COMPUTING EQUILIBRIUM WITH HETEROGENEOUS AGENTS AND AGGREGATE UNCERTAINTY (BASED ON KRUEGER AND KUBLER, 2004)

Daniel Harenberg

daniel.harenberg@gmx.de

University of Mannheim

Econ 714, 28.11.06

What this is about

- Macro models with heterogenous agents and aggregate uncertainty, for example:
 - Stochastic shock to production
 - Idiosyncratic shock to productivity
 - Alternatively: overlapping generations
- Distribution of assets as state variable
- Approximate law of motion as in Krusell and Smith (1998)
- Multidimensional interpolation of policy functions in general computationally infeasible
- Krueger and Kubler method feasible up to 20 dimensions

Outline

- Foreword: Interpolating with Chebychev polynomials
- Problems in multidimensional interpolation
- Sparse grids and Smolyak's algorithm
- Implementation

Chebychev Interpolation: Motivation

Why use polynomials for interpolation?

Nice properties of Chebychev polynomials:

- Easy to calculate coefficients
- Relatively cheap evaluation
- (Nearly) minimizes maximum error of approximation among polynomials (near-minimax, see Judd (1998))
- Simple construction of derivatives and integrals
- Chebychev regression, Chebychev economization

Drawback: Approximated function must be smooth (C^1)

Chebychev Interpolation: Motivation

Why use polynomials for interpolation?

Nice properties of Chebychev polynomials:

- Easy to calculate coefficients
- Relatively cheap evaluation
- (Nearly) minimizes maximum error of approximation among polynomials (near-minimax, see Judd (1998))
- Simple construction of derivatives and integrals
- Chebychev regression, Chebychev economization

Drawback: Approximated function must be smooth (C^1)

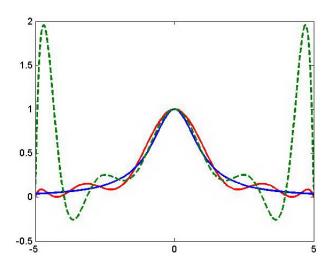
Chebychev Interpolation: Motivation

Why use polynomials for interpolation?

Nice properties of Chebychev polynomials:

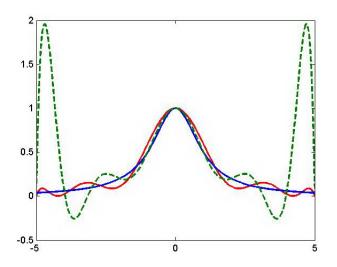
- Easy to calculate coefficients
- Relatively cheap evaluation
- (Nearly) minimizes maximum error of approximation among polynomials (near-minimax, see Judd (1998))
- Simple construction of derivatives and integrals
- Chebychev regression, Chebychev economization

Drawback: Approximated function must be smooth (C^1)



Chebychev zeros:
$$z_i = -\cos\left(\frac{(2i-1)\pi}{2n}\right), i = 1,...,n$$

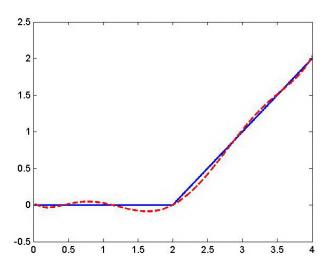
 $x \in [-1,1]$



Chebychev zeros:
$$z_i = -\cos\left(\frac{(2i-1)\pi}{2n}\right), i = 1,...,n$$

 $x \in [-1,1]$

Chebychev Interpolation: Problems with kinks



Chebychev Interpolation: Where to look

- For formulae, algorithm and theoretical background, see appendix.
- Makoto: very good slides on Chebychev, theoretical background (projection methods, *wrm.pdf)
- Judd (1998): Regression, 2-dimensional interpolation
- Press et al. (1992) show derivatives, Fortran codes.
- Aruoba et al. (2006): compare algorithms for computing standard stochastic growth model, Fortran codes
- Implementation in Matlab

