Notes on Econ 102 Sect. 2, Fall 2005 José-Víctor Ríos-Rull, , University of Pennsylvania

Chapter 4 Growth Accounting Evolved from notes written by Jesús Fernández-Villaverde

October 3, 2005

4 Growth Accounting

- Output is produced by inputs capital K and labor L, in combination with the available technology A
- Want: decompose the growth rate of output into the growth rate of capital input, the growth rate of labor input and technological progress. This exercise is called growth accounting.

• Why?

Aggregate production function

• Maps inputs into output:

Y = F(A, K, L)

A is called total factor productivity (TFP).

• Cobb-Douglas example:

 $Y = A \ K^{\alpha} \ L^{1-\alpha}$

• Interpretation.

Discrete vs. Continuous Time

- In discrete time a variable is indexed by time: x_t .
- In continuous time a variable is a function of time: x(t).
- We observe the world only in discrete time...
- but it is often much easier to work with continuous time!

• Remember that $g_x(t-1,t) = \frac{x_t - x_{t-1}}{x_{t-1}}$

• Remember that $g_x(t-1,t) = \frac{x_t - x_{t-1}}{x_{t-1}}$ and that $1 + g_x(t-1,t) = \frac{x_t}{x_{t-1}}$

Remember that $g_x(t-1,t) = \frac{x_t - x_{t-1}}{x_{t-1}}$ and that $1 + g_x(t-1,t) = \frac{x_t}{x_{t-1}}$ Take logs $\log [1 + g_x(t-1,t)] = \log \left(\frac{x_t}{x_{t-1}}\right)$

- Remember that $g_x(t-1,t) = rac{x_t-x_{t-1}}{x_{t-1}}$ and that $1+g_x(t-1,t) = rac{x_t}{x_{t-1}}$
- Take logs $\log \left[1 + g_x(t-1,t)\right] = \log \left(\frac{x_t}{x_{t-1}}\right)$
- Taylor series expansion of $\log(1+y)$ around y = 0:

$$\log(1+y)|_{y=0} = \ln 1 + \frac{1}{1!}y + \text{higher order terms} \simeq y$$

- Remember that $g_x(t-1,t) = \frac{x_t-x_{t-1}}{x_{t-1}}$ and that $1+g_x(t-1,t) = \frac{x_t}{x_{t-1}}$
- Take logs $\log \left[1 + g_x(t-1,t)\right] = \log \left(\frac{x_t}{x_{t-1}}\right)$
- Taylor series expansion of $\log(1+y)$ around y = 0:

$$\log(1+y)|_{y=0} = \ln 1 + \frac{1}{1!}y + \text{higher order terms} \simeq y$$

• Then:

$$\log \left[1 + g_x(t-1,t)\right] \simeq g_x(t-1,t) \simeq \log \left(\frac{x_t}{x_{t-1}}\right)$$

 $g_x(t-1,t) \simeq \log x_t - \log x_{t-1} = \Delta \log x_t$

Remember that g_x(t - 1, t) = x_t-x_{t-1}/x_{t-1} and that 1 + g_x(t - 1, t) = x_t/x_{t-1}
Take logs log [1 + g_x(t - 1, t)] = log (x_t/x_{t-1})
Taylor series expansion of log (1 + y) around y = 0:

$$\left| \mathsf{log} \left(1 + y
ight)
ight|_{y = 0} = \mathsf{ln} \, 1 + rac{1}{1!} y + \mathsf{higher} \; \mathsf{order} \; \mathsf{terms} \simeq y$$

• Then:

$$\log \left[1 + g_x(t-1,t)\right] \simeq g_x(t-1,t) \simeq \log \left(\frac{x_t}{x_{t-1}}\right)$$

$$g_x(t-1,t) \simeq \log x_t - \log x_{t-1} = \Delta \log x_t$$

• Remember from calculus that validity of Taylor series expansion is local: g small!

• Let x(t) be a variable that depends of t. We write $\dot{x}(t) \equiv \frac{dx(t)}{dt}$.

