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What this is about

@ Macro models with heterogenous agents and aggregate
uncertainty, for example:

e Stochastic shock to production
e ldiosyncratic shock to productivity
e Alternatively: overlapping generations

@ Distribution of assets as state variable
@ Approximate law of motion as in Krusell and Smith (1998)

@ Multidimensional interpolation of policy functions in general
computationally infeasible

@ Krueger and Kubler method feasible up to 20 dimensions
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@ Foreword: Interpolating with Chebychev polynomials
© Problems in multidimensional interpolation
© Sparse grids and Smolyak’s algorithm

© Implementation
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Chebychev Interpolation: Motivation

Why use polynomials for interpolation?
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Chebychev Interpolation: Motivation

Why use polynomials for interpolation?

Nice properties of Chebychev polynomials:
@ Easy to calculate coefficients
@ Relatively cheap evaluation

@ (Nearly) minimizes maximum error of approximation
among polynomials (near-minimax, see Judd (1998))
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Chebychev Interpolation: Motivation

Why use polynomials for interpolation?

Nice properties of Chebychev polynomials:
@ Easy to calculate coefficients
@ Relatively cheap evaluation

@ (Nearly) minimizes maximum error of approximation
among polynomials (near-minimax, see Judd (1998))

@ Simple construction of derivatives and integrals

@ Chebychev regression, Chebychev economization

Drawback: Approximated function must be smooth (C")
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Chebychev zeros: z = —cos <(2’g,:)”) L i=1,...,n



Chebychev Interpolation: Problems with kinks
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Chebychev Interpolation: Where to look

@ For formulae, algorithm and theoretical background, see
appendix.

@ Makoto: very good slides on Chebycheyv, theoretical
background (projection methods, *wrm.pdf)

@ Judd (1998): Regression, 2-dimensional interpolation
@ Press et al. (1992) show derivatives, Fortran codes.

@ Aruoba et al. (2006): compare algorithms for computing
standard stochastic growth model, Fortran codes

@ Implementation in Matlab
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Multidimensional Interpolation: Problems

Generalize from 1-dimensional interpolation
= Construction of grid by Tensor product

A) Linear interpolation:

B) Polynomial interpolation:
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Multidimensional Interpolation: Problems

Generalize from 1-dimensional interpolation
= Construction of grid by Tensor product

A) Linear interpolation:

o Bilinear interpolation (Fortran code from Press et al.)
o Simplicial interpolation (Judd)
@ Not monotone, not smooth in general

B) Polynomial interpolation:
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Multidimensional Interpolation: Problems

Generalize from 1-dimensional interpolation
= Construction of grid by Tensor product

A) Linear interpolation:
o Bilinear interpolation (Fortran code from Press et al.)
o Simplicial interpolation (Judd)
@ Not monotone, not smooth in general
B) Polynomial interpolation:
e Tensor product of one-dimensional monomials
o Curse of dimensionality: exp. growth of nodes & coeffs
e example: 20 generations, asset grid: 10 nodes
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Multidimensional Interpolation: A solution

Identified 2 problems:
1. How to handle exponential growth of grid?

2. How to choose nodes and interpolators and combine them?
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Multidimensional Interpolation: A solution

Identified 2 problems:

1. How to handle exponential growth of grid?

2. How to choose nodes and interpolators and combine them?
Krueger and Kubler propose:

1. Construct Sparse Grids.

2. Apply Smolyak’s Algorithm to combine selected
low-dimensional polynomials.
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Multidimensional Interpolation: A solution

Identified 2 problems:

1. How to handle exponential growth of grid?

2. How to choose nodes and interpolators and combine them?
Krueger and Kubler propose:

1. Construct Sparse Grids.

2. Apply Smolyak’s Algorithm to combine selected
low-dimensional polynomials.

2 comments up front:
@ Known in numerics and engineering, new to econ.