Multidimensional Interpolation: Problems

Generalize from 1-dimensional interpolation

⇒ Construction of grid by Tensor product

A) Linear interpolation:

- Bilinear interpolation (Fortran code from Press et al.)
- Simplicial interpolation (Judd)
- Not monotone, not smooth in general

B) Polynomial interpolation:

- Tensor product of one-dimensional monomials
- Curse of dimensionality: exp. growth of nodes & coeffs
- example: 20 generations, asset grid: 10 nodes

Multidimensional Interpolation: Problems

Generalize from 1-dimensional interpolation

- ⇒ Construction of grid by Tensor product
- A) Linear interpolation:
 - Bilinear interpolation (Fortran code from Press et al.)
 - Simplicial interpolation (Judd)
 - Not monotone, not smooth in general
- B) Polynomial interpolation:
 - Tensor product of one-dimensional monomials
 - Curse of dimensionality: exp. growth of nodes & coeffs
 - example: 20 generations, asset grid: 10 nodes

Multidimensional Interpolation: Problems

Generalize from 1-dimensional interpolation

- ⇒ Construction of grid by Tensor product
- A) Linear interpolation:
 - Bilinear interpolation (Fortran code from Press et al.)
 - Simplicial interpolation (Judd)
 - Not monotone, not smooth in general
- B) Polynomial interpolation:
 - Tensor product of one-dimensional monomials
 - Curse of dimensionality: exp. growth of nodes & coeffs
 - example: 20 generations, asset grid: 10 nodes

Multidimensional Interpolation: A solution

Identified 2 problems:

- 1. How to handle exponential growth of grid?
- 2. How to choose nodes and interpolators and combine them?

Krueger and Kubler propose:

- 1. Construct Sparse Grids.
- Apply Smolyak's Algorithm to combine selected low-dimensional polynomials.

2 comments up front:

- Known in numerics and engineering, new to econ.
- Does not presuppose or exploit economic structure.

Multidimensional Interpolation: A solution

Identified 2 problems:

- 1. How to handle exponential growth of grid?
- 2. How to choose nodes and interpolators and combine them?

Krueger and Kubler propose:

- 1. Construct Sparse Grids.
- Apply Smolyak's Algorithm to combine selected low-dimensional polynomials.

2 comments up front:

- Known in numerics and engineering, new to econ.
- Does not presuppose or exploit economic structure.

Multidimensional Interpolation: A solution

Identified 2 problems:

- 1. How to handle exponential growth of grid?
- 2. How to choose nodes and interpolators and combine them?

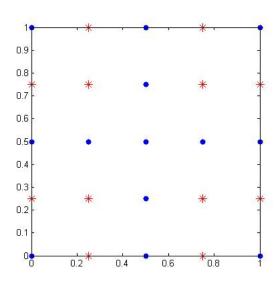
Krueger and Kubler propose:

- 1. Construct Sparse Grids.
- Apply Smolyak's Algorithm to combine selected low-dimensional polynomials.

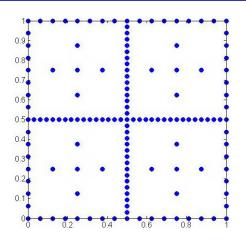
2 comments up front:

- Known in numerics and engineering, new to econ.
- Does not presuppose or exploit economic structure.

Tensor vs. sparse grid

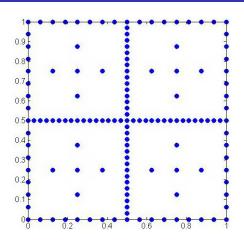


Higher degree sparse grid (q=7, d=2)



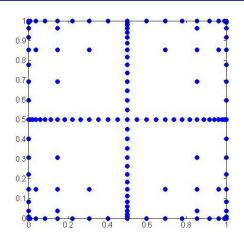
$$\mathcal{H}_{q,d} = \bigcup_{q-d+1 < |\mathbf{j}| < q} \left(\mathcal{G}^{i_1} \times \cdots \times \mathcal{G}^{i_d} \right)$$

