Homework 4: Solving the Lifecycle Model

Econ 8503

Joe Steinberg

University of Minnesota
April 6, 2010

Baseline lifecycle model

- Recursive formulation of agent's problem:

$$
\begin{aligned}
V_{i}(a)= & \max _{c, a^{\prime}} u(c)+\beta V_{i+1}\left(a^{\prime}\right) \\
\text { s.t. } & c+a^{\prime}=R a+w \epsilon_{i} \\
& V_{I+1}(a)=0
\end{aligned}
$$

- Constant gross interest rate R and wage w.
- Efficiency ϵ_{i} changes deterministically with age i.
- Agent dies at age $I+1$.

Parameterization

- $\beta=1, R=1.03, w=1$.
- Agent born at age 16, dies at age 91 .
- CRRA preferences with risk aversion of 2.
- To get ϵ_{i}, fit quadratic to data from Minneapolis Fed QR Vol 26 No 3.
- Scale resulting coefficients by $1 / 5200$ to normalize time endowment to 1.
- Calculate ϵ_{i} as

$$
\epsilon_{i}=a_{0}+a_{1} i+a_{2} i^{2}
$$

Solution methods

- Three different solution methods: forward induction, backward induction, brute force.
- Each method takes a different approach to solving system of Euler equations (with budget constraints substituted in):
$u_{c}\left(R a_{i}+w \epsilon_{i}-a_{i+1}\right)=\beta R u_{c}\left(R a_{i+1}+w \epsilon_{i+1}-a_{i+2}\right) \forall i=1, \ldots, I-1$
- Since $a_{1}=a_{I+1}=0$, this is a system of $I-1$ equations and $I-1$ unknowns $\left(a_{2}, \ldots, a_{l}\right)$.

Method 1: Forward induction

- Solve Euler equation for a_{i+2} in terms of a_{i+1} and a_{i} :

$$
a_{i+2}=R a_{i+1}+w \epsilon_{i+1}-u_{c}^{-1}\left[\frac{1}{\beta R} u_{c}\left(R a_{i}+w \epsilon_{i}-a_{i+1}\right)\right]
$$

- Since $a_{1}=0$, plugging in guess for a_{2} gives $a_{3}\left(a_{2}\right)$.
- Similarly, using a_{2} and $a_{3}\left(a_{2}\right)$ gives $a_{4}\left(a_{2}\right)$.
- Iterating forward through the system of equations in this manner gives entire asset sequence through $a_{I+1}\left(a_{2}\right)$.
- If we can find a_{2}^{*} such that $a_{I+1}\left(a_{2}\right)=0$, we've solved the model.

How do we find a_{2}^{*} ?

- Iteration process on previous slide defines function $a_{\jmath+1}: \mathbb{R} \rightarrow \mathbb{R}$.
- Finding a_{2}^{*} is equivalent to root-finding problem in one dimension.
- Writing down analytical derivative of $a_{I+1}\left(a_{2}\right)$ is hard, so can either use derivative-based method with numerical derivatives or bracketing method.
- Bisection code from homework 3 would work fine!

Method 2: Backward induction

- Same basic principle as forward induction, but we guess a_{l} instead and iterate backward, looking for a_{l}^{*} such that $a_{1}\left(a_{l}^{*}\right)=0$.
- Solve Euler equation for a_{i} :

$$
a_{i}=\frac{1}{R}\left\{u_{c}^{-1}\left[\beta R u_{c}\left(R a_{i+1}+w \epsilon_{i+1}-a_{i+2}\right)+a_{i+1}-w \epsilon_{i}\right]\right\}
$$

- Since $a_{l+1}=0$, plugging in guess for a_{l} gives $a_{l-1}\left(a_{l}\right)$. Iterate backwards to get $a_{1}\left(a_{l}\right)$.
- Again, we have one-dimensional function $a_{1}: \mathbb{R} \rightarrow \mathbb{R}$ of which we need to find the root.

Method 3: Brute force

- Basic idea: Consider system of Euler equations as single multidimensional function. Find its root!
- Define $F: \mathbb{R}^{I-1} \rightarrow \mathbb{R}^{I-1}$ by

$$
F_{i}\left(a_{2}, \ldots, a_{l}\right)=\beta R u_{c}\left[R a_{i+1}+w \epsilon_{i+1}-a_{i+2}\right]-u_{c}\left[R a_{i}+w \epsilon_{i}-a_{i+1}\right]
$$

- Since $a_{1}=a_{l+1}=0, F_{1}$ and F_{l-1} only have two unknowns each:

$$
\begin{aligned}
F_{1}\left(a_{2}, \ldots, a_{l}\right) & =\beta R u_{c}\left[R a_{2}+w \epsilon_{2}-a_{3}\right]-u_{c}\left[R(0)+w \epsilon_{1}-a_{2}\right] \\
F_{I-1}\left(a_{2}, \ldots, a_{l}\right) & =\beta R u_{c}\left[R a_{l}+w \epsilon_{l}-0\right]-u_{c}\left[R a_{l-1}+w \epsilon_{I-1}-a_{l}\right]
\end{aligned}
$$

Brute force continued

- To find root $x^{*}=\left(a_{2}^{*}, \ldots, a_{l}^{*}\right)$ such that $F_{i}\left(x^{*}\right)=0, \forall i$, use Newton-Raphson.
- Start with initial guess $x^{0}=\left(a_{2}^{0}, \ldots, a_{l}^{0}\right)$ and obtain x^{1} by

$$
x^{1}=x^{0}-J^{-1}\left(x^{0}\right) F\left(x^{0}\right)
$$

where $J(x)$ is Jacobian matrix of F evaluated at x.

