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4 Growth Accounting

• Output is produced by inputs capital K and labor L, in combination with

the available technology A

• Want: decompose the growth rate of output into the growth rate of

capital input, the growth rate of labor input and technological progress.

This exercise is called growth accounting.

• Why?
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Aggregate production function

• Maps inputs into output:

Y = F (A, K, L)

A is called total factor productivity (TFP).

• Cobb-Douglas example:

Y = A Kα L1−α

• Interpretation.
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Discrete vs. Continuous Time

• In discrete time a variable is indexed by time: xt.

• In continuous time a variable is a function of time: x(t).

• We observe the world only in discrete time...

• but it is often much easier to work with continuous time!
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From Growth Rates and Logarithms

• Remember that gx(t− 1, t) =
xt−xt−1

xt−1
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• Then:
log [1 + gx(t− 1, t)] ' gx(t− 1, t) ' log
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gx(t− 1, t) ' log xt − log xt−1 = ∆ log xt
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From Growth Rates and Logarithms

• Remember that gx(t− 1, t) =
xt−xt−1

xt−1

and that 1 + gx(t− 1, t) = xt
xt−1

• Take logs log [1 + gx(t− 1, t)] = log
(

xt
xt−1

)

• Taylor series expansion of log (1 + y) around y = 0:

log (1 + y)|y=0 = ln 1 +
1

1!
y + higher order terms ' y

• Then:
log [1 + gx(t− 1, t)] ' gx(t− 1, t) ' log

(
xt

xt−1

)

gx(t− 1, t) ' log xt − log xt−1 = ∆ log xt

• Remember from calculus that validity of Taylor series expansion is local:
g small!
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Moving between Continuous and Discrete Time

• Let x(t) be a variable that depends of t. We write
·
x(t) ≡ dx(t)

dt .
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Moving between Continuous and Discrete Time

• Let x(t) be a variable that depends of t. We write
·
x(t) ≡ dx(t)

dt .

• Time derivative:
·
x(t) = lim

∆t→0

x(t + ∆t)− x(t)

∆t

• Take logs d log[x(t)]

dt
=

·
x(t)

x(t)
= gx(t)

• Then:
·
x(t)

x(t)
=

lim∆t→0
x(t+∆t)−x(t)

∆t

x(t)

• When ∆t is small (let’s say a year):

gx(t) =

·
x(t)

x(t)
' x(t + 1)− x(t)

x(t)
= gx(t− 1, t) ' ∆ log xt
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Growth Rates of Ratios: Suppose k(t) =
K(t)
L(t)

. What is gk(t)?
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Growth Rates of Ratios: Suppose k(t) =
K(t)
L(t)

. What is gk(t)?

1 Take logs log(k(t)) = log(K(t))− log(L(t))

2 Differentiate with respect to time

d log((k(t))

dt
=

d log(K(t))

dt
− d log(L(t))

dt
k̇(t)

k(t)
=

K̇(t)

K(t)
− L̇(t)

L(t)

gk(t) = gK(t)− gL(t)

3 Growth rate of a ratio = the difference of the growth rates:

gk(t) = gK(t)− gL(t)

4 A constant ratio that both variables grow at same rate:

gk(t) = 0 ⇒ gK(t) = gL(t)
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Growth Rates of Weighted Products. Suppose Y (t) = K(t)αL(t)1−α

What is gY (t)?

[1] Take logs log(Y (t)) = α log(K(t)) + (1− α) log(L(t))

[2] Differentiate
d log(Y (t))

dt
= α

d log(K(t))

dt
+ (1− α)

d log(L(t))

dt
Ẏ (t)

Y (t)
= α

K̇(t)

K(t)
+ (1− α)

L̇(t)

L(t)

gY (t) = α gK(t) + (1− α) gL(t)

Growth rate = weighted sum, (weights equal to share parameters)
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Growth Accounting

• Observations in discrete time.

• Production Function: Y (t) = F (A(t), K(t), L(t))

• Differentiating with respect to time and dividing by Y (t)

Ẏ (t)

Y (t)
=

FAA(t)

Y (t)

Ȧ(t)

A(t)
+

FkK(t)

Y (t)

K̇(t)

K(t)
+

FLL(t)

Y (t)

L̇(t)

L(t)

• Useful benchmark: Cobb-Douglas Y (t) = A(t)K(t)αL(t)1−α.

• Why? (factor shares)

• Taking logs and differentiating with respect to time gives

gY (t) = gA(t) + αgK(t) + (1− α)gL(t)

• gA is called TFP growth or multifactor productivity growth.
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The Cobb-Douglas Production Function and its properties

• Under competition factors of production are paid their marginal produc-

tivities.

w =
∂F (K, L)

∂L
= (1−α)AKα L−α r =

∂F (K, L)

∂K
= α A Kα−1 L1−α

• Labor and capital shares of output in any year t are

Wt Lt

Yt
=

(1− α)AtK
α
t L−α

t Lt

Yt
= 1− α

rt Kt

Yt
=

α At Kα−1
t L1−α

t Kt

Yt
= α

• Cobb-Douglas production functions are consistent with the Kaldor facts.
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Doing the Accounting

• Pick α (capital share).

• Measure gY , gK and gL from the data.

• gA is the residual gA(t) = gY (t)− α gK(t)− (1− α) gL(t)

• Therefore gA is also called the Solow residual.

• Severe problems if missmeasurement (gK is hard to measure).
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Data for the US

• We pick α = 1
3

Per. gY αgK (1− α)gL TFP (gA)

48− 98 2.5 0.8 (32%) 0.2 (8%) 1.4 (56%)
48− 73 3.3 1.0 (30%) 0.2 (6%) 2.1 (64%)
73− 95 1.5 0.7 (47%) 0.3 (20%) 0.6 (33%)
95− 98 2.5 0.8 (32%) 0.3 (12%) 1.4 (56%)

• Key observation: Productivity Slowdown in the 70’s

• Note: the late 90’s look much better
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Reasons for the Productivity Slowdown

1. Sharp increases in the price of oil in 70’s

2. Structural changes: more services and less and less manufacturing goods

produced

3. Slowdown in resources spent on R&D in the late 60’s.

4. TFP was abnormally high in the 50’s and 60’s

5. Information technology (IT) revolution in the 70’s
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Growth Accounting for Other Countries

• One key question: was fast growth in East Asian growth miracles mostly
due to technological progress or mostly due to capital accumulation?

• Why is this an important question?

Country Per. gY α αgK (1− α)gL gA

Germany 60-90 3.2 0.4 59% −8% 49%
Italy 60-90 4.1 0.38 49% 3% 48%
UK 60-90 2.5 0.39 52% −4% 52%
Argentina 40-80 3.6 0.54 43% 26% 31%
Brazil 40-80 6.4 0.45 51% 20% 29%
Chile 40-80 3.8 0.52 34% 26% 40%
Mexico 40-80 6.3 0.63 41% 23% 36%
Japan 60-90 6.8 0.42 57% 14% 29%
Hong Kong 66-90 7.3 0.37 42% 28% 30%
Singapore 66-90 8.5 0.53 73% 31% −4%
South Korea 66-90 10.3 0.32 46% 42% 12%
Taiwan 66-90 9.1 0.29 40% 40% 20%
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