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1 Introduction

A model is an arti�cial economy. Description of a model's environment may include specifying the

agents' preferences and endowment, technology available, information structure as well as property

rights. Neoclassical Growth Model becomes one of the workhorses of modern macroeconomics

because it delivers some fundamental properties of modern economy, summarized by, among others,

Kaldor:

1. Output per capita has grown at a roughly constant rate (2%).

2. The capital-output ratio (where capital is measured using the perpetual inventory method

based on past consumption foregone) has remained roughly constant.

3. The capital-labor ratio has grown at a roughly constant rate equal to the growth rate of

output.

4. The wage rate has grown at a roughly constant rate equal to the growth rate of output.

5. The real interest rate has been stationary and, during long periods, roughly constant.

6. Labor income as a share of output has remained roughly constant (0.66).

7. Hours worked per capita have been roughly constant.

Equilibrium can be de�ned as a prediction of what will happen and therefore it is a mapping from

environments to outcomes (allocations, prices, etc.). One equilibrium concept that we will deal

with is Competitive Equilibrium 1. Characterizing the equilibrium, however, usually involves �nding

solutions to a system of in�nite number of equations. There are generally two ways of getting

around this. First, invoke the welfare theorem to solve for the allocation �rst and then �nd the

equilibrium prices associated with it. The �rst way sometimes may not work due to, say, presence

of externality. So the second way is to look at Recursive Competitive equilibrium, where equilibrium

objects are functions instead of variables.

2 [Review]-Neoclassical Growth Model

We review brie�y the basic neoclassical growth model.

1Arrow-Debreu or Valuation Equilibrium.
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2.1 The Neoclassical Growth Model Without Uncertainty

The commodity space is

L = {(l1, l2, l3) : li = (lit)
∞
t=0 lit ∈ R, sup

t
|lit| <∞, i = 1, 2, 3}

The consumption possibility set is

X(k0) = {x ∈ L : ∃(ct, kt+1)∞t=0

such that ∀t = 0, 1, . . .

ct, kt+1 ≥ 0

x1t + (1− δ)kt = ct + kt+1

− kt+1 ≤ x2t ≤ 0

− 1 ≤ x3t ≤ 0

k0 = k0 }

The production possibility set is: Y =
∏

t Yt where

Yt = {(y1t, y2t, y3t) ∈ R3 : 0 ≤ y1t ≤ F (−y2t,−y3t)}

De�nition 1. An Arrow-Debreu equilibrium is (x∗, y∗) ∈ X×Y , and a continuous linear functional

ν∗ such that

i. x∗ ∈ arg maxx∈X,ν∗(x)≤0

∑∞
t=0 β

tu(ct(x),−x3t).

ii. y∗ ∈ arg maxy∈Y ν
∗(y).

iii. x∗ = y∗.
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Now, let's look at the one-sector growth model's Social Planner's Problem:

max
∑∞

t=0 β
tu(ct,−x3t) (SPP )

s.t.

ct + kt+1 − (1− δ)kt = x1t

0 ≤ x2t ≤ kt

0 ≤ x3t ≤ 1

0 ≤ y1t ≤ F (−y2t,−y3t)

x = y

k0 given.

Suppose we know that a solution in sequence form exists for (SPP) and is unique.

Homework: Clearly stating su�cient assumptions on utility and production function, show that

(SPP) has a unique solution.

Two important theorems show the relationship between CE allocations and Pareto optimal alloca-

tions:

Theorem 2. Suppose that for all x ∈ X there exists a sequence (xk)
∞
k=0, such that for all k ≥ 0,

xk ∈ X and U(xk) > U(x). If (x∗, y∗, ν∗) is an Arrow-Debreu equilibrium then (x∗, y∗) is Pareto

e�cient allocation.

Theorem 3. IfX is convex, preferences are convex, U is continuous, Y is convex and has an interior

point, then for any Pareto e�cient allocation (x∗, y∗) there exists a continuous linear functional

ν such that (x∗, y∗, ν) is a quasiequilibrium, that is (a) for all x ∈ X such that U(x) ≥ U(x∗) it

implies ν(x) ≥ ν(x∗) and (b) for all y ∈ Y , ν(y) ≤ ν(y∗).

Note that at the very basis of the CE de�nition and welfare theorems there is an implicit assumption

of perfect commitment and perfect enforcement. Note also that the FWT implicitly assumes there

is no externality or public goods (achieves this implicit assumption by de�ning a consumer's utility

function only on his own consumption set but no other points in the commodity space).

From the First Welfare Theorem, we know that if a Competitive Equilibrium exits, it is Pareto

Optimal. Moreover, if the assumptions of the Second Welfare Theorem are satis�ed and if the

SPP has unique a solution then the competitive equilibrium allocations is unique and they are
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the same as the PO allocations. Prices can be constructed using this allocations and �rst order

conditions.

Homework: Show that
v2t

v1t

= Fk(kt, lt)
v3t

v1t

= Fl(kt, lt)

One shortcoming of the AD equilibrium is that all trade occurs at the beginning of time. This

assumption is unrealistic. Modern Economics is based on sequential markets. Therefore we de�ne

another equilibrium concept, Sequence of Markets Equilibrium (SME). We can easily show that

SME is equivalent to ADE. Therefore all of our results still hold and SME is the right problem to

solve.

Homework: De�ne a Sequential Markets Equilibrium (SME) for this economy. Prove that the

objects we get from the AD equilibrium satisfy SME conditions and that the converse is also true.

We should �rst show that a CE exists and therefore coincides with the unique solution of (SPP).

Note that the (SPP) problem is hard to solve, since we are dealing with in�nite number of choice

variables. We have already established the fact that this SPP problem is equivalent to the following

dynamic problem:

v(k) = max
c,k′

u(c) + βv(k′) (RSPP )

s.t. c+ k′ = f(k).

We have seen that this problem is easier to solve.

What happens when the welfare theorems fail? In this case the solutions to the social planners

problem and the CE do not coincide and so we cannot use the theorems we have developed for

dynamic programming to solve the problem. As we will see in this course, in this case we can

work with Recursive Competitive Equilibria. In general, we can prove that the solution to the RCE

coincides with a sequential markets problem but not the other way around (for example when we

have multiple equilibria). However, in all the models we see this course, this equivalence will hold.
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2.2 Review-Adding Uncertainty

2.2.1 Markov Process

In this part, we want to focus on stochastic economies where there is a productivity shock a�ecting

the economy. The stochastic process for productivity that we are assuming is a �rst order Markov

Process that takes on �nite number of values in the set Z = {z1 < · · · < znz}. A �rst order

Markov process implies

Pr(zt+1 = zi|ht) = Γij, zt(ht) = zj

where ht is the history of previous shocks. Γ is a Markov matrix with the property that the elements

of its columns sum to 1.

Let µ be a probability distribution over initial states, i.e.∑
i

µi = 1

and µi ≥ 0 ∀i = 1, ..., nz.

Next periods the probability distribution can be found by the formula: µ′ = ΓTµ.

If Γ is �nice� then ∃ a unique µ∗ s.t. µ∗ = ΓTµ∗ and µ∗ = limm→∞(ΓT )mµ0, ∀µ0 ∈ ∆i.

Γ induces the following probability distribution conditional on z0 on ht = {z0, z1, ..., zt}:

Π({z0, z1}) = Γi for z
0 = zi.

Π({z0, z1, z2}) = ΓTΓi for z
0 = zi.

Then, Π(ht) is the probability of history ht conditional on z
0. The expected value of z′ is

∑
z′ Γzz′z

′

and
∑

z′ Γzz′ = 1.
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2.2.2 Problem of the Social Planner

Let productivity a�ects the production function in an arbitrary way, F (z,K,N). Problem of the

social planner problem (SPP) in sequence form is

max
{ct(ht),kt+1(ht)}∈X(ht)

∞∑
t=0

∑
ht

βtπ(ht)u(ct(ht))

s.t ct(ht) + kt+1(ht) = ztF (kt(ht−1), 1).

Therefore, we can formulate the stochastic SPP in a recursive fashion:

V (zi, K) = max
c,K′

u(c) + β
∑
j

ΓjiV (zj, K ′)

s.t. c+K ′ = ziF (K, 1).

This gives us a policy function K ′ = G(z,K).

AD Equilibrium AD equilibrium can be de�ned by:

max
{ct(ht),k′(ht),x1t(ht),x2t(ht),x3t(ht)}∈X(ht)

∞∑
t=0

∑
ht

βtπ(ht)u(ct(ht))

s.t
∞∑
t=0

∑
ht

p(ht)x(ht) ≤ 0.

where X(ht) is the consumption feasibility set after history ht occured. Note that we are assuming

the markets are dynamically complete, i.e. there is complete set of securities for every possible

history that can appear.

By the same procedure as before, SME can be written in following way:

max
ct(ht),bt+1(ht,zj),kt+1(ht)

∞∑
t=0

∑
ht

βtπ(ht)u(ct(ht))

s.t ct(ht) + kt+1(ht) +
∑
zj

bt+1(ht, z
j)q(ht, z

j) = kt(ht−1)R(ht) + w(ht) + bt(ht−1).

Here we have introduced Arrow securities to allow agents to trade with each other against possible

future shocks.
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However, in equilibrium and when there is no heterogeneity, there will be no trade. Moreover, we

have two ways of delivering the goods speci�ed in an Arrow security contract: after production

and before production. In an after production setting, the goods will be delivered after production

takes place and can only be consumed or saved for the next period. This is the above setting. It

is also possible to allow the consumer to rent the Arrow security income as capital to �rms, which

will be the before production setting.

An important condition which must hold true in the before production setting is the no-arbitrage

condition,
∑

zt+1
q(ht, zt+1) = 1.

Homework: Describe the AD problem, in particular the consumption possibility set X and the

production set Y .

Homework: Every equilibrium achieved in AD problem can be achieved by SME problem by the

relation where q(ht+1) = p1(ht+1)/p1(ht), R(ht) = −p2(ht)/p1(ht) and w(ht) = −p3(ht)/p1(ht).

Check that from the FOCs the same allocations result.

