∗
12,ν

∗
13〉 〈ν∗1 ,ν

∗
2 ,ν

∗
6 , ν

∗
7 , ν

∗
10〉 〈ν∗5 ,ν

∗
6 ,ν

∗
10,ν

∗
12,ν

∗
13〉

〈ν∗5 ,ν
∗
6 ,ν

∗
11,ν

∗
12,ν

∗
13〉 〈ν∗5 ,ν

∗
7 ,ν

∗
8 , ν

∗
12,ν

∗
13〉 〈ν∗5 ,ν

∗
8 ,ν

∗
9 , ν

∗
12,ν

∗
13〉 〈ν∗5 ,ν

∗
9 ,ν

∗
10,ν

∗
12,ν

∗
13〉

(4.5)
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the Mori cone is generated by

( 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 1, 0) = a(1)

( 0, 0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0) = a(2)

( 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 2, 2,−2, 0) = a(3)

( 0, 0, 0, 0,−3, 1, 0, 2, 0, 0, 0, 3,−3, 0) = a(4)

(−2, 0, 0,−2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0) = a(5)

(−3, 0, 0, 0, 0, 1, 0, 0, 1,−2, 3, 0, 0, 0) = a(6)

( 0, 0, 0, 0, 3,−1, 0,−5, 3, 0, 0, 0, 0, 0) = a(7)

( 0, 0, 0, 0, 0, 0, 1,−1, 2, 0,−2, 0, 0, 0) = a(8)

( 0, 0, 1, 0, 0, 0, 0, 0,−1,−1, 0, 0, 1, 0) = a(9)

( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2, 0, 1) = a(10)

(4.6)

One can check that a1, . . . , a10 span a 8 dimensional hyperplane, so one can

choose a basis for that hyperplane by picking 8 entries among the 14. One

possible choice is to pick (a8, a4, a5, a9, a10, a12, a13, a14), this corresponds to the

divisors

(D7, D3, D4, D8, D9, D11, D12, D13) = (B,C1, C2, E1, E2, F,G, Y ) (4.7)

in the notation of [11].

But we are interested in the Mori cone of the Calabi–Yau hypersur-

face, and this gives us the Mori cone of the ambient space. Since not all curves

C ∈ XΣ are contained in the hypersurface V , we see from 2.1 that the Kähler

cone K(XΣ) ⊃ K(V ). That is the Mori cone is too big. The idea is to find all

Mori cones from isomorphic hypersurfaces, and calculate their intersection.



Chapter 5

Calculating the Mori cone of the Calabi–Yau

hypersurface

In this section we try to find isomorphic Calabi–Yau hypersurfaces to

a given V ⊂ XΣ. The intersection of the individual Mori cones will give us a

smaller Mori cone, which turned out to be the real Mori cone of V in previous

examples.

Assume T is a simplified star triangulation supported by a circuit Z,

such that T ′
def
= flipZ(T ) is again a simplified star triangulation (⇒ ν̄∗0 6∈ Z).

Then if Σ, Σ′ are the corresponding simplified fans we write Σ′ = flipZ(Σ).

On the toric side this transformation is a flop,of that is the blowdown of a

subvariety ∩ν̄∗
i
∈Z−Di of XΣ (each simplex of t+(Z) contains Z−) followed by

the blowup of the corresponding singularity to ∩ν̄∗
i
∈Z+

D′
i of XΣ′ . A sufficient

condition for this not to change the Calabi–Yau hypersurface V is that only

points disjoint of V are changed. We call the flop and the corresponding flip

trivial.

Definition 5.1 flipZ is called a trivial flip of a triangulation T supported on

Z if

∩ν̄∗
i
∈Z−Di ∩ V = ∅ (5.1)

The problem is to determine all trivial flips for a given triangulation.

There is a well-known object, the Stanley–Reisner ideal of the triangulation.

17
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It is generated by all sets of points ν∗i that are not on a common simplex:

SRT =
〈 {

ν∗i1 · · · ν
∗
im

∣∣∣
〈
ν∗i1 , . . . , ν

∗
im

〉
6∈ T

} 〉
⊂ C[ν∗0 , . . . , ν

∗
n] (5.2)

Since we are interested in star triangulations we can remove the interior point

ν∗0 , i.e. set the corresponding variable in the ideal to 0. From eq. 2.3 then

follows that xi1 = . . . = xim = 0 is excluded in XΣ if
〈
ν∗i1 , . . . , ν

∗
im

〉
6∈ T . But

we identified xi = 0 with the divisor Di, so Di1 ∩ · · · ∩Dim = ∅.

