Homework 4: Solving the Lifecycle Model Econ 8503

Joe Steinberg

University of Minnesota

April 6, 2010

• Recursive formulation of agent's problem:

$$V_i(a) = \max_{\substack{c,a'}} u(c) + \beta V_{i+1}(a')$$

s.t. $c + a' = Ra + w\epsilon_i$
 $V_{l+1}(a) = 0$

- Constant gross interest rate *R* and wage *w*.
- Efficiency ϵ_i changes deterministically with age *i*.
- Agent dies at age I + 1.

- $\beta = 1$, R = 1.03, w = 1.
- Agent born at age 16, dies at age 91.
- CRRA preferences with risk aversion of 2.
- To get ϵ_i , fit quadratic to data from Minneapolis Fed QR Vol 26 No 3.
- Scale resulting coefficients by 1/5200 to normalize time endowment to 1.
- Calculate ϵ_i as

$$\epsilon_i = a_0 + a_1 i + a_2 i^2.$$

- Three different solution methods: forward induction, backward induction, brute force.
- Each method takes a different approach to solving system of Euler equations (with budget constraints substituted in):

$$u_c(Ra_i + w\epsilon_i - a_{i+1}) = \beta Ru_c(Ra_{i+1} + w\epsilon_{i+1} - a_{i+2}) \forall i = 1, \dots, I-1$$

Since a₁ = a_{I+1} = 0, this is a system of I − 1 equations and I − 1 unknowns (a₂,..., a_I).

• Solve Euler equation for a_{i+2} in terms of a_{i+1} and a_i :

$$\mathbf{a}_{i+2} = R\mathbf{a}_{i+1} + w\epsilon_{i+1} - u_c^{-1} \left[\frac{1}{\beta R} u_c \left(R\mathbf{a}_i + w\epsilon_i - \mathbf{a}_{i+1} \right) \right]$$

- Since $a_1 = 0$, plugging in guess for a_2 gives $a_3(a_2)$.
- Similarly, using a_2 and $a_3(a_2)$ gives $a_4(a_2)$.
- Iterating forward through the system of equations in this manner gives entire asset sequence through $a_{I+1}(a_2)$.
- If we can find a_2^* such that $a_{l+1}(a_2) = 0$, we've solved the model.

- Iteration process on previous slide defines function $a_{l+1} : \mathbb{R} \to \mathbb{R}$.
- Finding a_2^* is equivalent to root-finding problem in one dimension.
- Writing down analytical derivative of $a_{I+1}(a_2)$ is hard, so can either use derivative-based method with numerical derivatives or bracketing method.
- Bisection code from homework 3 would work fine!

- Same basic principle as forward induction, but we guess a_I instead and iterate backward, looking for a_I^* such that $a_1(a_I^*) = 0$.
- Solve Euler equation for *a_i*:

$$a_{i} = \frac{1}{R} \left\{ u_{c}^{-1} \left[\beta R u_{c} \left(R a_{i+1} + w \epsilon_{i+1} - a_{i+2} \right) + a_{i+1} - w \epsilon_{i} \right] \right\}$$

- Since a_{I+1} = 0, plugging in guess for a_I gives a_{I-1}(a_I). Iterate backwards to get a₁(a_I).
- Again, we have one-dimensional function a₁ : ℝ → ℝ of which we need to find the root.

- Basic idea: Consider system of Euler equations as single multidimensional function. Find its root!
- Define $F : \mathbb{R}^{I-1} \to \mathbb{R}^{I-1}$ by

$$F_i(a_2,\ldots,a_l) = \beta R u_c \left[R a_{i+1} + w \epsilon_{i+1} - a_{i+2} \right] - u_c \left[R a_i + w \epsilon_i - a_{i+1} \right]$$

• Since $a_1 = a_{l+1} = 0$, F_1 and F_{l-1} only have two unknowns each:

$$F_{1}(a_{2},...,a_{l}) = \beta R u_{c} [Ra_{2} + w\epsilon_{2} - a_{3}] - u_{c} [R(0) + w\epsilon_{1} - a_{2}]$$

$$F_{l-1}(a_{2},...,a_{l}) = \beta R u_{c} [Ra_{l} + w\epsilon_{l} - 0] - u_{c} [Ra_{l-1} + w\epsilon_{l-1} - a_{l}]$$

- To find root x^{*} = (a^{*}₂,...,a^{*}₁) such that F_i(x^{*}) = 0, ∀i, use Newton-Raphson.
- Start with initial guess $x^0 = (a_2^0, \dots, a_l^0)$ and obtain x^1 by

$$x^1 = x^0 - J^{-1}(x^0)F(x^0)$$

where J(x) is Jacobian matrix of F evaluated at x.