Homework: The problem above state contingent goods are delivered in terms of consumption

goods. Instead of this assume they are delivered in terms of capital goods. Show that the same

allocation would be achieved in both settings.

2.2.3 A Comment on the Welfare Theorems

Situations in which the welfare theorems would not hold include externalities, public goods, sit-

uations in which agents are not price takers (e.g. monopolies), some legal systems or lacking of

markets which rule out certain contracts which appears complete contract or search frictions. In all

of these situation �nding equilibrium through SPP is no longer valid. Therefore, in these situations,

as mentioned before, it is better to de�ne the problem in recursive way and �nd the allocation

using the tools of Dynamic Programming.

3 Recursive Competitive Equilibrium

3.1 A Simple Example

What we have so far is that we have established the equivalence between allocation of the SPP

problem which gives the unique Pareto optima (which is same as allocation of AD competitive

equilibrium and allocation of SME). Therefore we can solve for the very complicated equilibrium
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allocation by solving the relatively easier Dynamic Programming problem of social planner. One

handicap of this approach is that in a lot of environments, the equilibrium is not Pareto Optimal

and hence, not a solution of a social planner's problem, e.g. when you have taxes or externalities.

Therefore, the above recursive problem would not be the right problem to solve. In some of these

situations we can still write the problem in sequence form. However, we would lose the powerful

computational techniques of dynamic programming. in order to resolve this issue we will de�ne

Recursive Competitive Equilibrium equivalent to SME that we can always solve for.

In order to write the decentralized household problem recursively, we need to use some equilibrium

conditions so that the household knows what prices are as a function of some economy-wide

aggregate state variable. We know that if capital is Kt and there is 1 unit of labor, then w (K) =

Fn (K, 1) , R (K) = Fk (K, 1) . Therefore, for the households to know prices they need to know

aggregate capital. Now, a household who is deciding about how much to consume and how much to

work has to know the whole sequence of future prices, in order to make his decision. This means

that he needs to know the path of aggregate capital. Therefore, if he believes that aggregate

capital changes according to K ′ = G(K), knowing aggregate capital today, he would be able to

project aggregate capital path for the future and therefore the path for prices. So, we can write

the household problem given function G(·) as follows:

Ω(K, a;G) = max
c,a′

u(c) + βΩ(K ′, a′;G) (RCE)

s.t. c+ a′ = w(K) +R(K)a

K ′ = G(K),

c ≥ 0

The above problem, is the problem of a household that sees K in the economy, has a belief

G, and carries a units of assets from past. The solution of this problem yields policy functions

c(K, a;G), a′(K, a;G) and a value function Ω(z,K, a;G). The functions w(K), R(K) are ob-

tained from the �rm's FOCs (below).

uc[c(K, a;G)] = βΩa[G(K), a′(K, a;G);G]

Ωa[K, a;G] = (1 + r)uc[c(K, a;G)]
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Now we can de�ne the Recursive Competitive Equilibrium.

De�nition 4. A Recursive Competitive Equilibrium with arbitrary expectations G is a set of

functions2 Ω, g : A×K → R, R, w,H : K → R+ such that:

1. given G; Ω, g solves the household problem in (RCE).

2. K'=H(K;G)=g(K,K;G) (representative agent condition).

3. w (K) = Fn (K, 1) .

4. R (K) = Fk (K, 1).

We de�ne another notion of equilibrium where the expectations of the households are consistent

with what happens in the economy:

De�nition 5 (Rational Expectation Equilibrium). A Rational Expectations Equilibrium is a set of

functions Ω, g, R, w,G∗ such that

1. Ω(K, a;G∗), g(K, a;G∗) solves HH problem in (RCE).

2. G∗(K) = g(K,K;G∗) = K ′.

3. w (K) = Fn (K, 1) .

4. R (K) = Fk (K, 1) .

What this means is that in a REE, households optimize given what they believe is going to happen

in the future and what happens in the aggregate is consistent with the household's decision. The

proof that every REE can be used to construct a SME is left as an exercise. The reverse turns

out not to be true. Notice that in REE, function G projects next period's capital. In fact, if we

construct an equilibrium path based on REE, once a level of capital is reached in some period, next

period capital is uniquely pinned down by the transition function. If we have multiplicity of SME,

this would imply that we cannot construct the function G since one value of capital today could

imply more than one value for capital tomorrow. We will focus on REE unless expressed otherwise.

2 We could add the policy function for consumption gc(K, a;G).
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3.2 Economy with Leisure

We may extend the previous framework to the elastic labor supply case. Note that aggregate

employment level is not a state variable but is instead predicted by aggregate states. The households

problem is as follows:

Ω(K, a;G,H) = max
c,a′,n

u(c, n) + βΩ(K ′, a′;G,H) (RCE)

s.t. c+ a′ = w(K,N)n+R(K,N)a

K ′ = G(K),

N = H(K)

with solution a∗(K, a;G,H), n∗(K, a;G,H).

Wemay thus de�ne an RCE with rational expectation to be a collection of functions (Ω, a∗, n∗) , (G,H), (R,w)

such that

1. Given (G,H), (R,w) , (Ω, a∗, n∗) solves HH problem

2. G(K) = a∗(K,K;G,H).

3. H(K) = n∗(K,K;G,H).

4. w (K,N) = Fn (K,N) .

5. R (K,N) = Fk (K,N) .

Note that condition 1 is the optimality condition. Condition 2 and 3 are imposed because of

rational expectation. Condition 4 and 5 are marginal pricing equations.

3.3 Economy with Uncertainty

Go back to our simple framework with inelastic labor supply. But assume there is productivity shock

z that can take on �nite number of values, whose evolution follows a Markov process governed by

Γzz′ .Then Current period productivity shock, denoted by z,should be included into aggregate state

variables that help predicting prices and future aggregate state variables. Moreover, assume that
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households can accumulate state contingent capital.

Ω(K, z, a;G) = max
c,a′(z′)

u(c) + β
∑
z′

Ω(K ′, z′, a′ (z′) ;G)Γzz′ (RCE)

s.t. c+
∑
z′

q (K, z, z′) a′ (z′) = w(K, z) +R(K, z)a

K ′ = G(K, z),

c ≥ 0

Solving this problem gives policy function g (K, z, a, z′;G)

An RCE in this case is a collection of functions (Ω, g) , (q, w,R,G) such that

1. Given (q, w,R,G) , (Ω, a∗) solves HH problem

2. g (K, z,K, z′;G) = G (K, z) ,∀K, z, z′

3. w (K,N) = Fn (K,N)

4. R (K,N) = Fk (K,N)

5.
∑

z′ q (K, z, z′) = 1 (no arbitrage condition)

3.4 Economy with Government Expenditures

3.4.1 Lump Sum Tax

The government levies each period T units of goods in a lump sum way and spends it in a public

good, say �reworks. Assume consumers do not care about medals. The household's problem

becomes:

Ω(K, a;G) = max
c,a′

u(c) + βΩ(K ′, a′;G)

s.t. c+ a′ + T = w(K) +R(K)a

K ′ = G(K;M,T ),

c ≥ 0

A solution of this problem are functions g∗a(K, a;G,M, T ) and Ω(K, a;G) and the equilibrium can

be characterized by G∗(K,M, T ) = g∗a(K,K;G∗,M, T ) and M∗ = T (the government budget
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constraint is balanced period by period). We will write a complete de�nition of equilibrium for a

version with government debt (below).

3.4.2 Income Tax

We have an economy in which the government levies taxes in order to purchase medals. Medals

are goods which provide utility to the consumers (for this example).

Ω(K, a;G) = max
c,a′

u(c,M) + βΩ(K ′, a′;G)

s.t. c+ a′ = [w(K) +R(K)a](1− τ)

K ′ = G(K),

M = τ [w(K) +K R(K)]

c ≥ 0

Now the social planner function method cannot be used: the CE will not be Pareto optimal anymore

(if τ > 0 there will be a wedge, and the e�ciency conditions will not be satis�ed).

3.4.3 Taxes and Debt

Assume that government can issue debt. Note that in a sequence version of the household problem

in SME, in order for households not to achieve in�nite consumption, we need a no-Ponzi condition:

lim
t→∞

at∏t
s=0Rs

<∞

This is the weakest condition that imposes no restrictions on the �rst order conditions of the

household's problem. It is harder to come up with its analogue for the recursive case. One

possibility is to assume that a′ lies in a compact set A or a set that is bounded from below3. We

will give a complete de�nition of RCE of this economy.

A government policy consists of taxes, spending (�reworks) as well as bond issuance:

τ (K,B) , F (K,B) , B′ (K,B)

In this environment, debt issued is relevant for the household because it permits him to correctly

3We must specify A such that the borrowing constraint implicit in A is never binding.
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infer the amount of taxes. Therefore the household needs to form expectations about the future

level of debt from the government. The government budget constraint now satis�es (with taxes

on labor income):

F (K,B) +R (K) ·B = τ (K,B)w(K) +B′ (K,B)

Where also B′ (K,B) = GB(·). Notice that the household does not care about the composition

of his portfolio as long as assets have the same rate of return which is true because of the no

arbitrage condition. Therefore, the problem of a household with assets equal to a is given by:

Ω (a,K,B) = max
c,a′

u (c, F ) + βΩ (a′, K ′, B′)

s.t. c+ a′ ≤ w (K) +R (K) a (1− τ(K,B))

K ′K (K,B)

B′B (K,B)

τ = τ(K,B), F = F (K,B)

De�nition 6 (Rational Expectation Equilibrium with Government Debt). A Rational Expecta-

tions Recursive Competitive Equilibrium given policies F (K,B),τ(K,B) is a set of functions

Ω, g, R, w,GK , GB, B′ such that

1. Ω(K,B, a; ·), g(K,B, a;GK , GB, F (·), τ(·)) solves the HH problem.

2. w(K) = F2(K, 1), R(K) = F1(K, 1).

3. Representative agent condition

g(K,B,K +B;GK , GB, ·) = GK(K,B; ·) +GB(K,B; ·).

