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1. Introduction

By now a well-established result is that the D-brane charges in string theory are
precisely the K-theory group of the space-time, see [1]. Hence, computing certain
K-groups has immediate physical interest. For example, cancellation of the total
D-brane charge for compact directions places additional restrictions on allowed
compactifications, which eliminates some torus orientifold constructions.

In this talk, I will review the computation of the twisted K-theory that is
relevant for N = 1 supersymmetric Wess-Zumino-Witten models. I solved the
case for compact, simple, simply connected Lie groups in [2]. As a non-simply
connected example, I will present SO(3) in Section 3. The latter is joint work
with Sakura Schäfer-Nameki [3]

2. Twisted K-theory for Lie Groups

In the following, let G always be a compact, simple, simply connected Lie group,
together with a gerbe on G with characteristic class

(1) t ∈ H3
(

G; Z
)

.

The corresponding Grothendieck group of twisted vector bundles on G is the
twisted K-theory tK(G). It is a generalized (twisted) cohomology theory. To
compute the K-groups, we relate it to equivariant twisted K-theory by rewriting

(2) tK∗(G) = tK∗

G(GTr × GL) = tK∗

G(GAd × GL) ,

where the superscripts refer to the Trivial, Left, and Adjoint action of G on
itself. The first equality is obvious, the second follows from the G-isomorphism
GTr × GL = GAd × GL through conjugation. To compute the K-theory of the
product, we use a certain equivariant Künneth theorem which follows from [4]:

Theorem 1 (Equivariant Künneth Theorem). Let G be a compact, simple, simply

connected Lie group. Let X be a G-space with twist class, let Y be a G-space. Then

there is a spectral sequence

(3) E−p,∗
2 = Torp

RG

(

tK∗

G(X), K∗

G(Y )
)

⇒ tKp+∗

G (X) .

The point of doing so is that we can now apply the theorem of Freed-Hopkins-
Teleman [5], which identifies the twisted equivariant K-theory with the Verlinde
algebra at level k = t − ȟ,

(4) tK∗

G(GAd) = RG/Ik .
1
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Hence, it remains to compute

(5) Torp
RG

(

tK∗

G(GAd), K∗

G(GL)
)

= Torp
RG

(

RG/Ik, Z

)

.

A widely believed fact is that the Verlinde algebra is a complete intersection, and
hence there exists a Koszul resolution. Although not strictly proven, this was
checked for a large number of cases in [6]. Henceforth, I assume that there exists
a regular sequence y1, . . . , yn, n = rk(G). A bit of homological algebra yields

(6) Torp
RG

(

RG/Ik, Z

)

= Torp
RG

(

RG/ 〈y1, . . . , yn〉 , Z

)

=
⊕

2n−1

Zgcd(y1,...,yn) .

Finally, what about higher differentials and extension ambiguities? The dual K-
homology spectral sequence is a spectral sequence of algebras under the Pontryagin
product. One can use this to show that there are no further differentials, and that
all extension ambiguities are trivial. Hence,

(7) tK∗(G) =
⊕

2n−1

Zgcd(y1,...,yn) .

3. SO(3) Wess-Zumino-Witten Model

As an example of a non-simply connected Lie group, let us consider SO(3). This
Wess-Zumino-Witten (WZW) model was treated from the boundary conformal
field theory side in [7], where it was found that the D-brane charge groups is either

Z2 ⊕ Z2 or Z4 depending on whether κ
def

= k + 1 is odd or even. Interestingly, the
charge groups do not grow with the level in this example. This is in contradiction
to the usual Atiyah-Hirzebruch spectral sequence, which predicts kK∗

(

SO(3)
)

=
Z2⊕Zk. Our resolution to this paradox is that D-brane charges in the SO(3) WZW
model, that is the bosonic SO(3) supersymmetrized with free fermions, correspond
to another twisted K-theory. Recall that the possible twists of K-theory actually
contain

(8) H1
(

SO(3); Z2

)

⊕ H3
(

SO(3); Z

)

' Z2 ⊕ Z .

The WZW model of [7] corresponds to the (−, κ) twisted K-theory! We can
easily estimate the resulting K-groups from a twisted Atiyah-Hirzebruch spectral
sequence

(9) E2 = −Hp
(

SO(3); Kq(pt.)
)

⇒ (−,κ)Kp+q
(

SO(3)
)

.

to be either Z2 ⊕ Z2 or Z4, depending on an extension ambiguity.
To resolve this ambiguity, we again rewrite the K-groups as certain equivariant

K-groups. But since the Künneth theorem fails for non-simply connected groups,
we chose to work SU(2) equivariant, and obtain

(10) tK∗
(

SO(3)
)

= tK∗

SU(2)

(

SO(3)Ad × SU(2)L
)
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We found the twisted equivariant K-groups tK∗

SU(2)

(

SO(3)Ad
)

by a Mayer-Vietoris

sequence for a certain cell decomposition, whose details I am going to skip. The
result is that

(11)

(−,κ)K0
SU(2)

(

SO(3)
)

= 0

(−,κ odd)K1
SU(2)

(

SO(3)
)

= Z[Λ, σ]
/〈

Λ(σ−1), σ2
−1, pκ(Λ)

〉

(−,κ even)K1
SU(2)

(

SO(3)
)

= Z[Λ, σ]
/〈

Λ(σ−1), σ2
−1, pκ(Λ)+(−1)

κ

2 (1+σ)
〉

as RSU(2) = Z[Λ] modules, where pκ are certain degree κ polynomials. A bit of
homological algebra then shows that only the Tor0 in the equivariant Künneth
theorem is nonvanishing, and moreover that

(12) (−,κ)K∗

(

SO(3)
)

= E0,∗
2 =

{

Z2 ⊕ Z2 κ odd

Z4 κ even,

as predicted by the boundary conformal field theory.
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