Higher degree sparse grid (q=7, d=2)



$$\mathcal{H}_{q,d} = \bigcup_{q-d+1 \leq |\mathbf{i}| \leq q} \left(\mathcal{G}^{i_1} \times \cdots \times \mathcal{G}^{i_d} \right)$$

Sparse grid (q=7, d=2) of Chebychev extrema



$$\mathcal{H}_{q,d} = \bigcup_{\substack{q-d+1 < |\mathbf{i}| \leq q}} \left(\mathcal{G}^{i_1} \times \cdots \times \mathcal{G}^{i_d} \right)$$

Smolyak's algorithm

Intuition from multidimensional **Taylor-expansion**:

$$f(x) \approx f(x^{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x^{0})(x_{i} - x_{i}^{0})$$

$$\vdots$$

$$+ \frac{1}{k!} \sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n} \frac{\partial^{k} f}{\partial x_{i_{1}} \cdots \partial x_{i_{k}}}(x^{0})(x_{i_{1}} - x_{i_{1}}^{0}) \cdots (x_{i_{k}} - x_{i_{k}}^{0})$$

Formula for Smolyak's algorithm:

$$\hat{\mathcal{F}}_{q,d}(x) = \sum_{q-d+1 < |\mathbf{i}| < q} (-1)^{q-|\mathbf{i}|} \binom{d-1}{q-|\mathbf{i}|} \left(p^{i_1}(x_1) \cdots p^{i_d}(x_d) \right).$$

Smolyak's algorithm

Intuition from multidimensional **Taylor-expansion**:

$$f(x) \approx f(x^{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x^{0})(x_{i} - x_{i}^{0})$$

$$\vdots$$

$$+ \frac{1}{k!} \sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n} \frac{\partial^{k} f}{\partial x_{i_{1}} \cdots \partial x_{i_{k}}}(x^{0})(x_{i_{1}} - x_{i_{1}}^{0}) \cdots (x_{i_{k}} - x_{i_{k}}^{0})$$

Formula for **Smolyak's algorithm**:

$$\hat{\mathcal{F}}_{q,d}(x) = \sum_{q-d+1 \leq |\mathbf{i}| \leq q} (-1)^{q-|\mathbf{i}|} \binom{d-1}{q-|\mathbf{i}|} \left(p^{i_1}(x_1) \cdots p^{i_d}(x_d) \right).$$

Implementation: The Model of KK04

- OLG model with aggregate uncertainty
- Agent born at time s = t j + 1
- Discrete shock z to productivity $\zeta(z)$ and depreciation $\delta(z)$
- Asset distribution is state variable
 - \Rightarrow one dimension for each generation

$$f(K, L, z) = \zeta(z)K^{\alpha}N^{1-\alpha} + K(1 - \delta(z))$$
 (1)

$$\{c_s, a_s\} \in \arg\max_{\tilde{c}_s, \tilde{a}_s} E_s \left[\sum_{j=1}^J \beta^{j-1} \frac{c_{j,t+j-1}^{1-\sigma}}{1-\sigma} \right]$$
 (2)

$$a_{j,t+1} = R_t a_{j,t} + \vartheta_j w_t - c_{j,t}$$
 (3)

Implementation: The Model of KK04

- OLG model with aggregate uncertainty
- Agent born at time s = t j + 1
- Discrete shock z to productivity $\zeta(z)$ and depreciation $\delta(z)$
- Asset distribution is state variable
 - \Rightarrow one dimension for each generation

$$f(K, L, z) = \zeta(z)K^{\alpha}N^{1-\alpha} + K(1 - \delta(z))$$
 (1)

$$\{c_s, a_s\} \in \arg\max_{\tilde{c}_s, \tilde{a}_s} E_s \left[\sum_{j=1}^J \beta^{j-1} \frac{c_{j,t+j-1}^{1-\sigma}}{1-\sigma} \right]$$
 (2)

$$a_{j,t+1} = R_t a_{j,t} + \vartheta_j w_t - c_{j,t}$$
 (3)