4. Government Budget Constraint

B′ (K,B) = R (K)B + F (K,B)− τ (K,B)R (K) (K +B)

5. Government debt is bounded

∃ B, B̄ such that ∀B ∈ [B, B̄] we have GB(K,B) ∈ [B, B̄] (and ∀K).

Homework: Show that we do not need market clearing in the Recursive Competitive Equilibrium

de�nition. (Hint: Walras Law)
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3.5 Economy with Externalities

Let's consider an economy where the consumer cares about aggregate consumption in additions

to his own, in particular a utility function taking the form u(c, c/C).

Ω(K, a) = max
c,a′

u(c, c/C) + βΩ(K ′, a′)

s.t. c+ a′ = w(K) +R(K)a

K ′ = G(K),

C = H (K)

Homework: Show that the solution for the household's problem is not Pareto optimal (it is

di�erent from the social planner's solution).

In this case an RCE is Ω, g,H,G,W,R such that

1. w(K) = F2(K, 1), R(K) = F1(K, 1).

2. Given other functions, Ω, g solves households problem

3. g (K,K) = G (K)

4. H (K) = W (K) +R (K)K −G (K)

Another possibility could be that the consumer cares about aggregate consumption from the previ-

ous period, u(c, C−1), or �catching up with the Joneses�. In that case we would have an additional

state variable C−1, since this information becomes relevant to the consumer when he is solving his

problem. Other externalities could appear in how the consumer enjoys leisure, in the production

function, etc. To write it out more explicitly:

Ω(K, a, C−) = max
c,a′

u(c, C−) + βΩ(K ′, a′, C−′)

s.t. c+ a′ = w(K) +R(K)a

K ′ = G
(
K,C−

)
,

C−′ = H
(
K,C−

)
A RCE is Ω, g,H,G,W,R such that
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1. w(K) = F2(K, 1), R(K) = F1(K, 1).

2. Given other functions, Ω, g solves the household's problem.

3. g (K,K,C−) = G (K,C−) .

4. H (K,C−) = W (K) +R (K)K −G (K,C−) .

3.6 An Economy with Capital and Land

Consider an economy with with capital and land but without labor. The agent's problem is

V (K, a) = max
c,a′

u(c) + βV (K ′, a′) s.t.

c+ a′ = R (K) a,

K ′ = G(K).

The solution requires a function a′ = h(K, a). We could use yet another notation c+ q(K)â′ = â,

â′ = ĥ(K, â). The problem for the �rm is the following:

Ω(K, k) = max
k′,d

d+ q(K) · Ω(K ′, k′)

s.t.

K ′ = G(K)

Where d = F (k, 1)− k′+ (1− δ)k (full depreciation obviously means δ = 1). An RCE consists of

functions {V,Ω, h, g, q, G,D, d}, and the conditions that have to hold are similar to the case with

uncertainty. In particular:

• V, h and Ω, g solve the problems of the household and the �rm, respectively.

• Firms are representative: G(K) = g(K,K).

• Households are representative: h[K,Ω(K,K)/R (K)] = Ω(G(K), G(K))/R (G (K)) .

• q(K) = 1/R (K) .
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4 Adding Heterogeneity

In the previous section we looked at situations in which RCE were useful. In particular these were

situations in which the welfare theorems failed and so we could not use the standard dynamic

programming techniques learned earlier. In this section we look at another way in which RCE are

helpful- in models with heterogeneous agents.

First, lets consider a model in which we have two types of households that di�er only in the amount

of wealth they own. Say there are two types of agents labelled type 1 and 2 of equal measure

1/2. Agents are identical other than their initial wealth position and there is no uncertainty in the

model. The agent's problem is

V (K1, K2, a) = max
c,a′

u(c) + βV (K ′1, K ′2, a′)

s.t. c+ a′ = R
(
(K1 +K2)/2

)
a+W

(
(K1 +K2)/2

)
K ′i = Gi(KR, KP ) i ∈ 1, 2.

De�nition 7 (Rational Expectation Equilibrium with Agents that Di�er in Wealth). A Rational

Expectations Recursive Competitive Equilibrium is a set of functions V, g, R,w,G1, G2 such that

1. V, g solves the HH problem.

2. w,R are the marginal products of labor and capital respectively (watch out for arguements!).

3. Representative agent conditions

g(K1, K2, K1) = G1(K1, K2)

g(K1, K2, K2) = G2(K1, K2).

Now consider a slightly di�erent economy where type i has labor skill εi. Measure of agents, µ1, µ2

satis�es µ1ε1 + µ2ε2 = 1 (below we will consider the case µ1 = µ2 = 1/2).

An important issue here is to determine what constitutes a su�cient statistic for describing house-

hold problem. In particular, we should determine whether K is enough for learning current prices

and predict K ′. It turns out that this is only true under particular assumptions that make the

savings function of each individual linear in K.
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The problem of the household i ∈ {1, 2} can be written as follows.

V i(K1, K2, a) = max
c,a′

u(c) + βV i(K ′1, K ′2, a′)

s.t. c+ a′ = R
(
(K1 +K2)/2

)
a+W

(
(K1 +K2)/2

)
εi

K ′i = Gi(KR, KP ) i ∈ 1, 2.

Notice that we have indexed the value function by the agent's type (if they were the same we

would not need this index).

4.1 An International Economy Model

In an international economy model the speci�cations which determine the de�nition of country

is an important one. We can introduce the idea of di�erent locations, or geography, countries

can be victims of di�erent policies, additionally trade across countries maybe more di�cult due to

di�erent restrictions.

Here we will see a model with two countries, A and B, such that labor is not mobile between

the countries but with perfect capital markets. Two countries may have di�erent technologies

FA(KA, 1) and FB(KB, 1). We need one more variable, we can choose X, the share of total

wealth for country A. So country i's problem becomes:

Ωi (KA, KB, X, a) = max
c,a′

u (c) + βΩi (K
′
A, K

′
B, X

′, a′)

s.t. c+ a′ ≤ wi(Ki) + aR (KA, KB, X)

K ′j = Gj (KA, KB, X) for j ∈ {A,B}

X ′ = H (KA, KB, X) .

De�nition 8. A RCE for this economy is a set of functions Ωi, gi, {Gi, H,R,wi}, such that the

following conditions hold:

1. Ωi, gi(KA, KB, X, a) solves the household's problem in each country.

2. H (KA, KB, X) = gA (KA, KB, X,X (KA +KB)) /K (KA, KB, X) where

K (KA, KB, X) = gA (KA, KB, X,X (KA +KB))+gB (KA, KB, X, (1−X) (KA +KB)) .

3. GA(·) +GB(·) = gA (KA, KB, X,X (KA +KB)) + gB (KA, KB, X, (1−X) (KA +KB)) .
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4. wi = Fn (Ki, 1) , i = A,B.

5. R(KA, KB, X) = (1− δ) + FA
K(KA, 1) = (1− δ) + FB

K (KB, 1), wi = F i
N(Ki, 1).

6. FA
K [GA(·), 1] = FB

K [GB(·, 1)].

5 Asset Pricing - Lucas Tree Model

We now turn to the simplest of all models in term of allocations as they are completely exogenous,

the Lucas tree model. We want to characterize the properties of prices that are capable of inducing

households to consume the endowment.

5.1 The Lucas Tree with Random Endowments (Productivity Shocks)

Consider an economy in which the only asset is a tree that gives fruit. The agents problem is

V (z, s) = max
c,s′

u(c) + β
∑
z′

Γzz′V (z′, s′)

s.t. c+ q · s′ = s(q + z)

q = q(z).

De�nition 9. A Rational Expectations Recursive Competitive Equilibrium is a set of functions

V, g, q such that

1. V, g solves the HH problem.

2. g(z, 1) = 1,∀ z.

The FOC for this problem using Envelope theorem is: −q(zi)uc + β
∑′

z Γzz′u
′
c = 0. Arranging the

terms this gives us:

q (zi)uc (z) =
∑
zj

βuc (zj) Γij (q (zj) + zj) .

Notice that this is just a system of n equations with unknowns {q (zi)}ni=1. We can use the power

of matrix algebra to solve it. Let

q =


q (z1)
...

q (zn)

 ; quc =


q (z1)uc (z1)

...

q (zn)uc (zn)

 ; zuc =


z1uc (z1)

...

znuc (zn)

 ; Γ is the transition matrix for z
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and rewrite the system above as quc = βΓzuc +βΓquc. Hence, the price for the shares is given by uc (z1) ... 0

0... ... ...

0 ... uc (zn)

 q = quc = (I − βΓ)−1 βΓzuc.

Hence

q =

 uc (z1) ... 0

... ... ...

0 ... uc (zn)


−1

(I − βΓ)−1 βΓzuc.

What happens if we add state contingent shares into the model? Then the agent's problem becomes

V (z, s, b) = max
c,s′,b(z′)

u(c) + β
∑
z′

Γzz′V (z′, s′, b (z′))

s.t. c+ q · s′ +
∑
z′

p(z, z′)b(z′) = s(q + z) + b

q = q(z)

A characterization of p can be written as:

p (z, z′)uc (z) = βΓzz′uc (z′)

We can price ALL kinds of securities using p and q in this economy. For example, the option to

sell tomorrow at price P if today's shock is z is priced as:

q̂ (z, P ) =
∑
z′

max {P − q (z′) , 0} p (z, z′) .

The option to sell at price P either tomorrow or the day after tomorrow is priced as:

q̃ (z, P ) =
∑
z′

max {P − q (z′) , q̂ (z′, P )} p (z, z′) .

Finally, note that R (z) = (
∑

z′ p (z, z′))−1 is the risk free rate given today's shock being z
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5.2 Demand shock

Consider an economy in which the only asset is a tree that gives fruits. The fruit is constant over

time (normalized to 1) but the agent is subject to preference shocks for the fruit each period,

θ ∈ Θ. The agents problem is

V (θ, s) = max θu(c) + β
∑
θ′

Γθθ′V (θ′, s′)

s.t. c+ q · s′ = s(q + 1)

q = q(θ).

All the analysis follow through once we write out the FOCs characterizing price q (θ) and state

contingent prices p (θ, θ′) .

6 Endogenous Productivity in a Product Search Version of the Lucas

Tree Model

Let's model the situation where households need to �nd the fruit before consuming it.