@ Does not presuppose or exploit economic structure.
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Tensor vs. sparse grid
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Sparse grid (g=7, d=2) of Chebychev extrema
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Smolyak’s algorithm

Intuition from multidimensional Taylor-expansion:
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Smolyak’s algorithm

Intuition from multidimensional Taylor-expansion:

+ 1 gn En ot (xO)(x;, — x?) - (x; — x°
k! iy =1 'i 1 OXi, - - - DX, " n e T
1= k=

Formula for Smolyak’s algorithm:

Faa)= X IS0 ()R

g—d+1<Ji|l<q
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Implementation: The Model of KK04

@ OLG model with aggregate uncertainty
@ Agentbornattimes=1t—j+1
@ Discrete shock z to productivity ((z) and depreciation §(z)

@ Asset distribution is state variable
= one dimension for each generation
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Implementation: The Model of KK04

@ OLG model with aggregate uncertainty
@ Agentbornattimes=1t—j+1
@ Discrete shock z to productivity ((z) and depreciation §(z)

@ Asset distribution is state variable
= one dimension for each generation

f(K,L,2) = ((2KN'"*+K(1-5(2)) (1)
1—0
C;
E j—1 jt+/ 1 )
e AR BC
a1 = Reaj+ 9w — ¢y 3)
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Implementation: Solving the KK04-model

@ Looking for policy function &; ,(s; 6) where @ is a vector of
Chebychev coefficients

@ Eulerequations:vVj=1,...,J—-1,Vse H; Vz

uc(i(s,z:0)) = PBER(8,Z)uc(Ci+1(8, 2 0))

where § (a1,7(5;0),...,85-1.(5:0))
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Implementation: Solving the KK04-model

@ Looking for policy function &; ,(s; 6) where @ is a vector of
Chebychev coefficients

@ Eulerequations:vVj=1,...,J—-1,Vse H; Vz

uc(i(s,z:0)) = PBER(8,Z)uc(Ci+1(8, 2 0))

where § (a1,7(5;0),...,85-1.(5:0))

@ high-dimensional, nonlinear system of equations in 6
@ High demands on nonlinear root finder (details)

@ Simulate to get endogenous asset distribution
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Equilibrium consumption policy of generation 3

gen3 consumption
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Implementation: Coding the algorithm

@ Krueger and Kubler used Fortran: about 1,5h for 20
generations, 30h for 30 generations

@ Programming algorithm harder than it seems
@ Pontus Rendahl, EUI: code not online anymore

@ Andreas Klimke’s Sparse Grid interpolation toolbox: Cave!
(Problem with Euler equations)

@ C++ code for Smolyak quadrature (e.g. Dynare++)
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Implementation: Coding the algorithm

@ Krueger and Kubler used Fortran: about 1,5h for 20
generations, 30h for 30 generations

@ Programming algorithm harder than it seems
@ Pontus Rendahl, EUI: code not online anymore

@ Andreas Klimke’s Sparse Grid interpolation toolbox: Cave!
(Problem with Euler equations)

@ C++ code for Smolyak quadrature (e.g. Dynare++)

Thank you for your attention!
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Appendix

Appendix contents
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Appendix - Chebychev Interpolation formulae

n
Evaluation:  7(x) = 6;Ti(z) ,z€ [1—,1] .x € [a,b]

with  To=1, Ty=2z, Ty(2)=22T(z) - Ti_1(2)

e Defined on [-1,1], scale to [a,0]: x; = (z; + 1) (%528) + a
@ As nodes, use Chebychev roots (see slide 5).

@ Let mbe number of interpolation nodes. For m > n+ 1 we
have Chebychev Regression.

@ Then coefficients can be calculated as

o Y T2z
= m 2 Ti@E) <‘ > T,-(z,->2>

i=1




Appendix - Chebychev Algorithm

Algorithm (Chebychev Regression, Judd (1998))

@ Choose m interpolation nodes and the degree of
polynomial approximation n < m

@ Compute m > n+ 1 nodes (roots) on [—1,1]:
z,-:—cos(%) , i=1,....m

© Adjust to interval [a, b]:
xi=(z+1)(%2%) +a, i=1,....m

Q Evaluate f: y; = f(x;).