This allows us to define the toric version of the Stanley–Reisner ideal

SRΣ, whose monomials are the divisors that do not intersect at all (so especially

not on V ):

SRΣ =
〈 {

Di1 · · ·Dim

∣∣∣
〈
ν∗i1 , . . . , ν

∗
im

〉
6∈ Σ− {〈ν∗0〉}

} 〉
⊂ C[D1, . . . , Dk] (5.3)

But this is not sufficient to identify trivial flips. If a circuit Z is supported then

t+(Z) are subsimplices, but each simplex of t+(Z) contains by definition Z−.

Thus Z− 6∈ SRT .

We need to identify divisors that do intersect, but not on the hyper-

surface. By inspecting eq. 2.7 we see that if xi = 0 then only monomials that

correspond to facets of ∇ (dual to vertices of ∆) containing ν∗i are nonzero. If

there is a intersection Di1 ∩ . . . ∩ Dir ↔ xi1 = . . . = xir = 0 such that only

one monomial p ∼ xa1
j1
· · · xas

js
survives then one of xj1 , . . . , xjs must be zero

for Di1 ∩ . . . ∩Dir ∩ V 6= ∅ (if the coefficients in the original polynomial were

generic). But this may be impossible if

Di1 · · ·DisDj ∈ SRΣ ∀j = j1, . . . , js (5.4)