Assume that households have to �nd the tree in order to consume the fruit. Finding trees is

characterized by a constant return to scale matching function M (T,D), where T is the number

of trees and D is the shopping e�ort exerted by households when searching. Thus the probability

that a tree �nds a shopper is M (T,D) /T . And the probability that a unit of shopping e�ort

�nds a tree is M (T,D) /D. We further assume that M takes the form DϕT 1−ϕ. And denote the

probability of �nding a tree by Ψd (Q) = Q1−ϕ, where Q = T/D is amount of tree per shopper,

capturing market tightness. The households problem can be described as:

V (θ, s) = max
c,d,s′

u(c, d, θ) + β
∑
θ′

Γθθ′V (θ′, s′) (1)

s.t. c = dΨd (Q (θ)) (2)

c+ P (θ) · s′ = P (θ) · s(1 +R(θ)). (3)

where P is the price of tree relative to that of consumption and R is the dividend income (in units
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of tree). If we substitute the constraints in the objective, we get the simpler problem

V (θ, s) = max
d
u [dΨd(Q), d, θ] + β

∑
θ′

Γθθ′ V

(
θ′, s[1 +R(θ)]− 1

P (θ)
dΨd(Q)

)
. (4)

with �rst order condition

uc +
ud

Ψd(Q(θ))
= β

∑
θ′

Γθθ′Vs

(
θ′, s(1 +R(θ))− 1

P (θ)
dΨd(Q)

)
.

1

P (θ)
(5)

To get rid of Vs, look at the initial household problem (1)-(3). Let the multiplier of the budget

constraint be λ. Applying envelope theorem and taking FOCs, we get:

Vs (θ, s) = λP (θ)(1 +R(θ)),

uc(θ) +
ud(θ)

Ψd[Q(θ)]
= λ,

and this implies

Vs (θ, s) = P (θ)(1 +R(θ))

(
uc(θ) +

ud(θ)

Ψd[Q(θ)]

)
.

Thus we get the Euler equation

uc +
ud

Ψd(Q)
= β

∑
θ′

Γθθ′
P (θ′) [1 +R (θ′)]

P (θ)

(
uc(θ

′) +
ud(θ

′)

Ψd[Q(θ′)]

)
. (6)

We still need another functional equation to �nd an equilibrium. Note that P and Q have to be

determined (other objects, C, R are known functions of P and Q). We now turn to various ways

of doing so.

6.1 Competitive search

Competitive search is a particular search protocol of what is called a non-random search. Both

�rms and workers search for speci�c markets indexed by price P and market tightness. Agents

can go to any such market provided that is operational. From the point of view of the �rm, a pair

would be operational if it guarantees enough utility to the household (an amount determined in

equilibrium). First, solve the problem of a household given P and Q, and then let the �rm choose

which particular pair of P and Q gives earns the highest pro�t. Competitive search is magic.
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It does not presuppose a particular pricing protocol (wage posting, bargaining) that other search

protocols need.

We start by de�ning a useful object Ω, that tells us the value for a household of facing arbitrary

tightness Q and price P today given V . In particular, Ω is de�ned as

Ω (θ, s, P,Q) = max
d

u [dΨd(Q), d, θ] + β
∑
θ′

Γθθ′ V

(
θ′, s(1 +R(θ))− 1

P
dΨd(Q)

)
. (7)

Note that Ω is not an equilibrium object.

Let V denote the value for households shopping in the most attractive market, yet to be determined.

To attract households, trees have to o�er combinations of prices and market tightness that provide

at least V . The problem of a tree is to �nd a combination of price and tightness to maximize its

pro�t while satisfying the participation constraint of households,

max
P,Q

Π(P,Q) =
1

P
ΨT (Q) (8)

s.t. V ≤ Ω(θ, s, P,Q) (9)

where Ω is evaluated at households' optimal shopping e�ort d∗ in response to (θ, s, P,Q),

Ω(θ, s, P,Q) = u(d∗Ψd(Q), d∗, θ) + β
∑
θ′

Γθθ′V

(
θ′, s(1 +R(θ))− 1

P
d∗Ψd(Q)

)
.

Let's characterize the tree's problem. Let the multiplier of the household's participation constraint

(9) be γ. Using the de�nition ΨT (Q) = Q−ϕ, Ψd(Q) = Q1−ϕ, and s = 1 in equilibrium, we can

write the FOC over Q as4

4Here is how we derive (10).

−ϕ 1

P
Q−ϕ−1 + γ

[
∂Ω

∂Q

]
= 0

where

∂Ω

∂Q
=

(
ucΨd(Q) + ud −

1

P
Ψd(Q)β

∑
θ′

Γθθ′Vs(θ
′)

)
∂d∗

∂Q
+ d∗(1− ϕ)Q−ϕ

[
uc −

1

P
β
∑
θ′

Γθθ′Vs(θ
′)

]

=

(
uc +

ud
Ψd(Q)

− 1

P
β
∑
θ′

Γθθ′Vs(θ
′)

)
Ψd(Q)

∂d∗

∂Q
+ d∗(1− ϕ)Q−ϕ

[
uc −

1

P
β
∑
θ′

Γθθ′Vs(θ
′)

]
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1

P
= γ

1− ϕ
ϕ

Q d∗

[
uc −

1

P
β
∑
θ′

Γθθ′Vs

(
θ′, 1 +R(θ)− 1

P
d∗Q1−ϕ

)]
. (10)

The FOC with respect to P is given by,

1 = γQ d∗ · β
∑
θ′

Γθθ′Vs

(
θ′, 1 +R(θ)− 1

P
d∗Q1−ϕ

)
(11)

Combining the two FOCs (10) and (11) to cancel γ, we have

1

P
=

(1− ϕ)uc

β
∑

θ′ Γθθ′Vs
(
θ′, 1 +R(θ)− 1

P
d∗Q1−ϕ

) . (12)

De�nition 10. An equilibrium with competitive search consists of (c, d, s, P,Q,R, V ) that satisfy

households' shopping constraint (2), budget constraint (3), Euler equation (6), trees' FOC (12),

households' participation constraint (9), market clearing conditions s = 1 and Q = d1−ϕ.

This de�nition is excessively cumbersome, and we can go to the core of the issue by writing the two

functional equations that characterize the equilibrium. Note that In equilibrium, we have c = Q−ϕ

and c = PR. Putting together the household's Euler (6) and the tree's FOC (12), we have that

{Q,P} have to solve

ϕuc(Q
−ϕ, Q−1, θ) = −ud(Q

−ϕ, Q−1, θ)

Q1−ϕ , (13)

uc(Q
−ϕ, Q−1, θ) = β

∑
θ′

Γθθ′
P (θ′) +Q (θ′)−ϕ

P
uc(θ

′). (14)

According to FOC with respect to d (5), the �rst term equals to zero. Thus,

∂Ω

∂Q
= d∗(1− ϕ)Q−ϕ

[
uc −

1

P
β
∑
θ′

Γθθ′Vs(θ
′)

]
.

Plugging into the initial FOC, we have (10).
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6.2 A note about dividend

In the previous section, we assume that dividends, R (θ), are paid out in units of the tree. So that

equilibrium consumption C (θ) = P (θ)R (θ) . Consider the following budget constraint:

c+ P (θ) · s′ = s(P (θ) +H(θ)) (15)

where H (θ) is the dividend paid out in the form of fruit

Equation (7) becomes: :

Ω (θ, s, P,Q) = max
d

u [dΨd(Q), d, θ] + β
∑
θ′

Γθθ′ V

(
θ′, s+

1

P
(s ·H (θ)− dΨd(Q))

)

Notice that now:

∂Ω

∂P
= −

(
β
∑
θ′

Γθθ′ V

(
θ′, s+

1

P
(s ·H (θ)− dΨd(Q))

))
sH (θ)− dΨd(Q)

P 2

Following the procedure in section 6.1, we can derive an analogous condition as (13) .

6.3 Pareto Optimality

One of the fascinating properties of competitive search is that the equilibrium is optimal. To see

this note that from the point of view of optimality there are no dynamic considerations, just static.

So solve a social planner problem:

max
c,d,

u(C,D, θ) (16)

s.t. C = DΨ. (17)

It is trivial to see that the FOC condition of this problem is (13).

6.4 Random search and Nash bargaining

In the case of competitive search, many di�erent markets can exist potentially, and consumers and

�rms (trees) choose to participate in the best one for them. Here, we consider another kind of
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market structure: only one market exists, and shoppers meet with trees randomly. After a shopper

and a tree form a match, the price is determined via Nash bargaining.

With price P , the value for the �rm (the tree) is simply 1
P
. Note that since the tree is already

being found, ΨT (Q(θ)) does not show up in the return of the tree. The value for the shopper is

uc(c, d, θ)− β
∑
θ′

Γθθ′
p(θ′) [1 +R (θ′)]

P

(
uc(θ

′) +
ud(θ

′)

Ψd[Q(θ′)]

)
.

The Nash bargaining problem is

max
P

[
1

P

]1−µ
[
uc(c, d, θ)− β

∑
θ′

Γθθ′
p(θ′) [1 +R (θ′)]

P

(
uc(θ

′) +
ud(θ

′)

Ψd[Q(θ′)]

)]µ
(18)

where µ is the bargaining power of the shopper. The �rst order condition is

(1− µ)

[
uc(c, d, θ)− β

∑
θ′

Γθθ′
p(θ′) [1 +R (θ′)]

P

(
uc(θ

′) +
ud(θ

′)

Ψd[Q(θ′)]

)]

= µβ
∑
θ′

Γθθ′
P (θ′) [1 +R (θ′)]

P

(
uc(θ

′) +
ud(θ

′)

Ψd[Q(θ′)]

)

Using the dynamic Euler Equation 6 and the equilibrium conditions, the equation above can be

simpli�ed to

µuc(Q
−ϕ, Q−1, θ) = −ud(Q

−ϕ, Q−1θ)

Q1−ϕ (19)

Compared with Equation 13, if we set the Nash bargaining parameter µ equal to the goods matching

elasticity ϕ, then the solution in the environment with random search and Nash bargaining coincides

with the one under e�cient competitive search.

