Life Cycle Problem with Learning by Doing and by not Doing

Tayyar Buyukbasaran

University of Minnesota April 2010

Model

• We add human capital and a learning process to the life cycle problem

$$\max_{c_{i},n_{i},h_{i+1},a_{i+1}} \sum_{i=1}^{I} \beta^{i-1} U(c_{i})$$
s.t.
$$c_{i} + a_{i+1} = Ra_{i} + wE_{i}h_{i}n_{i} \qquad [\lambda_{i}]$$

$$h_{i+1} = \Psi(h_{i},n_{i}) \qquad [\mu_{i}]$$

$$0 \le n_{i} \le 1 \qquad [\eta_{i}]$$

$$a_{1} = a_{I+1} = 0, \quad h_{1} = 1$$

Learning by Not Doing

• Learning by schooling or leisure reading,

 $\Psi(h_i, n_i) = (1 - \delta)h_i + (1 - n_i)^{\alpha}$

- For convex constraint set $0<\alpha\leq 1,$ I pick $\alpha=0.2$
- Solution methodology:
 - Learning has benefit in ALL future periods, iterating FOC of human capital: $\mu_i = \sum_{j=i+1}^{I} \beta^j (1-\delta)^{j-i} U_c E_j w_j n_j$
 - So backward induction method is better: estimate c_I, h_{I+1} , iterate using FOCs $\Rightarrow a_1(c_I, h_{I+1})$ and $h_1(c_I, h_{I+1})$
 - Initial and terminal conditions: $a_1 = a_{I+1} = 0, h_1 = 1, \mu_I = 0$

Learning by Not Doing

• Aim: c_I^* and h_{I+1}^* s.t. $a_1(c_I^*, h_{I+1}^*) = 0$ and $h_1(c_I^*, h_{I+1}^*) = 1$. No closed form solution.

Solution Algorithm

- Define f: Given c_I , h_{I+1} , $(\mu_I = a_{I+1} = 0)$, for i from I to 1:
 - Determine n_i solving following nonlinear equation from FOCS

$$\beta^{i-1}c_i^{-\sigma}wE_i\frac{h_{i+1}-(1-n_i)^{\alpha}}{1-\delta} = \mu_i\alpha(1-n_i)^{\alpha-1}$$

- Check whether corner solution for labor exists.
- Find h_i , a_i , c_{i-1} and μ_{i-1} using FOCs. Find $a_1, h_1 1$
- Therefore f: $(c_I, h_{I+1}) \longmapsto (a_1, h_1 1)$
- Find roots of f.

Learning by not Doing

Learning by Doing

- $\Psi(h_t, n_t)$ increasing in n_t . Used following specification: $\Psi(h_t, n_t) = (1 - \delta)h_i + n_i^{\theta}$. I pick $\theta = 0.2$
- We have to add leisure to utility:

$$U(c,n) = \frac{c^{1-\sigma} - 1}{1-\sigma} + \prod \frac{(1-n)^{1-\gamma} - 1}{1-\gamma}$$

 Solution methodology is same (backward induction). FOCs changed. Find n_i by solving nonlinear equation

$$\beta^{i-1}c_i^{-\sigma}wE_ih_i + \mu_i\theta n_i^{\theta-1} = \beta^{i-1}\Pi(1-n_i)^{-\gamma}$$

Learning by Doing

Both

Utility is same
$$U(c, n) = \frac{c^{1-\sigma}-1}{1-\sigma} + \prod \frac{(1-n)^{1-\gamma}-1}{1-\gamma}$$

For this part I have used two specification:

•
$$\Psi(h_i, n_i) = (1 - \delta)h_i + n_i^{\alpha} + (1 - n_i)^{\theta}$$

•
$$\Psi(h_i, n_i) = (1 - \delta)h_i + n_i^{\theta_i}(1 - n_i)^{1 - \theta_i}$$

Solution methodology is same for both. For first specification I take $\alpha=\theta=0.2$

• Considering only static substitution between leisure and labor:

$$\max_{x} x^{\theta} (1-x)^{(1-\theta)}$$

would give
$$\frac{x}{1-x} = \frac{\theta}{1-\theta}$$
.

- Using schooling data and employment data I calibrate the θ_t as

$$\frac{\theta_t}{1-\theta_t} = \frac{population \quad employed}{population \quad schooling}$$