19

So for each Fan one needs to calculate the Stanley–Reisner ideal and perform

the trivial flips. For our polyhedron (eq. 2.11) the vertices of ∆ and corre-

sponding facets of ∇ are

ν1 = (−14, 2, 2,−1, 1) ↔ 〈ν∗2 , ν
∗
3 , ν

∗
4 , ν

∗
6 , ν

∗
13〉

ν2 = ( 0, 3,−3, 1, 1) ↔ 〈ν∗5 , ν
∗
6 , ν

∗
9 , ν

∗
10, ν

∗
12, ν

∗
13〉

ν3 = ( 6, 6,−3, 1, 1) ↔ 〈ν∗1 , ν
∗
2 , ν

∗
5 , ν

∗
6 , ν

∗
9 , ν

∗
10〉

ν4 = ( 0, 0, 0, 1,−1) ↔ 〈ν∗1 , ν
∗
2 , ν

∗
3 , ν

∗
4 , ν

∗
5 , ν

∗
7 , ν

∗
8 , ν

∗
9 , ν

∗
11, ν

∗
12, ν

∗
13〉

ν5 = ( 0, 0, 0,−2, 1) ↔ 〈ν∗1 , ν
∗
2 , ν

∗
3 , ν

∗
6 , ν

∗
7 , ν

∗
8 , ν

∗
9 , ν

∗
10, ν

∗
11, ν

∗
12, ν

∗
13〉

ν6 = ( 6, −6, 0, 1, 1) ↔ 〈ν∗1 , ν
∗
5 , ν

∗
6 , ν

∗
11, ν

∗
12, ν

∗
13〉

ν7 = ( 6, 3,−3, 1, 1) ↔ 〈ν∗1 , ν
∗
5 , ν

∗
6 , ν

∗
9 , ν

∗
10, ν

∗
12〉

ν8 = ( −6, 6,−3, 1, 1) ↔ 〈ν∗2 , ν
∗
5 , ν

∗
6 , ν

∗
9 , ν

∗
10, ν

∗
13〉

ν9 = ( 6, 6, 4, 1, 1) ↔ 〈ν∗1 , ν
∗
2 , ν

∗
4 , ν

∗
5 , ν

∗
6〉

ν10= ( 2, 2, 2,−1, 1) ↔ 〈ν∗1 , ν
∗
2 , ν

∗
3 , ν

∗
4 , ν

∗
6〉

ν11= ( 6,−14, 4, 1, 1) ↔ 〈ν∗1 , ν
∗
4 , ν

∗
5 , ν

∗
6 , ν

∗
11, ν

∗
13〉

ν12= ( 2, −6, 2,−1, 1) ↔ 〈ν∗1 , ν
∗
3 , ν

∗
4 , ν

∗
6 , ν

∗
11, ν

∗
13〉

ν13= (−34, 6, 4, 1, 1) ↔ 〈ν∗2 , ν
∗
4 , ν

∗
5 , ν

∗
6 , ν

∗
13〉

For example take the circuit

ν̄∗6 +2ν̄∗8 − ν̄∗7 − 2ν̄∗10 = 0 ⇒ Z = Z+ ∪Z− = {ν̄∗6 , ν̄
∗
8}∪{ν̄

∗
7 , ν̄

∗
10} (5.5)

This circuit is actually supported on the triangulation 4.5. The Stanley–Reisner

ideal is

SRΣ =
〈
D1D13, D2D11, D2D12, D3D5, D3D8, D3D9, D3D10, D3D12, D4D8,

, D4D9, D4D10, D6D8, D6D9, D7D9, D8D11, D9D11, D10D11, D4D6D7,

, D4D6D12, D5D6D7, D5D7D10, D5D7D11, D5D8D10

〉
(5.6)
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Note that the points Z− = {ν̄∗7 , ν̄
∗
10} are both only on the facet of ∇ dual to ν5.

So on the intersection D7 ∩D10 (that is x7 = x10 = 0), the defining polynomial

for V reduces to a monomial in x4, x5. But D4D10 ∈ SRΣ ⇒ x4 6= 0 and

D5D7D10 ∈ SRΣ ⇒ x5 6= 0. The circuit 5.5 therefor leads to a trivial flip.

Applying the same reasoning to all circuits on can find 4 trivial flips, which are

in addition to 5.5:

2ν̄∗10 + 2ν̄∗11 − ν̄∗6 − ν̄∗7 − 2ν̄∗12 = 0 (5.7)

3ν̄∗4 + 3ν̄∗8 − ν̄∗5 − 5ν̄∗7 = 0 (5.8)

ν̄∗5 + 2ν̄∗7 + 3ν̄∗11 − 3ν̄∗4 − 3ν̄∗12 = 0 (5.9)

By trivial flips i can generate all 20 triangulations with the same

intersection numbers from a single triangulation. The intersection of their

Mori cones is

( 0, 0, 1, 0, 0, 0, 0, 0,−1,−1, 0, 0, 1, 0) = `(1) = D8D9D13

(−2, 0, 0,−2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0) = `(2) = D3D11D13

(−2, 0, 0, 1,−1, 1, 1, 0, 0, 0, 0, 0, 0, 0) = `(3) = 1
2
D4D11D13

( 0, 0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0) = `(4) = D8D11D13

(−3, 0, 0, 0, 0, 1, 0, 0, 1,−2, 3, 0, 0, 0) = `(5) = D9D11D13

( 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,−2, 0, 0, 0) = `(6) = 1
3
D10D11D13

( 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 1,−1, 0) = `(7) = D7D11D13

( 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 1, 0) = `(8) = D7D12D13

( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2, 0, 1) = `(9) = D7D11D12

(−1, 0, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0, 0) = `(10) = ?
(5.10)

We can find curves corresponding to `(1), . . . , `(9) so these generators must be
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contained in the true Mori cone. Since they are already edges they cannot be

in the interior, so they must be edges of the true Mori cones.

However 5.10 cannot be the true Mori cone since the curve `10 is not

in the hypersurface: The curve is contained in D7 since D7 · `
10 = (`10)8 = −1 ,

but it also intersects D4 and D10. One can check — using similar arguments as

above — that D4∩D7∩D10∩V = ∅ in all 20 varieties, and therefor `10 6⊂ V . For

example if the triangulation is 4.5 we have already seen that D7∩D10∩V = ∅.



Chapter 6

Conclusion

This calculation is based on a bigger polyhedron than any similar

calculation i know of. We find the first example where the intersection of the

Mori cones for all simplified fans is not simplicial, and not the Mori cone of the

Calabi–Yau manifold.

For a threefold we can use this to generate the initial data necessary

for Instanton automatically from the dual polyhedron.
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