If we set µ = 0, then ud = 0. This is because when the shopper has no bargaining power, the tree

will obtain all the surplus and leave the shopper with

uc(c, d, θ)− β
∑
θ′

Γθθ′
p(θ′) [1 +R (θ′)]

P

(
uc(θ

′) +
ud(θ

′)

Ψd[Q(θ′)]

)
= 0

The shopping disutility ud is not compensated, and consumers will not search at the �rst place.

Unless consumers have non-zero bargaining power, a hold-up problem will show up that prevents

the household from doing any investment in searching. Consequently, other issues have to be
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present in environments with price posting which is equivalent to µ = 0.

6.5 Price posting by a monopoly that owns all trees

Here we study the case that all trees are run by a monopoly that posts the price but understands

that Q is a function of P . If the household shows up, then she is charged P . The household

sees P and chooses shopping e�ort d and consumption c. There is only one market. Clearly the

equation that determines how market tightness depends on the price is the solution to the Euler

equation of the household that de�nes an implicit equation:

ud(Q
−ϕ, Q−1, θ) +Q1−ϕ

[
uc(Q

−ϕ, Q−1, θ)− 1

P
β
∑
θ′

Γθθ′Vs

(
θ′, 1 +R(θ′)− 1

P
Q′−ϕ

)]
= 0.

(20)

The monopoly chooses the optimal price subject to the household choosing Q according to its

wishes.

max
P

Π(P ) =
1

P (θ)
ΨT (Q(θ, P )). (21)

There are some issues of whether the monopoly understands what happens in the future that we

will leave aside for now because nothing interesting happens dynamically here.

7 Measure Theory

This section will be a quick review of measure theory to be able to use in the subsequent sections.

De�nition 11. For a set S, S is a set (or family) of subsets of S. B ∈ S implies B ⊂ S, but not

the other way around.

De�nition 12. σ-algebra S is a set of subsets of S, with the following properties:

1. S, ∅ ∈ S

2. A ∈ S ⇒ Ac ∈ S (closed in complementarity)

3. for {Bi}i=1,2..., Bi ∈ S ⇒ [∩iBi] ∈ S (closed in countable intersections)
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A σ-algebra is a structure to organize information. Examples are the following:

1. Everything, aka the power set (all the possible subsets of a set S)

2. {∅, S}

3. {∅, S, S1/2, S2/2} where S1/2 means the lower half of S (imagine S as an closed interval on

R).

If S = [0, 1] then the following is NOT a σ− algebra

S =

{
∅, [0, 1

2
),

{
1

2

}
,

[
1

2
, 1

]
, S

}

Remark 13. A convention is (i) use small letters for elements, (ii) use capital letters for sets, (iii)

use �fancy� letters for a set of subsets (or family of subsets).

De�nition 14. A measure is a function x : S → R+ such that

1. x(∅) = 0

2. if B1, B2 ∈ S and B1 ∩B2 = ∅ ⇒ x(B1 ∪B2) = x(B1) + x(B2)

3. if {Bi}∞i=1 ∈ S and Bi ∩Bj = ∅ for all i 6= j ⇒ x(∪iBi) =
∑

i x(Bi) (countable additivity)

Countable additivity means that measure of the union of countable disjoint sets is the sum of the

measure of these sets.

De�nition 15. Borel-σ-algebra is a σ-algebra generated by the family of all open sets (generated

by a topology).

Since a Borel-σ-algebra contains all the subsets generated by intervals, you can recognize any

subset of a set using Borel-σ-algebra. In other words, Borel-σ-algebra corresponds to complete

information.

De�nition 16. Probability (measure) is a measure such that x(S) = 1.
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De�nition 17. Given a measure space (S,S, x), a function f : S → R is measurable if

∀a {b; f(b) ≤ a} ∈ S

One way to interpret a σ-algebra is that it describes the information available based on observations.

Suppose that S is comprised of possible outcomes of a dice throw. If you have no information

regarding the outcome of the dice, the only possible sets in your σ-algebra can be ∅ and S. If

you know that the number is even, then the smallest σ-algebra given that information is S =

{∅, {2, 4, 6}, {1, 3, 5}, S}. Measurability has a similar interpretation. A function is measurable

with respect to a σ-algebra S, if it can be evaluated under the current measure space (S,S, x).

We can also generalize Markov transition matrix to any measurable space.

De�nition 18. A function Q : S × S → [0, 1] is a transition probability if

• Q(·, s) is a probability measure for all s ∈ S.

• Q(B, ·) is a measurable function for all B ∈ S.

In fact Q(B, s) is the probability of being in set B tomorrow, given that the state is s today.

Consider the following example: a Markov chain with transition matrix given by

Γ =

 0.2 0.2 0.6

0.1 0.1 0.8

0.3 0.5 0.2


Where Γij is the probability of j given a present state i. Then

Q({1, 2}, 3) = Γ31 + Γ32 = 0.3 + 0.5 = 0.8

Suppose that x1, x2, x3 is the fraction of types 1,2,3 today. We can calculate the fraction of types

tomorrow using the following formulas

x′1 = x1Γ11 + x2Γ21 + x3Γ31

x′2 = x1Γ12 + x2Γ22 + x3Γ32

x′3 = x1Γ13 + x2Γ23 + x3Γ33
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In other words

x′ = ΓT · x

where xT = (x1, x2, x3). We can extend this idea to a general case with a general transition

function. We de�ne the Updating Operator as T (x,Q) which is a measure on S with respect to

the σ-algebra S such that

x′(B) = T (x,Q)(B) =

∫
S

Q(B, s)x(ds)

A stationary distribution is a �xed point of T , that is x∗ = T (x∗, Q). We know that if Q has nice

properties5 then a unique stationary distribution exists (for example, we discard ��ipping� from one

state to another) and x∗ = limn→∞ T
n(x0, Q) ∀x0.

Example: Consider unemployment in a very simple economy (we have an exogenous transition

matrix). There are two states: �rst one is employed(e) and second one is unemployed (ue). The

transition matrix is

Γ =

(
0.95 0.05

0.50 0.50

)
As part of your homework you have to compute the stationary distribution.

8 Industry Equilibrium

8.1 Preliminaries

Now we are going to study a type of models initiated by Hopenhayn (1992). We will abandon the

general equilibrium framework from the previous section to study the dynamics of distribution of

�rms in a partial equilibrium environment.

To motivate things let's start with the problem of a single �rm that produces a good using labor

input according to a technology described by the production function f . Let assume that this

function is increasing, strictly concave and f (0) = 0. A �rm that hires n units of labor is able to

produce sf (n). where s is a productivity parameter. Markets are competitive in the sense that a

5See SLP, Ch. 11.
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�rm takes prices as given and chooses n in order to solve

π (s, p) = max
n≥0

psf (n)− wn

A solution to this problem is a function n∗ (s, p)6. Given the above assumptions, n∗ is an increasing

function of s (more productive �rms have more workers) as well as p, the FOC is psf ′∗) = w.

Suppose now there is a mass of �rms in the industry, each associated with a productivity parameter

s ∈ S ⊂ R+. Let x be a measure de�ned over the space (S,BS) that describes the cross sectional

distribution of productivity among �rms. We will use this measure to de�ne statistics of the

industry. For example, at this point it is convenient to de�ne the aggregate supply of the industry.

Since individual supply is just sf (n∗ (s, p)), the aggregate supply can be written as

ys (p) =

∫
S

sf (n∗ (s, p))x (ds)

Suppose now that the demand of the market is described by some function yd (p). Then the

equilibrium price, p∗ is determined by the market clearing condition yd (p∗) = ys (p∗).

So far, everything is too simple to be interesting. The ultimate goal here is to understand how the

object x is determined by the fundamentals of the industry. Hence we will be adding tweaks to this

basic environment in order to obtain a theory of �rms distribution in a competitive environment.

Let's start by allowing �rms to die.

8.2 A Simple Dynamic Environment

Consider now a dynamic environment. The situation above repeats every period. Firms discount

pro�ts at rate r which is exogenously given. In addition, assume that a single �rm faces each period

a probability δ of disappearing. We will focus on stationary equilibria, i.e. equilibria in which the

price of the �nal output p stays constant through time.

Notice �rst that �rm's decision problem is still a static problem. We can easily write the value of

6As we declared in advance, this is a partial equilibrium analysis. Hence, we ignore the dependence of the
solution on w to focus on the determination of p.
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an incumbent �rm as follows

V (s, p) =
∞∑
t=0

(
1− δ
1 + r

)t
π (s, p) =

(
1 + r

r + δ

)
π (s, p)

Note that we are considering that p is �xed (therefore we can omit it from the expressions above).

Observe that every period there is positive mass of �rms that die. As before, let x be the measure

describing the distribution of �rms within the industry. The mass of �rms that die is given by δx (S).

We will allow these �rms to be replaced by new entrants. These entrants draw a productivity

parameter s from a probability measure γ.

One might ask what keeps these �rms out of the market. The answer �nothing� gives a �aw to �x

by assuming that there is a �xed entry cost that each �rms must pay in order to operate in the

market. Moreover, we will assume that the entrant has to pay this cost before learning s. Hence

the value of a new entrant is given by the following function.

V E (p) =

∫
s

V (s, p) γ(ds)− cE

Entrants will continue to enter if this is bigger than 0 and continue to decide not to enter if this

value is less than zero. So stationarity occurs where this is exactly equal to zero (this is the free

entry assumption, and we are assuming that there is an in�nite number (mass) of prospective �rms).

Let's analyze how this environment shapes the distribution of �rms in the market. Let xt be the

cross sectional distribution of �rms in period t. For any B ⊂ S the number of �rms with s ∈ B
in period t is given by xt (B) Next period, some of them will die, and that will attract some

newcomers. Hence next period measure of �rms on set B will be given by:

xt+1 (B) = (1− δ)xt (B) +mγ (B)

That is, m �rms enter and γ(B) will belong in the set B. As you might suspect, this relationship

must hold for every B ∈ BS. Moreover, since we are interested in stationary equilibria, the previous

expression tells us that the cross sectional distribution of �rms will be completely determined by

γ. Stationarity on the system we implies:

x∗(B;m) =
m

δ
γ(B)
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Now note that demand supply relation has form

yd (p∗(m)) =

∫
S

sf (n∗ (s, p)) dx∗ (s;m)

whose solution, p∗(m), is continuous function under regularity conditions stated in SLP. We have

two equations and two unknowns p and m.