Implementation: Solving the KK04-model

- Looking for policy function â_{j,z}(s; θ) where θ is a vector of Chebychev coefficients
- Euler equations: $\forall j = 1, ..., J 1; \ \forall s \in \mathcal{H}; \ \forall z$

$$u_c(\hat{c}_j(s,z;\theta)) = \beta E_z R(\hat{s}',z') u_c(\hat{c}_{j+1}(\hat{s}',z';\theta))$$

where $\hat{s}' = (\hat{a}_{1,z}(s;\theta),\ldots,\hat{a}_{J-1,z}(s;\theta))$

- ullet high-dimensional, nonlinear system of equations in heta
- High demands on nonlinear root finder (details)
- Simulate to get endogenous asset distribution

Implementation: Solving the KK04-model

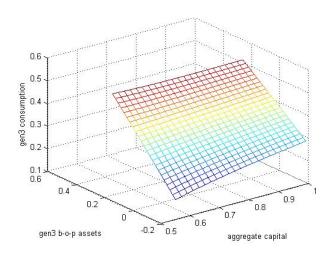
- Looking for policy function â_{j,z}(s; θ) where θ is a vector of Chebychev coefficients
- Euler equations: $\forall j = 1, ..., J 1; \ \forall s \in \mathcal{H}; \ \forall z$

$$u_c(\hat{c}_j(s,z;\theta)) = \beta E_z R(\hat{s}',z') u_c(\hat{c}_{j+1}(\hat{s}',z';\theta))$$

where $\hat{s}' = (\hat{a}_{1,z}(s;\theta),\ldots,\hat{a}_{J-1,z}(s;\theta))$

- ullet high-dimensional, nonlinear system of equations in heta
- High demands on nonlinear root finder (details)
- Simulate to get endogenous asset distribution

Equilibrium consumption policy of generation 3



$$\hat{c}_{3,z=1} = c_{3,1}(K_t, a_{t,2}, a_{t,3}, a_{t,5} \mid a_{t,2} = \bar{a_2}, a_{t,5} = \bar{a_5})$$

Implementation: Coding the algorithm

- Krueger and Kubler used Fortran: about 1,5h for 20 generations, 30h for 30 generations
- Programming algorithm harder than it seems
- Pontus Rendahl, EUI: code not online anymore
- Andreas Klimke's Sparse Grid interpolation toolbox: Cave! (Problem with Euler equations)
- C++ code for Smolyak quadrature (e.g. Dynare++)

Thank you for your attention!

Implementation: Coding the algorithm

- Krueger and Kubler used Fortran: about 1,5h for 20 generations, 30h for 30 generations
- Programming algorithm harder than it seems
- Pontus Rendahl, EUI: code not online anymore
- Andreas Klimke's Sparse Grid interpolation toolbox: Cave! (Problem with Euler equations)
- C++ code for Smolyak quadrature (e.g. Dynare++)

Thank you for your attention!

Appendix

Appendix contents

Appendix - Chebychev Interpolation formulae

Evaluation:
$$\hat{f}(x) = \sum_{i=0}^{n} \theta_i T_i(z), z \in [1-,1], x \in [a,b]$$

with $T_0 = 1, T_1 = z, T_{i+1}(z) = 2zT_i(z) - T_{i-1}(z)$

- Defined on [-1,1], scale to [a,b]: $x_i = (z_i + 1)(\frac{b-a}{2}) + a$
- As nodes, use Chebychev roots (see slide 5).
- Let m be number of interpolation nodes. For m > n + 1 we have Chebychev Regression.
- Then coefficients can be calculated as

$$\theta_j = \frac{2}{m} \sum_{i=1}^m T_j(z_i) f(z_i) \quad \left(= \frac{\sum_{i=1}^m T_j(z_i) f(z_i)}{\sum_{i=1}^m T_i(z_i)^2} \right)$$

Appendix - Chebychev Algorithm

Algorithm (Chebychev Regression, Judd (1998))

