Part III

Fluctuations

9 Households

A simple model of fluctuations: 1 period Representative Household

- We think of fluctuations as responses of private sector to changes in the environment.
- So we start building the simplest notion of private sector (think of models as toy economies).
- Nothing is simpler than a 1 period world with Robinson Crusoe.
- Justification: aggregation.

What are we going to do?

- Think about the goods existing in the economy.
- Think about what does Robinson prefer.
- Think about his constraints.
- Think about what will Robinson do given his preferences and his constraints

Environment

$\bullet 2$ goods, consumption c and leisure $l, c \geq 0, \quad l \in[0, h]$ (note different notation in Williamson's book than in Jones. l is leisure, n are hours worked. We represent preferences with a utility function $u(c, l)$.

1. Complete: for $\forall\left(c_{i}, l_{i}\right),\left(c_{j}, l_{j}\right), u\left(c_{i}, l_{i}\right)$ is either $>,<,=\operatorname{than} u\left(c_{j}, l_{j}\right)$.
2. Transitive: for $\forall\left(c_{i}, l_{i}\right),\left(c_{j}, l_{j}\right),\left(c_{k}, l_{k}\right)$, if $u\left(c_{i}, l_{i}\right) \geq\left(c_{j}, l_{j}\right)$ and

$$
u\left(c_{j}, l_{j}\right) \geq u\left(c_{k}, l_{k}\right) \text { then } u\left(c_{i}, l_{i}\right) \geq u\left(c_{k}, l_{k}\right)
$$

-The utility function can have monotonic transformations.

Indifference Curves

- Loci of pairs (set of points) such that: $u\left(c_{i}, l_{i}\right)=u\left(c_{j}, l_{j}\right)$.
- If we assume that preferences are strictly monotonic, convex and normal, the indifference curves are:

1. Negative sloped in l.
2. Convex.
-We work with differentiable utility functions.

- Draw indifference curves

Budget Constraint

- Leisure $l \Rightarrow$ hours worked n.
- Wage w.
- Then

$$
\begin{aligned}
c+l w & =h w+\pi-T=h w+\pi-T \text { or more commonly } \\
c & =(h-l) w+\pi-T=n w+\pi-T
\end{aligned}
$$

- Interpretation for Robinson.

Household's Problem

- Problem for Robinson is then

$$
\begin{array}{cc}
& \max _{c, l} u(c, l) \\
\text { s.t. } & c=(h-l) w+\pi-T
\end{array}
$$

- First order condition: $\quad \frac{u_{l}}{u_{c}}=w$
- The marginal rate of substitution (MRS) equals the relative price of leisure.
- We express the solution as a pair of functions that give us the demand for consumption and for leisure and we write them

$$
\begin{aligned}
l^{h h} & =l^{h h}(w, \pi-T)=h-n^{h h}(w, \pi-T) \\
c^{h h} & =c^{h h}(w, \pi-T)
\end{aligned}
$$

we write $n^{h h}$ to make clear that this is the choice of the household

A Parametric Example

- $u(c, l)=\log c+\gamma \log l$ and $\quad c=w(h-l)+\pi-T=w n+\pi-T$.
- First Order Condition and Budget constraint:

$$
\begin{aligned}
& \operatorname{MRS}_{c}^{l}=\frac{\frac{\gamma}{l^{*}}}{\frac{1}{c^{h h}}}=\gamma \frac{c^{h h}}{l^{h h}}=w \\
& c^{h h}=\left(h-l^{h h}\right) w+\pi-T
\end{aligned}
$$

- Then:

$$
\begin{aligned}
l^{h h} & =\frac{\gamma}{1+\gamma} \frac{h w+\pi-T}{w} \\
c^{h h} & =\frac{1}{1+\gamma}\{h w+\pi-T\}
\end{aligned}
$$

Income and Substitution Effect

- We will use the followimg (Hicksian) decomposition.
- Substitution Effect: changes in w make leisure change its relative price with total utility constant.
- Income Effect: changes in w induce changes in total income even if l^{*} stays constant.
- For $u(c, l)=\log c+\gamma \log l$ income and substitution effect cancel each other!