De�nition 19. A stationary distribution for this environment consists of functions p∗, x∗ and m∗

such that

1. yd (p∗(m)) =
∫
S
sf (n∗ (s, p)) dx∗ (s;m)

2. V E (p) =
∫
s
V (s, p) γ(ds)− cE

3. x∗(B) = (1− δ)x∗(B) +m∗γ(B),∀B ∈ BS

8.3 Introducing Exit Decision

We want to introduce more (economic) content by making the exit of �rms endogenous (a decision

of the �rm). Let's introduce now a cost of operation. Suppose �rms have to pay cv each period

in order to stay in the market and assume S = [s, s]. By adding such a minor change, the solution

still has reservation productivity property under some conditions (to be discussed below). In words,

there will be a minimum s which will make pro�table for the �rm to stay in the market. To see

that this will be the case you should prove that the pro�t before variable cost function π (s, p)

is increasing in s. Hence the productivity threshold is given by the s∗ that satis�es the following

condition:

π (s∗, p) = cv

for an equilibrium price p. Now instead of considering γ as the probability measure describing the

distribution of productivities among entrants, you must consider γ̂ de�ned as follows

γ̂ (B) =
γ (B ∩ [s∗, s])

γ ([s∗, s])

for any B ∈ BS.
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One might suspect that this is an ad hoc way to introduce the exit decision. To make the things

more concrete and easier to compute, we will assume that s is a Markov process. To facilitate

the exposition, let's make S �nite and assume s has transition matrix Γ. Assume further that Γ

is regular enough so that it has a stationary distribution γ. For the moment we will not put any

additional structure on Γ.

The operation cost cv is such that the exit decision is meaningful. Let's analyze the problem from

the perspective of the �rm's manager. He has now two things to decide. First, he asks himself

the question �Should I stay or should I go?�. Second, conditional on staying, he has to decide how

much labor to hire. Importantly, notice that this second decision is still a static decision. Later,

we will introduce adjustment cost that will make this decision a dynamic one.

Let φ (s, p) be the value of the �rm before having decided whether to stay or to go. Let V (s, p)

be the value of the �rm that has already decided to stay. V (s, p) satis�es

V (s, p) = max
n

spf (n)− n− cv +
1

1 + r

∑
s′∈S

Γss′φ (s′, p)

Each morning the �rm chooses d in order to solve

φ (s, p) = max
d∈{0,1}

dV (s, p)

Let d∗ (s, p) be the optimal decision to this problem. Then d∗ (s, p) = 1 means that the �rm stays

in the market. One can alternatively write:

φ (s, p) = max
d∈{0,1}

d

[
π (s, p)− cv +

1

1 + r

∑
s′∈S

Γss′φ (s′, p)

]

or even

φ (s, p) = max

[
π (s, p)− cv +

1

1 + r

∑
s′∈S

Γss′φ (s′, p) , 0

]
(22)

All these are valid. Additionally, one can easily add minor changes to make the exit decision more

interesting. For example, things like scrap value or liquidation costs will a�ect the second argument

of the max operator above, which so far is just zero.

What about d∗ (s, p)? Given a price, this decision rule can take only �nitely many values. Moreover,
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if we could ensure that this decision is of the form �stay only if the productivity is high enough and

go otherwise� then the rule can be summarized by a unique number s∗ ∈ S. Without doubt, that

would be very convenient, but we don't have enough structure to ensure that such is the case.

Because, although the ordering of s (lower s are ordered before higher s) gives us that the value of

s today is bigger than value of smaller s′, depending on the Markov chain, on the other hand, the

value of productivity level s tomorrow may be lower than the value of s′ (note s′ < s) tomorrow.

Therefore we need some additional regularity conditions.

In order to get a cuto� rule for the exit decision, we need to add an assumption about the

transition matrix Γ. Let the notation Γ (s) indicate the probability distribution over next period

state conditional on being on state s today. You can think of it as being just a column of the

transition matrix. Take s and ŝ. We will say that the matrix Γ displays �rst order stochastic

dominance (FOSD) if s > ŝ implies
∑

s′≤b Γ (s′ | s) ≤
∑

s′≤b Γ (s′ | ŝ) for any b ∈ S. It turns

out that FOSD is a su�cient condition for having a cuto� rule. You can prove that by using the

same kind of dynamic programming tricks that we have used in the �rst semester for obtaining the

reservation wage property in search problems. Try it as an exercise. Also note that this is just a

su�cient condition.

Finally, we need to mention something about potential entrants. Since we will assume that they

have to pay the cost cE before learning their s, they can leave the industry even before producing

anything. That requires us to be careful when we describe industry dynamics.

Now the law of motion becomes;

x′(B) = mγ(B ∩ [s∗, s̄]) +

∫
S

∑
s′

1{s′∈B∩[s∗,s̄]}Γ(s, s′)x(ds)

8.4 Stationary Equilibrium

Now that we have all the ingredients in the table, let's de�ne the equilibrium formally.

De�nition 20. A stationary equilibrium for this environment consists of a list of functions (φ, n∗, d∗),

a price p∗ and a measure x∗ such that

1. Given p∗, the functions φ, n∗, d∗ solve the problem of the incumbent �rm

37



2. V E (p∗) = 0

3. For any B ∈ BS (assuming we have a cut-o� rule with s∗ is cut-o� in stationary distribution)7

x∗(B) = mγ(B ∩ [s∗, s̄]) +

∫
S

∑
s′

1{s′∈B∩[s∗,s̄]}Γ(s, s′)x(ds) (23)

You can think of condition (2) as a �no money left over the table� condition, which ensures

additional entrants �nd unpro�table to participate in the industry.

We can use this model to compute interesting statistics. For example the average output of the

�rm is given by
Y

N
=

∑
sf(n∗(s))x∗(ds)∑

x∗(ds)

Next, suppose that we want to compute the share out output produced by the top 1% of �rms.

To do this we �rst need to compute s̃ such that∑s̄
s̃ x
∗(ds)

N
= .01

where N is the total measure of �rms. Then the share output produced by these �rms is given by∑s̄
s̃ sf(n∗(s))x∗(ds)∑s̄
s sf(n∗(s))x∗(ds)

Suppose now that we want to compute the fraction of �rms who are in the top 1% two periods in

a row. This is given by ∑
s≥s̃

∑
s′≥s̃

Γss′x
∗(ds)

We can use this model to compute a variety of other statistics include the Gini coe�cient.

7If we do not have such cut-o� rule we have to de�ne

x∗ (B) =

∫
S

∑
s′∈S

Γss′1{s′∈B}1{d(s′,p∗)=1}x
∗ (ds) + µ∗

∫
S

1{s∈B}1{d(s,p∗)=1}γ (ds)

where

µ∗ =

∫
S

∑
s′∈S

Γss′1{d(s′,p∗)=0}x
∗ (ds)
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8.5 Adjustment Costs

To end with this section it is useful to think about environments in which �rm's productive decision

is no longer static. A simple way of introducing dynamics is by adding adjustment costs.

We will consider labor adjustment costs. First let think of this sequentially, not recursively. These

costs work pretty much like capital adjustment costs as you might suspect. Consider a �rm that

enters period t with nt−1 units of labor. We have then three alternatives (these are some particular

speci�cations, there are endless others):

• Convex Adjustment costs: if the �rm wants to vary the units of labor, it has to pay

α (nt − nt−1)2 units of the numeraire good. The cost here depends on the size of the

adjustment.

• Training costs or hiring costs: if the �rm wants to increase labor, it has to pay α (nt − (1− δ)nt−1)2

units of the numeraire good only if nt > nt−1, i.e. 1{nt>nt−1}α (nt − (1− δ)nt−1)2. δ mea-

sures attrition.

• Firing costs: Similarly we can also have �ring costs.

The recursive formulation of the �rm's problem conditional on staying would be

V (s, n−, p) = max
n≥0

psf (n)− wn− α (n− (1− δ)n−)2 − cv +
1

1 + r

∑
s′∈S

Γss′V (s′, n, p)

for the case with pure adjustment costs. In class we also saw an example in which the �rm pays a

cost κ to post vacancies. In this case the �rm's problem is

Ω (s, n−, p) = max{0,max
v≥0

psf (n)− wn− κv +
1

1 + r

∑
s′∈S

Γss′V (s′, n, p)}

where

n = vφ+ (1− δ)n−.
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9 Incomplete Market Models

9.1 A Farmer's problem

Consider the following problem of a farmer:

V (s, a) = max
c≥0
0≤a′

u (c) + β
∑
s′

Γss′V (s′, a′) (24)

c+ qa′ = a+ s

Where a is his land holding which can only take positive values; c is his consumption and s is

amount of 'fruits' he gets each period. s is a Markov process, with element drawn from set S. q

is the inverse of the 'growth rate' of the land.

A crucial assumption for generating a bounded asset space is:

β/q < 1

which is saying that agents are su�ciently impatient so they tend to consume more and decumulate

their asset when they get richer and far away from the non-negativity constraint a′ ≥ 0.

The �rst order condition is given by:

uc (c (s, a)) ≥ β

q

∑
s′

Γss′uc (c (s′, a′ (s, a))) , equality when a′ (s, a) > 0

where c (., .) , a′ (., .) are policy functions from the farmer's problem.

Notice that a′ (s, a) = 0 is possible for the farmer if we assume appropriate shock structure to the

question. Speci�cally, it depends on the value of smin ≡ minS = min (s1, s2, ...sn)

Suppose smin = 0, then the agent will optimally always choose a′ > 0. Otherwise there is a strictly

positive probability that the agent enters tomorrow into state smin where he has no 'cash in hand'

(a′ + smin = 0) and is forced to consume 0, which is extremely painful to him. Hence he will raise

his asset holding a′ to insure himself against such risk.