- Obtain x^{2}, x^{3}, \ldots in same manner. Stop when x^{n} converges.
- Caution: Newton-Raphson is unstable and sensitive to initial guess. Try several guesses to be see if they give the same result.

Results

Figure 1: Results for baseline lifecycle model

Adding endogenous labor supply

- To make the consumption profile U-shaped we can add leisure to the utility function in a nonseparable way:

$$
u(c, 1-n)=\frac{\left(c^{\eta}(1-n)^{1-\eta}\right)^{1-\sigma}}{1-\sigma}
$$

- Equations that characterize the solution are now

$$
\begin{aligned}
u_{c}\left(c_{i}, 1-n_{i}\right) & =\beta R u_{c}\left(c_{i+1}, 1-n_{i+1}\right) \\
c+a_{i+1} & =R a_{i}+w n_{i} \epsilon_{i} \\
-\frac{u_{\ell}\left(c_{i}, 1-n_{i}\right)}{u_{c}\left(c_{i}, 1-n_{i}\right)} & \geq w \epsilon_{i}, \quad "=" \text { if } n_{i}>0
\end{aligned}
$$

- Parameter additions/changes: $\beta=0.97, \eta=0.6$.

How do we solve model with endogenous labor?

- Goal: reduce to system of second-order difference equations.
- FOC for leisure implies $n_{i}=\max \left[1-\frac{1-\eta}{\eta} \frac{c_{i}}{w \epsilon_{i}}, 0\right]$.
- This means four different possibilities for the Euler equation:

$$
\begin{cases}c_{i}^{-\sigma}=\beta R\left[\left(\frac{\epsilon_{i}}{\epsilon_{i+1}}\right)^{(1-\eta)(1-\sigma)}\right] c_{i+1}^{-\sigma} & \text { if } n_{i}>0, n_{i+1}>0 \\ {\left[\left(\frac{1-\eta}{\eta w \epsilon_{i}}\right)^{(1-\eta)(1-\sigma)}\right] c_{i}^{-\sigma}=\beta R c_{i+1}^{\eta(1-\sigma)-1}} & \text { if } n_{i}>0, n_{i+1}=0 \\ c_{i}^{\eta(1-\sigma)-1}=\beta R\left[\left(\frac{1-\eta}{\eta w \epsilon_{i+1}}\right)^{(1-\eta)(1-\sigma)}\right] c_{i+1}^{-\sigma} & \text { if } n_{i}=0, n_{i+1}>0 \\ c_{i}^{\eta(1-\sigma)-1}=\beta R c_{i+1}^{\eta(1-\sigma)-1} & \text { if } n_{i}=0, n_{i+1}=0\end{cases}
$$

Solving model with endogenous labor continued

- Can apply same three solution methods from baseline model, but they're more complicated now.
- For each $i=1, \ldots, I-1$, have to check if $n_{i}=0$ and $n_{i+1}=0$ to see which Euler equation applies.
- I will show forward induction algorithm that uses hint from Jan and Tayyar.
- Basic idea: Guess c_{1} rather than a_{2} and iterate on the consumption sequence. This makes handling the different Euler equations easier.

Algorithm for forward induction with endogenous labor

(1) Guess c_{1}.
(2) Calculate $n_{1}\left(c_{1}\right)=\max \left[1-\frac{1-\eta}{\eta} \frac{c_{1}}{w \epsilon_{0}}, 0\right]$ and use budget constraint with $a_{1}=0$ to find $a_{2}\left(c_{1}\right)$.
(3) Guess that $n_{2}\left(c_{1}\right)>0$ and calculate $c_{2}\left(c_{1}\right)$ using first or the third Euler equation (depends on whether $n_{1}\left(c_{1}\right)>0$).
(9) Calculate $n_{2}\left(c_{1}\right)=\max \left[1-\frac{1-\eta}{\eta} \frac{c_{2}\left(c_{1}\right)}{w \epsilon_{1}}, 0\right]$. If $n_{2}\left(c_{1}\right)=0$, recalculate $c_{2}\left(c_{1}\right)$ using the second or fourth Euler equation.
(5) Repeat steps 2-4 for each Euler equation in system until $c_{l}\left(c_{1}\right)$ and $a_{l}\left(c_{1}\right)$ are obtained.
(0) Calculate $a_{l+1}\left(c_{1}\right)$ using calculated value of $c_{l}\left(c_{1}\right)$ in budget constraint for period I.
(1) Use bracketing method to find c_{1}^{*} such that $a_{\ell+1}\left(c_{1}^{*}\right)=0$.

Results after adding endogenous labor

Figure 2: Results for lifecycle model with leisure (age on x-axis)