- Obtain x^2, x^3, \ldots in same manner. Stop when x^n converges.
- Caution: Newton-Raphson is unstable and sensitive to initial guess. Try several guesses to be see if they give the same result.

Figure 1: Results for baseline lifecycle model

• To make the consumption profile U-shaped we can add leisure to the utility function in a nonseparable way:

$$u(c, 1-n) = rac{(c^{\eta}(1-n)^{1-\eta})^{1-\sigma}}{1-\sigma}$$

• Equations that characterize the solution are now

$$u_{c}(c_{i}, 1 - n_{i}) = \beta R u_{c}(c_{i+1}, 1 - n_{i+1})$$

$$c + a_{i+1} = R a_{i} + w n_{i} \epsilon_{i}$$

$$-\frac{u_{\ell}(c_{i}, 1 - n_{i})}{u_{c}(c_{i}, 1 - n_{i})} \ge w \epsilon_{i}, \quad \text{``='' if } n_{i} > 0$$

• Parameter additions/changes: $\beta = 0.97$, $\eta = 0.6$.

How do we solve model with endogenous labor?

- Goal: reduce to system of second-order difference equations.
- FOC for leisure implies $n_i = \max \left[1 \frac{1 \eta}{\eta} \frac{c_i}{w\epsilon_i}, 0\right]$.
- This means four different possibilities for the Euler equation:

$$\begin{cases} c_i^{-\sigma} = \beta R \left[\left(\frac{\epsilon_i}{\epsilon_{i+1}} \right)^{(1-\eta)(1-\sigma)} \right] c_{i+1}^{-\sigma} & \text{if } n_i > 0, \ n_{i+1} > 0 \\ \\ \left[\left(\frac{1-\eta}{\eta w \epsilon_i} \right)^{(1-\eta)(1-\sigma)} \right] c_i^{-\sigma} = \beta R c_{i+1}^{\eta(1-\sigma)-1} & \text{if } n_i > 0, \ n_{i+1} = 0 \\ \\ c_i^{\eta(1-\sigma)-1} = \beta R \left[\left(\frac{1-\eta}{\eta w \epsilon_{i+1}} \right)^{(1-\eta)(1-\sigma)} \right] c_{i+1}^{-\sigma} & \text{if } n_i = 0, \ n_{i+1} > 0 \\ \\ c_i^{\eta(1-\sigma)-1} = \beta R c_{i+1}^{\eta(1-\sigma)-1} & \text{if } n_i = 0, \ n_{i+1} = 0 \end{cases}$$

- Can apply same three solution methods from baseline model, but they're more complicated now.
- For each *i* = 1,..., *I* − 1, have to check if *n_i* = 0 and *n_{i+1}* = 0 to see which Euler equation applies.
- I will show forward induction algorithm that uses hint from Jan and Tayyar.
- Basic idea: Guess c_1 rather than a_2 and iterate on the consumption sequence. This makes handling the different Euler equations easier.

Algorithm for forward induction with endogenous labor

- Guess c_1 .
- Calculate $n_1(c_1) = \max \left[1 \frac{1-\eta}{\eta} \frac{c_1}{w\epsilon_0}, 0\right]$ and use budget constraint with $a_1 = 0$ to find $a_2(c_1)$.
- Guess that n₂(c₁) > 0 and calculate c₂(c₁) using first or the third Euler equation (depends on whether n₁(c₁) > 0).
- Calculate $n_2(c_1) = \max \left[1 \frac{1-\eta}{\eta} \frac{c_2(c_1)}{w\epsilon_1}, 0\right]$. If $n_2(c_1) = 0$, recalculate $c_2(c_1)$ using the second or fourth Euler equation.
- Repeat steps 2-4 for each Euler equation in system until c_l(c₁) and a_l(c₁) are obtained.
- Calculate $a_{I+1}(c_1)$ using calculated value of $c_I(c_1)$ in budget constraint for period *I*.
- **②** Use bracketing method to find c_1^* such that $a_{l+1}(c_1^*) = 0$.

Results after adding endogenous labor

Figure 2: Results for lifecycle model with leisure (age on x-axis)