If smin > 0, then the above argument no longer holds and it is indeed possible for agent to choose

0 asset holdings tomorrow.
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Notice that the borrowing constraint a′ > 0 is a�ecting agents asset accumulation decision even if

he is away from the zero bound because he has an incentive to ensure against the risk of getting

a series of back shock of s and is forced to 0 asset holdings. This is what we call 'precautionary

savings motive'.

We make further assumptions on the transition matrix of s,Γ :

1. There is a unique stationary distribution of s∗ such that s∗ = Γ
′
s∗

2. (Monotonicity) sn > sm implies that E (s′|sn) > E (s′|sm)

Under the two assumptions, one can show that the farmer's decision rule is monotonic. Namely:

a′ (a1, s) > a′ (a2, s) ,∀a1 > a2,∀s

One can also show, under fairly general conditions, that ∃ â such that ∀a ∈ [0, â] , a′ (a, smin) = 0.

Now we proceed to argue that under β/q < 1, there exits an upper bound for the agent's asset

holding. Notice that when a = 0, FOC holds with equality, hence:

uc (c (s, a)) =
β

q

∑
s′

Γss′uc (c (s′, a′ (s, a))) (25)

<
∑
s′

Γss′uc (c (s′, a′ (s, a)))

As a grows larger, right hand side of (25) has a smaller variance because larger fraction of the

farmer's 'cash in hand' comes from his wealth, rather than the shock s. Namely:

uc (c (s′, a′ (s, a)))→
∑
s′

Γss′uc (c (s′, a′ (s, a))) ,∀s′, s ,as a →∞ (26)

Combining (25) and (26), we can see that:

uc (c (s, a)) < uc (c (s, a′ (s, a))) , for a su�ciently large

which implies

c (s, a) > c (s, a′ (s, a))
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which by monotonicity of decision rule implies

a > a′ (s, a) , for a su�ciently large

Hence we get the theorem:

If β/q < 1 and uc is convex, then there exist ā such that ∀s, a′ (s, ā) ≤ ā

Note that convexity of uc captures 'prudence' of preferences so that the agent will increase his

saving if future uncertainty increases (in the mean-spread sense)

9.2 Huggett Economy

Now we modify the farmer's problem (24) a little bit:

V (s, a) = max
c≥0
a
	
≤a′

u (c) + β
∑
s′

Γss′V (s′, a′)

c+ qa′ = a+ s

Where a<0, so now farmers can borrow and lend with each other, but with a borrowing limit. We

make assumption β/q < 1. As shown in the last section, there is an upper bound of the asset

space, call it ā. Solving this problem gives policy function a′ (s, a) .

Now suppose there is a mass of farmers with distribution function X (., .) , where X (D,B) denotes

fraction of people with shock s ∈ D and a ∈ B, where B is a Borel set in [a
	
,	a]. Then distribution

of farmers tomorrow is given by:

X ′ (S ′, B′) =

∫
A×S

1{a′(s,a)∈B′}
∑
s′∈S′

Γss′dX (s, a) (27)

Implicitly this de�nes an operator T such that T (X) = X ′. If T is su�ciently 'nice', then there

exits a uniqueX∗ such thatX∗ = T (X∗) andX∗ = limn→∞ T
n (X0) ,∀X0. Note that the decision

rule is obtained given q, hence the resulting stationary distribution X∗ also depends on q. Denote

it by X∗ (q) .

We want to determine an endogenous q by looking at asset market clearing condition. We assume

that there is no storage technology so that asset supply is 0. Hence price q should be such that
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asset demand equals asset supply: ∫
A×S

adX∗ (q) = 0

We can show that a solution exists by invoking intermediate value theorem by showing that the

following three conditions are satis�ed, note that q ∈ [β,∞]:

1.
∫
A×S adX

∗ (q) is a continuous function of q.

2. limq→β

∫
A×S adX

∗ (q) → ∞. This is intuitive because as q → β, interest rate increases,

hence agents would like to save more. Together with precautionary savings motive, they

accumulate unbounded asset in the stationary equilibrium

3. limq→∞

∫
A×S adX

∗ (q) < 0. This is also intuitive because as q →∞, interest rates converges
to 0. Hence everyone would rather borrow.

9.3 Aiyagari Economy

In an Aiyagari Economy there is physical capital. The shock is to e�ective labor supply. Speci�cally,

consider the following problem for the households:

V (s, a) = max
c≥0
a
	
≤a′

u (c) + β
∑
s′

Γss′V (s′, a′)

c+ a′ = (1 + r) a+ ws

Where r is return to asset and w is the wage rate.

We assume standard production technology for the �rm:

Y = AK1−αLα

with depreciation rate δ. Hence

r = Yk − δ = (1− α)A

(
K

L

)−α
− δ ≡ r

(
K

L

)
w = YL = αA

(
K

L

)1−α

≡ w

(
K

L

)
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Prices faced by the agent are all functions of the capital-labor ratio, so is the stationary distribution,

denoted by X∗
(
K
L

)
. Equilibrium condition is thus given by:

K

L
=

∫
A×S adX

∗ (K
L

)∫
A×S sdX

∗
(
K
L

)
Using this one can solve for capital-labor ratio. Note that the agents always supply 1 unit of labor

into the market, hence
∫
A×S sdX

∗ (K
L

)
is the steady state e�ective labor supply.

9.4 Policy

In Aiyagary(or Huggett) economy, model parameters can be summarized by θ = {u, β, s,Γ}. In
stationary equilibrium, value function v (s, a; θ) as well as X∗ (θ) can be obtained, where X∗ (θ) is

a mapping from model parameters to stationary distribution of agent's asset holding and shocks.

Suppose now there is a policy change that shifts θ to θ̂ = {u, β, s, Γ̂}. Associated with this new

environment there is a new value function v
(
s, a; θ̂

)
andX∗

(
θ̂
)
. De�ne η (s, a) to be the solution

of:

v
(
s, a+ η (s, a) , θ̂

)
= v (s, a, θ)

which is the transfer payment necessary to the households so that they are indi�erent between

living in the old environment and in the new one. Hence total payment needed to compensate

households for this policy change is given by:∫
A×S

η (s, a) dX∗ (θ)

Notice that the changes do not take place when the government is trying to compensate the

households. Hence we use the original stationary distribution associated with θ to aggregate the

households.

If
∫
A×S v (s, a) dX∗

(
θ̂
)
>
∫
A×S v (s, a) dX∗ (θ) , does this necessarily mean that households are

willing to accept this policy change? The answer is not necessarily because the economy may well

spend a long time in the transition path to the new steady state, during which there may be severe

welfare loss.

10 Models with Growth

Previously we have seen the Neo-classical Growth Model as our benchmark model and built on
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it for the analysis of more interesting economic questions. One peculiar characteristic of our

benchmark model, unlike its name suggested, was lack of growth (after reaching steady state).

Many interesting questions in economics are related to the cross-country di�erences of growth

rates and we will cover some models that will allow for growth so that we will be able to attempt

to answer such questions.

10.1 Exogenous Growth

We know that in our standard NGM there are basically two ways of growth, one in which everything

grows, which is not necessarily a per-capita growth, and the other is per-capita growth. We will

be focusing on per-capita growth. The title 'exogenous' growth refers to the structure of models

in which the growth rate is determined exogenously, and is not an outcome of the model. The

simplest one of these is one in which the determinant of the growth rate is population growth.

10.1.1 Population Growth

Suppose the population of our economy grows at rate γ and we have the classical CRS technology

in capital and labor inputs.

Yt = AF (Kt, Nt)

Nt = N0γ
t

Note that our economy is no longer stationary but as we will see, within the exogenous growth

framework, we can make these economies look like stationary ones by re-normalizing the variables.

Thus, at the end of the day it will only be a mathematical twist on our standard growth model.

Once we do that, we will be looking for the counterpart of a steady state that we have in our

stationary economies, the Balanced Growth Path, in which all the variables will be growing at

constant but not necessarily equal rates. Back to our population growth model, we know that

AF (K,N) = A[KFK(K,N) +NFN(K,N)]

If N is growing at rate γ, can this economy have a balanced growth path? Can we construct one?

We know that by the CRS property FK and FN are homogeneous of degree zero. If we assume

that capital stock grows at rate γ as well, then prices stay constant, and per-capita variables are

constant, and output grows at the same rate. So we get a growth on a balanced growth path

without per-capita growth. One question is how to model population growth in our representative
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agent model. One way is to assume that there is a constant proportion of immigration to our

economy from outside but this has to assume the immigrants are identical to our existing agents,

which is a bit problematic. The other way could be to assume growing dynasties which preserves

the representative agent nature of our economy. If we do so, the problem of the social planner

becomes:

max
∞∑
t=0

βtNtU(
Ct
Nt

)

s.t.

Ct +Kt+1 = AF (Kt, Nt) + (1− δ)Kt

nonegativity

To transform the feasibility set to per capita terms, divide all terms by Nt and to make the

environment stationary by dividing all the variables by γt and assume N0 = 1 we get,

max
∞∑
t=0

(βγ)tN0U(ĉt)

s.t.

ĉt + γk̂t+1 = AF (k̂t, 1) + (1− δ)k̂t
nonegativity

So how is this transformed model any di�erent than our NGM? By the discount factor, the agents

in this economy with growth discount future less but everything else is identical to NGM, of course

with the exception of this economy growing at a constant rate.

10.1.2 Labor Augmenting Productivity Growth

Now suppose we have a labor augmenting productivity growth with constant population normalized

to one, i.e. have the following CRS technology:

Yt = AF (Kt, γ
tNt)

AF (Kt, γ
tN0) = A[KtFK(Kt, γ

tN0) + γtN0FN(Kt, γ
tN0)]
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max
∞∑
t=0

βtU(
Ct
Nt

)

s.t.

Ct +Kt+1 = AF (Kt, γ
tNt) + (1− δ)Kt

nonegativity

and since we have a population of one, these variables are already per-capita terms. For stationarity,

we have to normalize the variables to per productivity units, by dividing all by γt. Then the problem

becomes:

max
∞∑
t=0

βtU(γtĉt)

s.t.

