Life Cycle Problem with Learning by Doing and by not Doing

Tayyar Buyukbasaran

University of Minnesota
April 2010

Model

- We add human capital and a learning process to the life cycle problem

$$
\begin{array}{rlr}
\max _{c_{i}, n_{i}, h_{i+1}, a_{i+1}} & \sum_{i=1}^{I} \beta^{i-1} U\left(c_{i}\right) & \\
& \text { s.t. } & {\left[\lambda_{i}\right]} \\
& c_{i}+a_{i+1}=R a_{i}+w E_{i} h_{i} n_{i} & {\left[\mu_{i}\right]} \\
& h_{i+1}=\Psi\left(h_{i}, n_{i}\right) & {\left[\eta_{i}\right]} \\
& 0 \leq n_{i} \leq 1 & \\
& a_{1}=a_{I+1}=0, \quad h_{1}=1 &
\end{array}
$$

Learning by Not Doing

- Learning by schooling or leisure reading, $\Psi\left(h_{i}, n_{i}\right)=(1-\delta) h_{i}+\left(1-n_{i}\right)^{\alpha}$
- For convex constraint set $0<\alpha \leq 1$, I pick $\alpha=0.2$
- Solution methodology:
- Learning has benefit in ALL future periods, iterating FOC of human capital: $\mu_{i}=\sum_{j=i+1}^{I} \beta^{j}(1-\delta)^{j-i} U_{c} E_{j} w_{j} n_{j}$
- So backward induction method is better: estimate c_{I}, h_{I+1}, iterate using FOCs $\Rightarrow a_{1}\left(c_{I}, h_{I+1}\right)$ and $h_{1}\left(c_{I}, h_{I+1}\right)$
- Initial and terminal conditions: $a_{1}=a_{I+1}=0, h_{1}=1, \mu_{I}=0$

Learning by Not Doing

- Aim: c_{I}^{*} and h_{I+1}^{*} s.t. $a_{1}\left(c_{I}^{*}, h_{I+1}^{*}\right)=0$ and $h_{1}\left(c_{I}^{*}, h_{I+1}^{*}\right)=1$. No closed form solution.

Solution Algorithm

- Define f: Given $c_{I}, h_{I+1},\left(\mu_{I}=a_{I+1}=0\right)$, for i from I to 1 :
- Determine n_{i} solving following nonlinear equation from FOCS

$$
\beta^{i-1} c_{i}^{-\sigma} w E_{i} \frac{h_{i+1}-\left(1-n_{i}\right)^{\alpha}}{1-\delta}=\mu_{i} \alpha\left(1-n_{i}\right)^{\alpha-1}
$$

- Check whether corner solution for labor exists.
- Find h_{i}, a_{i}, c_{i-1} and μ_{i-1} using FOCs. Find $a_{1}, h_{1}-1$
- Therefore f: $\left(c_{I}, h_{I+1}\right) \longmapsto\left(a_{1}, h_{1}-1\right)$
- Find roots of f .

Learning by not Doing

Learning by Doing

- $\Psi\left(h_{t}, n_{t}\right)$ increasing in n_{t}. Used following specification:

$$
\Psi\left(h_{t}, n_{t}\right)=(1-\delta) h_{i}+n_{i}^{\theta} \quad . \quad \text { I pick } \theta=0.2
$$

- We have to add leisure to utility:

$$
U(c, n)=\frac{c^{1-\sigma}-1}{1-\sigma}+\Pi \frac{(1-n)^{1-\gamma}-1}{1-\gamma}
$$

- Solution methodology is same (backward induction). FOCs changed. Find n_{i} by solving nonlinear equation

$$
\beta^{i-1} c_{i}^{-\sigma} w E_{i} h_{i}+\mu_{i} \theta n_{i}^{\theta-1}=\beta^{i-1} \Pi\left(1-n_{i}\right)^{-\gamma}
$$

Learning by Doing

Both

Utility is same $U(c, n)=\frac{c^{1-\sigma}-1}{1-\sigma}+\Pi \frac{(1-n)^{1-\gamma}-1}{1-\gamma}$
For this part I have used two specification:

- $\Psi\left(h_{i}, n_{i}\right)=(1-\delta) h_{i}+n_{i}^{\alpha}+\left(1-n_{i}\right)^{\theta}$
- $\Psi\left(h_{i}, n_{i}\right)=(1-\delta) h_{i}+n_{i}^{\theta_{i}}\left(1-n_{i}\right)^{1-\theta_{i}}$

Solution methodology is same for both. For first specification I take $\alpha=\theta=0.2$

Both: specification 1

Both: specification 2

- Considering only static substitution between leisure and labor:

$$
\max _{x} x^{\theta}(1-x)^{(1-\theta)}
$$

would give $\frac{x}{1-x}=\frac{\theta}{1-\theta}$.

- Using schooling data and employment data I calibrate the θ_{t} as

$$
\left.\frac{\theta_{t}}{1-\theta_{t}}=\frac{\text { population }}{\text { population }} \quad \text { schooling }\right) ~
$$

Both: specification 2

Both: specification 2

Labor Eficiency

Productive hours worked