• Let x(t) be a variable that depends of t. We write

$$\dot{x}(t) \equiv \frac{dx(t)}{dt}.$$

• Time derivative:
$$\dot{x}(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

• Let x(t) be a variable that depends of t. We write

$$\dot{x}(t) \equiv \frac{dx(t)}{dt}.$$

• Time derivative:
$$\dot{x}(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

• Take logs $\frac{d \log[x(t)]}{dt} = \frac{\dot{x}(t)}{x(t)} = g_x(t)$

• Let x(t) be a variable that depends of t. We write

$$\dot{x}(t) \equiv \frac{dx(t)}{dt}.$$

• Time derivative:
$$\dot{x}(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

• Take logs
$$\frac{d \log[x(t)]}{dt} = \frac{\dot{x}(t)}{x(t)} = g_x(t)$$

Then:
$$\frac{\dot{x}(t)}{x(t)} = \frac{\lim_{\Delta t \to 0} \frac{x(t+\Delta t) - x(t)}{\Delta t}}{x(t)}$$

• Let x(t) be a variable that depends of t. We write

$$\dot{x}(t) \equiv \frac{dx(t)}{dt}.$$

• Time derivative:
$$\dot{x}(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

• Take logs
$$\frac{d \log[x(t)]}{dt} = \frac{\dot{x}(t)}{x(t)} = g_x(t)$$

• Then:
$$\frac{\dot{x}(t)}{x(t)} = \frac{\lim_{\Delta t \to 0} \frac{x(t+\Delta t) - x(t)}{\Delta t}}{x(t)}$$

• When Δt is small (let's say a year):

$$g_x(t) = \frac{\dot{x}(t)}{x(t)} \simeq \frac{x(t+1) - x(t)}{x(t)} = g_x(t-1,t) \simeq \Delta \log x_t$$

1 Take logs $\log(k(t)) = \log(K(t)) - \log(L(t))$

1 Take logs
$$\log(k(t)) = \log(K(t)) - \log(L(t))$$

2 Differentiate with respect to time

$$\frac{d \log((k(t)))}{dt} = \frac{d \log(K(t))}{dt} - \frac{d \log(L(t))}{dt}$$
$$\frac{\dot{k}(t)}{\dot{k}(t)} = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)}$$
$$g_k(t) = g_K(t) - g_L(t)$$

1 Take logs
$$\log(k(t)) = \log(K(t)) - \log(L(t))$$

2 Differentiate with respect to time

$$\frac{d \log((k(t)))}{dt} = \frac{d \log(K(t))}{dt} - \frac{d \log(L(t))}{dt}$$
$$\frac{\dot{k}(t)}{\dot{k}(t)} = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)}$$
$$g_k(t) = g_K(t) - g_L(t)$$

3 Growth rate of a ratio = the difference of the growth rates:

$$g_k(t) = g_K(t) - g_L(t)$$

$$\log(k(t)) = \log(K(t)) - \log(L(t))$$

2 Differentiate with respect to time

1 Take logs

$$\frac{d \log((k(t)))}{dt} = \frac{d \log(K(t))}{dt} - \frac{d \log(L(t))}{dt}$$
$$\frac{\dot{k}(t)}{\dot{k}(t)} = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)}$$

$$g_k(t) = g_K(t) - g_L(t)$$

3 Growth rate of a ratio = the difference of the growth rates:

$$g_k(t) = g_K(t) - g_L(t)$$

4 A constant ratio that both variables grow at same rate:

$$g_k(t) = \mathbf{0} \Rightarrow g_K(t) = g_L(t)$$

Growth Rates of Weighted Products. Suppose $Y(t) = K(t)^{\alpha}L(t)^{1-\alpha}$ What is $g_Y(t)$?

[1] Take logs
$$\log(Y(t)) = \alpha \log(K(t)) + (1 - \alpha) \log(L(t))$$

[2] Differentiate

$$\frac{d \log(Y(t))}{dt} = \alpha \frac{d \log(K(t))}{dt} + (1 - \alpha) \frac{d \log(L(t))}{dt}$$
$$\frac{\dot{Y}(t)}{Y(t)} = \alpha \frac{\dot{K}(t)}{K(t)} + (1 - \alpha) \frac{\dot{L}(t)}{L(t)}$$
$$g_Y(t) = \alpha g_K(t) + (1 - \alpha) g_L(t)$$