ĉt + γk̂t+1 = AF (k̂t, 1) + (1− δ)k̂t
nonegativity

Suppose we have a CRRA preferences, then the question is how can we represent the preferences

as a function of ĉt only. Using CRRA:

∞∑
t=0

βt
(γtĉt)

1−σ − 1

1− σ
≈

∞∑
t=0

(βγ1−σ)t
ĉ1−σ
t − 1

1− σ

Note that we have added some constant to right hand side, but we know that adding and subtracting

constants to objective function does not change the solution of the problem. Once again it is the

exact same problem as the NGM with a di�erent discount factor. Note that the existence of a

solution to this problem depends on (βγ1−σ). In this set-up we get per-capita growth at rate γ.

Also note that CRRA is the only functional form for preferences that is compatible with BGP. This

is because as per-capita output grows, for consumption to grow at a constant rate, our agent has

to face the same trade-o� at each period.
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10.2 Endogenous Growth

So far in the models we covered growth rate has been determined exogenously. Next we will look

to models in which the growth rate is chosen by the model itself. We do know that for a �xed

amount of labor, the curvature of our technology limits the growth due to diminishing marginal

return on capital and with depreciation there is an upper limit on capital accumulation. So if

our economy is to experience sustainable growth for a long period of time, we either give up the

curvature assumption on our technology or we have to be able to shift our production function

up. Given a �xed amount of labor, this shift is possible either by an increasing TFP parameter or

increasing labor productivity. The simplest of such models where we can see this is the AK model,

where the technology is linear in capital stock so that diminishing marginal return on capital does

not set in.

10.2.1 AK Model

Recall the simple one-sector growth model from the �rst mini. When there is curvature in the

production function as a function of capital, there is no long-run growth. When the production

function is linear in capital there is a balanced growth path but there is no transitional dynamics.

From, this simple observation, we can see that in order to get long-run growth we need a model

that behaves similar to the AK growth model. One way to achieve this is to assume there is human

capital and production function is CRS w.r.t physical capital and human capital. When investment

in human capital is done using consumption goods, this economy behaves as an AK economy. This

is not true when the cost of investment in human capital is time. In this section, we build another

model that behaves similar to an AK model.

max
∞∑
t=0

βtU(ct)

s.t.

yt = ct + kt+1 = Akt

ct, kt+1 ≥ 0
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This problem will give following Euler equation:

Uc(ct) = βUc(ct+1)A

When preferences are CRRA, i.e.

U(c) =
c1−σ − 1

1− σ
and when we are on a balanced growth path (consumption is growing at a rate γc) then Euler

equation gives the following growth rate: γc = (βA)
1
σ .

10.2.2 Human Capital Models

Now assume production technology is such that we have another production factor, namely human

capital. Then followings are the feasibility condition and law of motion for the human capital

Ct + IKt + [IHt ] = AKθ
t (Htn

1
t )

(1−θ)

Kt+ 1 = (1− δ)Kt + IKt

[n1
t + n2

t = 1]

Ct, Kt+1 ≥ 0

Equations and variables in brackets appear when they are needed in the following speci�cations of

law of motion for capital. Law of motion for the capital can be di�erent for di�erent interpretation

of human capital formation. If we think human capital is built �with bricks�:

Ht+1 = (1− δh)Ht + IHt

If we think it is formed by learning by doing, then we can de�ne individual human capital formation

in two ways:

ht+1 = g(n2
t , ht)

or

ht+1 = g(n2
t , Ht)

Lucas de�ned a human capital model with the speci�cation of schooling and inelastic labor supply.

Now that there is no limit to the accumulation of human capital and sustainable growth on a BGP
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is feasible. Furthermore, an analysis of the characterization of the balanced growth path will indi-

cate that this model indeed has transitional dynamics. So, unlike the AK model, if we starts out of

this optimal growth path, economy can adjust and will converge to it by responding to prices in a

de-centralized setting. If one de�nes a learning by doing model, s/he can see there is a natural limit

to the growth of human capital and such an economy might not have a BGP. The key ingredient of

endogenous growth with labor is then the reproducibility of the human capital without such a limit.

10.2.3 Growth Through Externalities by Romer

Then let's write the growth model with externality (Romer, 1986). We have seen in the AK

model that the growth rate is determined solely by model primitives and endogenized but still it is

not directly or indirectly determined by the agents' choices. In Lucas' human capital model, the

growth rate is determined by the choice of agents, speci�cally by the optimal ratio of human and

physical capital.The source of growth in Lucas' model is reproducibility of human capital. In the

next model, Romer introduces the notion of externality generated by the aggregate capital stock

to go through the problem of diminishing marginal returns to aggregate capital. In this model,

the source of growth will be the aggregate capital accumulation, which is possible with a linear

aggregate technology in capital as we saw in the AK model.The �rms in our model will not be

aware of this externality and will have the usual CRS technology and observe the source of growth

coming from the TFP parameter. As usual with externalities, the equilibrium outcome will not be

optimal. Each �rm has the following technology:

yt = Atk
θ
t (Ktnt)

1−θ

We can write this technology as follows

yt = Ātk
θ
tn

1−θ
t

where Āt = AK1−θ
t . With this technology and assuming CRRA utility, Euler equation for household

in balanced growth path reduces to

1 = βγ−σ(1 + r)

where r = MPK .
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10.2.4 Monopolistic Competition, Endogenous Growth and R&D (Romer)

There are three sectors in the economy: a �nal good sector, an intermediate goods sector and a

R&D sector. Final goods are produced using labor (as we will see there is only one wage since

there is only one type of labor) and intermediate goods according to the production function

Nα
1t

∫ At

0

xt (i)1−α di

where x (i) denotes the consumption of intermediate good of variety i ∈ [0, At]
8. The intermediate

goods are produced using capital according to a linear technology

x (i) =
k (i)

η

The aggregate demand of capital from this sector is
∫ At

0
ηx (i) di.

A new good is a new variety of the intermediate good. In every period, a �ow of new intermediate

goods is created by using labor according to the following production technology

At+1

At
= 1 + ξN2t

Notice that with after some manipulation, one can express growth in the stock of intermediate

goods as follows

At+1 − At = AtξN2t

Hence, the �ow of new intermediate goods is determined by the stock of them in the economy.

This type of externality is the key feature of the model9. This assumption provides us with a

constant returns to scale technology in the R&D sector.

Certainly, this is not a model that one can map to the data. Instead it has been carefully crafted to

deliver what is desired and it provides an interesting insight in thinking about endogenous growth.

Now let's introduce a form of competition between sectors. We will assume that �nal good

8The function that aggregates consumption of intermediate goods is often referred as Dixit-Stiglitz aggregator.
9Perhaps, the basic idea of this production function might be traced back to Isaac Newton's quote �If I have

seen further, it is only by standing on the shoulders of giants�.
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producers act as price takers. Intermediate good �rms act as monopolistic competitors, which

means that they set the price of their variety although they take the rental price of capital as given.

Finally, the R&D producers act as price takers.

Solving the model

Let's consider �rst the problem of a �nal good producer. In every period they choose N1t and

xt (i) for every i in order to solve

maxNα
1t

∫ At

0

xt (i)1−α di− wtN1t −
∫ At

0

qt (i)xt (i) di

where qt (i) is the price of variety i in period t. First order conditions for this problem are

N1t : αNα−1
1t

∫ At

0

xt (i)1−α di = wt

xt (i) : (1− α)Nα
1txt (i)−α = qt (i) ∀i

From the second condition one obtains

xt (i) =

(
(1− α)

qt (i)

) 1
α

N1t (1)

which is the demand for variety i of the �nal good producer.

Let's consider now the problem of an intermediate �rm. These �rms acts as price setters. They

choose qt (i) in order to solve

πt (i) = max qt (i)xt (qt (i))− rtηxt (qt (i))

where xt (qt (i)) is the demand function in (1). Notice that we have plugged the functional form

for the technology, i.e. xt (qt (i)) = 1
η
kt (i). First order conditions for this problem are

qt (i) : xt (qt (i))N1t + (qt (i)− rtη)
∂xt (qt (i))

∂qt (i)
= 0
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which can be written as

(1− α)
1
α

qt (i)
1
α

N1t =
(qt (i)− rtη)

α

(1− α)
1
α

qt (i)
1+α
α

N1t

Rearranging yields

qt (i) =
rtη

(1− α)
(2)

Note what happens when α = 0. Plugging this into the demand function yields

xt (i) =

(
(1− α)2

rtη

) 1
α

N1t (3)

and the demand for capital services is just ηxt (i).

Let Yt be the production of the �nal good and plug (2) and (3) in its corresponding production

function to get

Yt = N1tAt

(
(1− α)2

rtη

) 1−α
α

(4)

Hence the model displays constant returns to scale in At.

Let's study now the problem of the R&D �rm. This �rm chooses N2t in order to solve the following

problem

max ptAt−1ξN2t − wtN2t

An equilibrium with positive production of R&D goods require pt = wt/At−1ξ, which pins down

the price of them. It remains to �nd an equation to pin down the actual production of these goods.

Well, in equilibrium it must be that no more of the R&D goods are produced because nobody �nds

it pro�table. That is, the present discounted value of a �rm producing it must be equal to the
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price of introducing an additional variety

pt =
∞∑
s=t

πs (i)∏s
τ=t (1 + rτ )

τ−t (5)

Notice that the stock of new goods will be growing at a rate ξN2t. In fact, in a balanced growth

path, aggregate variables will be growing at this rate whereas labor, of course, will remain constant.

So far we have been silent about the consumer side of the model. Let just add it for the sake of

completeness. We will assume that the consumer chooses positive streams of consumption, labor

services and capital services in order to solve

max
∞∑
t=0

βtu (ct)

s.t. ct + kt+1 ≤ rtkt + wt for all t

k0 given

Finally, market clearing condition are the usual ones

N1t +N2t = 1

Ct +Kt+1 = Yt

for every t. One �nal comment, in this economy we have GDP = Yt + ptξAtN2t = Ct + [Kt+1 −
(1− δ)Kt] + ptξAtN2t.
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