- Choose m interpolation nodes and the degree of polynomial approximation n < m
- ② Compute $m \ge n+1$ nodes (roots) on [-1,1]: $z_i = -\cos\left(\frac{(2i-1)\pi}{2n}\right), \quad i = 1, \dots, m.$
- 3 Adjust to interval [a, b]: $x_i = (z_i + 1)(\frac{b-a}{2}) + a, \quad i = 1, ..., m.$
- Evaluate $f: y_i = f(x_i)$.
- **6** Compute coefficients: $\theta_j = \frac{2}{m} \sum_{i=1}^m T_j(z_i) y_i$

Approximation for $x \in [a, b]$: $\hat{f}(x) = \sum_{i=0}^{n} \theta_i T_i \left(2 \frac{x-a}{b-a} - 1 \right)$

Appendix - Chebychev theoretical background

- Definition: $T_i(x) = \cos(i\cos^{-1}x)$.
- Expensive to compute, recursive formulation more efficient
- Family of orthogonal polynomials defined by

$$\int_a^b T_i(x)T_j(x)w(x)dx=0, \quad i\neq j,$$

where w(x) is a weighting function. For Chebychev: $w(x) = \sqrt{(1-x^2)}$.

- See Makotos slides on projection methods (Weighted Residual Methods, wrm.pdf), or Heer and Maußner (2005).
- Orthogonal polynomials belong to projection methods, with testing function the Dirac delta function.

Appendix - Tensor product

If A and B are sets of functions their tensor product is

$$A \bigotimes B = \{\phi(x)\psi(y)|\phi \in A, \psi \in B\}.$$

- For certain cases also called Kronecker product.
- If x and y are vectors with 4 points in one dimension each, the Tensor grid is represented by

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \bigotimes \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} = \begin{bmatrix} (x_1, y_1) & (x_2, y_1) & (x_3, y_1) & (x_4, y_1) \\ (x_1, y_2) & (x_2, y_2) & (x_3, y_2) & (x_4, y_2) \\ (x_1, y_3) & (x_2, y_3) & (x_3, y_3) & (x_4, y_3) \\ (x_1, y_4) & (x_2, y_4) & (x_3, y_4) & (x_4, y_4) \end{bmatrix}$$

Appendix - Computational complexity of grid

Exponential and polynomial complexity

Let $\mathcal{H}_{q,d}$ denote the set of gridpoints depending on the number of dimensions d and the order of the interpolating polynomials q. Let $\nu(\mathcal{H}_{q,d})$ be a function returning the total number of nodes in the set. For given q and functions g(q), h(q) the computational costs of computing the grid can be written as

- (i) Exponential complexity: $\nu(\mathcal{H}_{q,d}) \in O(g(q)^d)$
- (ii) Polynomial complexity: $\nu(\mathcal{H}_{q,d}) \in O(d^{h(q)})$
 - See definition of big O notation on next slide.
 - Slightly more loosely, this implies $\exists \ M : \frac{\nu(\mathcal{H}_{q,d})}{g(q)^d} \leq M$.
 - Simply put: grid grows polynomially in dimension.

Appendix - Big O notation

Definition (Big O notation)

Let f(x) and g(x) be real functions.

$$f(x) \in O(g(x))$$
 as $x \to \infty$
 $\Leftrightarrow \quad \exists \ x_0, \ \exists \ M > 0$ s. th. $|f(x)| \le M|g(x)|$ for $x > x_0$.

We say that f(x) is of order g(x).