Growth rate = weighted sum, (weights equal to share parameters)

Growth Accounting

- Observations in discrete time.
- Production Function: Y(t) = F(A(t), K(t), L(t))
- Differentiating with respect to time and dividing by Y(t)

$$\frac{\dot{Y}(t)}{Y(t)} = \frac{F_A A(t)}{Y(t)} \frac{\dot{A}(t)}{A(t)} + \frac{F_k K(t)}{Y(t)} \frac{\dot{K}(t)}{K(t)} + \frac{F_L L(t)}{Y(t)} \frac{\dot{L}(t)}{L(t)}$$

- Useful benchmark: Cobb-Douglas $Y(t) = A(t)K(t)^{\alpha}L(t)^{1-\alpha}$.
- Why? (factor shares)
- Taking logs and differentiating with respect to time gives

$$g_Y(t) = g_A(t) + \alpha g_K(t) + (1 - \alpha)g_L(t)$$

• g_A is called TFP growth or multifactor productivity growth.

The Cobb-Douglas Production Function and its properties

• Under competition factors of production are paid their marginal productivities.

$$w = \frac{\partial F(K,L)}{\partial L} = (1-\alpha)AK^{\alpha} L^{-\alpha} \qquad r = \frac{\partial F(K,L)}{\partial K} = \alpha A K^{\alpha-1} L^{1-\alpha}$$

• Labor and capital shares of output in any year t are

$$\frac{W_t L_t}{Y_t} = \frac{(1-\alpha)A_t K_t^{\alpha} L_t^{-\alpha} L_t}{Y_t} = 1 - \alpha$$
$$\frac{r_t K_t}{Y_t} = \frac{\alpha A_t K_t^{\alpha-1} L_t^{1-\alpha} K_t}{Y_t} = \alpha$$

• Cobb-Douglas production functions are consistent with the Kaldor facts.

Doing the Accounting

- Pick α (capital share).
- Measure g_Y, g_K and g_L from the data.
- g_A is the residual $g_A(t) = g_Y(t) \alpha g_K(t) (1 \alpha) g_L(t)$
- Therefore g_A is also called the Solow residual.
- Severe problems if missmeasurement $(g_K \text{ is hard to measure})$.

Data for the US

• We pick $\alpha = \frac{1}{3}$

Per.	g_Y	αg_K	$(1-lpha)g_L$	TFP (g_A)	
48 - 98	2.5	0.8 (32%)	0.2 (8%)	1.4 (56%)	
48 - 73	3.3	1.0 (30%)	0.2 (6%)	2.1 (64%)	
73 – 95	1.5	0.7 (47%)	0.3 (20%)	0.6 (33%)	
95 - 98	2.5	0.8 (32%)	0.3 (12%)	1.4 (56%)	

- Key observation: Productivity Slowdown in the 70's
- Note: the late 90's look much better

Reasons for the Productivity Slowdown

- 1. Sharp increases in the price of oil in 70's
- 2. Structural changes: more services and less and less manufacturing goods produced
- 3. Slowdown in resources spent on R&D in the late 60's.
- 4. TFP was abnormally high in the 50's and 60's
- 5. Information technology (IT) revolution in the 70's

Growth Accounting for Other Countries

- One key question: was fast growth in East Asian growth miracles mostly due to technological progress or mostly due to capital accumulation?
- Why is this an important question?

Country	Per.	g_Y	α	αg_K	$(1-lpha)g_L$	g_A
Germany	60-90	3.2	0.4	59%	-8%	49%
Italy	60-90	4.1	0.38	49%	3%	48%
UK	60-90	2.5	0.39	52%	-4%	52%
Argentina	40-80	3.6	0.54	43%	26%	31%
Brazil	40-80	6.4	0.45	51%	20%	29%
Chile	40-80	3.8	0.52	34%	26%	40%
Mexico	40-80	6.3	0.63	41%	23%	36%
Japan	60-90	6.8	0.42	57%	14%	29%
Hong Kong	66-90	7.3	0.37	42%	28%	30%
Singapore	66-90	8.5	0.53	73%	31%	-4%
South Korea	66-90	10.3	0.32	46%	42%	12%
Taiwan	66-90	9.1	0.29	40%	40%	20%