@ Compute coefficients: ; = 2 3" . Ti(z)y;

Approximation for x € [a, b] : f(x) = 0T <2ﬁ — 1)
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Appendix - Chebychev theoretical background

@ Definition: T;(x) = cos(icos™ x).
@ Expensive to compute, recursive formulation more efficient

@ Family of orthogonal polynomials defined by

/T Ti(x)w(x)dx =0, i#],

where w(x) is a weighting function. For Chebychev:
w(x) = +/(1 — x2).
@ See Makotos slides on projection methods (Weighted
Residual Methods, wrm.pdf), or Heer and MaufBner (2005).
@ Orthogonal polynomials belong to projection methods, with
testing function the Dirac delta function.

Daniel Harenberg (U of Mannheim) Computing Equilibrium Econ 714, 2006 21/28



Appendix - Tensor product

@ If Aand B are sets of functions their tensor product is

AR B={o(x)(y)|¢ € A v € B}.

@ For certain cases also called Kronecker product.

@ If x and y are vectors with 4 points in one dimension each,
the Tensor grid is represented by

2 (x1,y1) (X2, 1) (X3, )1)  (Xas)1)
Yo ® [x1 Xo X3 Xa| = (x1,¥2) (X2, ¥2) (X3,)2) (Xa,Y2)
Y3 (x1,¥3) (X2.¥3) (X3,¥3) (Xa.Y3)
Ya (X1, ¥a) (X2, ¥a) (X3,Ya) (Xa,¥a)

Daniel Harenberg (U of Mannheim) Computing Equilibrium Econ 714, 2006 22/28



Appendix - Computational complexity of grid

Exponential and polynomial complexity

Let H4,4 denote the set of gridpoints depending on the number
of dimensions d and the order of the interpolating polynomials
q. Let v(Hq,q) be a function returning the total number of nodes
in the set. For given g and functions g(q), h(q) the
computational costs of computing the grid can be written as

(i) Exponential complexity: v(Hq,q) € 0(9(9)9)
(i) Polynomial complexity: v(Hg,q4) € O(d™®)

@ See definition of big O notation on next slide.

V(Hq,d)
o@? = M

@ Simply put: grid grows polynomially in dimension.

@ Slightly more loosely, this implies 3 M :
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Appendix - Big O notation

Definition (Big O notation)
Let f(x) and g(x) be real functions.

f(x) € O(g(x)) as x — oo
& Ix, IM >0 s. th. [f(x)] < M|g(x)| for x > Xo.

We say that f(x) is of order g(x).

@ Used in two senses:
(i) functional convergence
(i) computational complexity
@ In our setting, we need it to describe
(i) Convergence of the approximating to true function
(i) Rate of growth of grid size (computational complexity)
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Appendix - Smolyak details

Had = U (gi1 x...xgid)

q—d+1<Jil<q

o Multi-index i € N with  [i| =32, j,

@ Number of nodes in dimension i:  m; = 2/~ 4 1

@ Nested Cheb extrema: k,’ = —CoS (%)
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Appendix - Smolyak details

Had = U (gi1 x...xgid)

q—d+1<Jil<q

o Multi-index i € N with  [i| =32, j,
@ Number of nodes in dimension i:  m; = 2/~ 4 1

@ Nested Cheb extrema: k,’ = —CoS (%)

@ Recall that Binomial Coefficient defined as the number of
ways that n objects can be chosen from k objects,

regardless of order (speak "n choose k"): (y) = WLK)'
. e fd =1 , .
Fas) = 3 0§70 (PR
g—d+1<Jil<q qa
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Appendix - KK04 solution algorithm

Algorithm (Time iteration collocation)

i. Guess coefficients ¢° for initial & = {& }14;11_

ii. Given6" and thus @", solveVj=1,...,J -1,
Vse H,and V z

uc(ci(ajz s.z)) = BER(S,Z')uc(Cit1(s',2;0™))
where s = (aiz,...,ay_17)
¢ = SiR(s,z) +w(s,z)-a;,

iii. Compute new coefficients 9" from optimal a; ,.

iv. Ifsu a1 — 3" < 7 stop, else go to ii.
z2,8€H
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