- Used in two senses:
 - (i) functional convergence
 - (ii) computational complexity
- In our setting, we need it to describe
 - (i) Convergence of the approximating to true function
 - (ii) Rate of growth of grid size (computational complexity)

Appendix - Smolyak details

$$\mathcal{H}_{q,d} = igcup_{q-d+1 \leq |\mathbf{i}| \leq q} \left(\mathcal{G}^{i_1} imes \cdots imes \mathcal{G}^{i_d}
ight)$$

- Multi-index $\mathbf{i} \in \mathbb{N}^d$ with $|\mathbf{i}| = \sum_{l=1}^d i_l$
- Number of nodes in dimension *i*: $m_i = 2^{i-1} + 1$
- Nested Cheb *extrema*: $k_l^i = -\cos\left(\frac{\pi(k-1)}{m_l-1}\right)$
- Recall that Binomial Coefficient defined as the number of ways that n objects can be chosen from k objects, regardless of order (speak "n choose k"): $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

$$\hat{\mathcal{F}}_{q,d}(x) = \sum_{q-d+1 \le |\mathbf{i}| \le q} (-1)^{q-|\mathbf{i}|} \binom{d-1}{q-|\mathbf{i}|} \left(p^{i_1}(x_1) \cdots p^{i_d}(x_d) \right).$$

Appendix - Smolyak details

$$\mathcal{H}_{q,d} = igcup_{q-d+1 \leq |\mathbf{i}| \leq q} \left(\mathcal{G}^{i_1} imes \cdots imes \mathcal{G}^{i_d}
ight)$$

- Multi-index $\mathbf{i} \in \mathbb{N}^d$ with $|\mathbf{i}| = \sum_{l=1}^d i_l$
- Number of nodes in dimension *i*: $m_i = 2^{i-1} + 1$
- Nested Cheb *extrema*: $k_l^i = -\cos\left(\frac{\pi(k-1)}{m_l-1}\right)$
- Recall that Binomial Coefficient defined as the number of ways that n objects can be chosen from k objects, regardless of order (speak "n choose k"): (ⁿ_k) = ^{n!}/_{k!(n-k)!}

$$\hat{\mathcal{F}}_{q,d}(x) = \sum_{q-d+1 \leq |\mathbf{i}| \leq q} (-1)^{q-|\mathbf{i}|} \binom{d-1}{q-|\mathbf{i}|} \left(p^{i_1}(x_1) \cdots p^{i_d}(x_d) \right).$$

Appendix - KK04 solution algorithm

Algorithm (Time iteration collocation)

- i. Guess coefficients θ^0 for initial $\hat{a}^0 = \{\hat{a}_j^0\}_{j=1}^{J-1}$.
- ii. Given θ^n and thus \hat{a}^n , solve $\forall j = 1, ..., J-1$, $\forall s \in \mathcal{H}$, and $\forall z$

$$u_c(c_j(a_{j,z}; s, z)) = \beta E_z R(s', z') u_c(\hat{c}_{j+1}(s', z'; \theta^n))$$

where $s' = (a_{1,z}, \dots, a_{J-1,z})$
 $c_j = s_j R(s, z) + w(s, z) - a_{j,z}$

- iii. Compute new coefficients θ^{n+1} from optimal $a_{i,z}$.
- iv. If $\sup_{z,s\in\mathcal{H}} |\hat{a}^{n+1} \hat{a}^n| < \tau$ stop, else go to ii.

References I

- ARUOBA, S. B., J. FERNÁNDEZ-VILLAVERDE, AND J. F. RUBIO-RAMÍREZ (2006): "Comparing solution methods for dynamic equilibrium economies," *Journal of Economic Dynamics and Control*, 30, 2477–2508.
- HEER, B. AND A. MAUSSNER (2005): Dynamic General Equilibrium Modelling: Computational Methods and Applications, Berlin: Springer.
- JUDD, K. L. (1998): *Numerical Methods in Economics*, Cambridge, MA: The MIT Press, 2nd ed.

References II

- KRUEGER, D. AND F. KUBLER (2004): "Computing Equilibrium in OLG Models with Stochastic Production," *Journal of Economic Dynamics and Control*, 28, 1411–1436.
- KRUSELL, P. AND A. A. SMITH, JR. (1998): "Income and Wealth Heterogeneity in the Macroeconomy," *Journal of Political Economy*, 106, 867–896.
- PRESS, W. H., B. P. FLANNERY, S. A. TEUKOLSKY, AND W. T. VETTERLING (1992): Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Cambridge: Cambridge University Press, 2nd ed.