Outline Introduction

Frisch Elasticity of Labor Supply

Daolu Cai

April 8, 2010

Daolu Cai Frisch Elasticity of Labor Supply

ヘロト 人間 とくほとくほとう

Outline Introduction

Introduction

Daolu Cai Frisch Elasticity of Labor Supply

Type of Supply Function of Labor

Marshallian labor supply. Hold Income constant.

▲圖▶ ▲屋▶ ▲屋▶

Type of Supply Function of Labor

- ► Marshallian labor supply. Hold Income constant.
- Hicksian labor supply. Hold utility level constant.

個 と く ヨ と く ヨ と …

Type of Supply Function of Labor

- ► Marshallian labor supply. Hold Income constant.
- ► Hicksian labor supply. Hold utility level constant.
- Frisch labor Supply. Hold the marginal utility of wealth constant.

・日・ ・ ヨ・ ・ ヨ・

Frisch Elasticity

The Frisch labor supply Elasticity (constant marginal utility of wealth) is defined as

$$\eta^{\lambda} = \frac{\partial n}{\partial w} \frac{w}{n} \|_{\lambda} \tag{1}$$

・ 母 と ・ ヨ と ・ ヨ と

Simple Standard Consumer Problem

$$\max_{c_t, a_{t+1}, n} \sum_{t=0}^{\infty} \beta^t U(c_t, n_t)$$
(2)

subject to:

$$c_t + a_{t+1} = (1+r)a_t + w_t n_t$$
 multiplier λ_t (3)

β is the discount factor, a_t is the household asset in the beginning of period t, and n_t, units of labor.

回 と く ヨ と く ヨ と

FOC's

The FOC's are:

$$U_{c_t} = \lambda_t \tag{4}$$

$$-U_{n_t} = \lambda_t w_t \tag{5}$$

$$\lambda_t = \beta (1+r) \lambda_{t+1} \tag{6}$$

FOC's

Notice (4) and (5) are in function of λ and w:

$$\frac{\partial U(c(\lambda, w), n(\lambda, w))}{\partial c} = \lambda$$
(7)

$$\frac{\partial U(c(\lambda, w), n(\lambda, w))}{\partial n} = -\lambda w \tag{8}$$

Computing Frisch Elasticity

Taking derivative of (4) and (5) with respect to w, we have

$$U_{cc}\frac{\partial c}{\partial w} + U_{cn}\frac{\partial n}{\partial w} = 0$$
(9)

$$U_{nc}\frac{\partial c}{\partial w} + U_{nn}\frac{\partial n}{\partial w} = -\lambda \tag{10}$$

★ E ► ★ E ►

A ₽

Notice this is a system of 2 equations and two unknowns.

Computing Frisch Elasticity

Solving for $\frac{\partial n}{\partial w}$ we have: $\frac{\partial n}{\partial w} = \frac{\lambda U_{cc}}{[U_{cn}^2 - U_{nn}U_{cc}]} \qquad (11)$ Replacing λ from (5) we have

$$\frac{\partial n}{\partial w} = \frac{-\frac{U_n}{w}U_{cc}}{[U_{cn}^2 - U_{nn}U_{cc}]}$$
(12)

御 と く ヨ と く ヨ と … ヨ

Computing Frisch Elasticity

Using the last expression we have that the Frisch labor supply elasticity is

$$\eta^{\lambda} = \frac{U_n}{n[U_{nn} - \frac{U_{cn}^2}{U_{cc}}]}$$
(13)

Example: Separable Utility

Consider the following utility function

$$U(c,n) = \ln(c) - \alpha \frac{n^{1+\frac{1}{\nu}}}{1+\frac{1}{\nu}}$$
(14)

FOC's:

$$\frac{1}{c} = \lambda \tag{15}$$

$$\alpha \boldsymbol{n}^{\frac{1}{\nu}} = \lambda \boldsymbol{w} \tag{16}$$

▲□→ ▲ □→ ▲ □→

Example: Separable Utility

The labor supply is given by

$$n = \left(\frac{w}{\alpha c}\right)^{\nu} \tag{17}$$

The Fischer elasticity is given by

$$\eta^{\lambda} = \nu \tag{18}$$

回 と く ヨ と く ヨ と

Example: Non Separable Utility

Consider the another utility function

$$U(c,n) = \frac{(c^{\gamma}(1-n)^{1-\gamma})^{(1-\sigma)}}{1-\sigma}$$
(19)

The Frisch Elasticity is given by

$$\eta^{\lambda} = \frac{1-n}{n} \left[\frac{1-\gamma(1-\sigma)}{\sigma} \right]$$
(20)

- 4 回 2 - 4 回 2 - 4 回 2 - 4