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4  Growth Accounting

e Output is produced by inputs capital K and labor L, in combination with
the available technology A

e Want: decompose the growth rate of output into the growth rate of
capital input, the growth rate of labor input and technological progress.

This exercise is called growth accounting.

e Why?
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Aggregate production function

e Maps inputs into output:
Y =F(A K, L)

A is called total factor productivity (TFP).

e Cobb-Douglas example:

Yy = A K¢ [l

e Interpretation.
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Discrete vs. Continuous Time

In discrete time a variable is indexed by time: x;.

In continuous time a variable is a function of time: xz(t).

We observe the world only in discrete time...

but it is often much easier to work with continuous time!
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From Growth Rates and Logarithms

Tt—Ty—1

e Remember that gz(t — 1,t) = Ti_1
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From Growth Rates and Logarithms

e Remember that gz(t —1,t) = _xt;ztl—l
and that 1+ gz(t —1,t) = w;ﬁjl
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From Growth Rates and Logarithms

e Remember that gz(t —1,t) = _xt;ztl—l
and that 1+ gz(t —1,t) = w;ﬁjl

e Take logs log [1 4 go(t — 1,t)] = log ( Ty )

Tt—1
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From Growth Rates and Logarithms

e Remember that gz(t —1,t) = _xt;ztl—l
__ X
and that 1+ gz(t —1,t) = wtjl
e Take logs log [1 + g=(t — 1,t)] = log (mfjl)

e Taylor series expansion of log (1 + y) around y = O:

1
log (1 + y)|y:0 =Inl+ Y + higher order terms ~ y
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Remember that

and that

Take logs

From Growth Rates and Logarithms

gCU(t o 17 t) —

Tt—Ty—1
Tt—1

t
Lt—1

log [1 + gx(t — 1,t)] = log ( 4 )

Lt—1

Taylor series expansion of log (1 + y) around y = O:

Then:

1
log (1 + y)|y:0 =Inl+ Y + higher order terms ~ y

log [1 + gx(t — 1, t)]

gx(t —1,¢t)

2
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gz(t — 1,t) ~ log (—t>

Lt—1

log x4 — log xy_1 = Alog x¢



From Growth Rates and Logarithms

Remember that gz(t —1,t) = _xt;ztl—l
and that 1+ gz(t —1,t) = wtwjl
Take logs log [1 + gu(t — 1,)] = log (fo)

Taylor series expansion of log (1 + y) around y = O:
1
log (1 + y)|y:0 =Inl+ Fy + higher order terms ~ y

Then: T

gz(t — 1,t) ~ log (—t>

12

log [1 4 gx(t — 1,1)] P

gz(t —1,t) ~ logxy —logxi_1 = Alogxy

Remember from calculus that validity of Taylor series expansion is local:
g small!
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Moving between Continuous and Discrete Time

e Let x(t) be a variable that depends of t. We write r(t) = daél—gt)
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Moving between Continuous and Discrete Time

e Let x(t) be a variable that depends of t. We write r(t) = daél—gt)

: o x(t+ At) — x(t
e Time derivative: z(t) = lim ( ) (t)
At—0 At
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Moving between Continuous and Discrete Time

e Let x(t) be a variable that depends of t. We write r(t) = daél—gt)

x(t + At) — x(t)

. . . . : t — I'
e Time derivative: x(t) A?ISEO At
e Take logs dlog|x(t)] _ z(t)

d @ = ga(t)
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Moving between Continuous and Discrete Time

Let x(t) be a variable that depends of t. We write r(t) = daél—gt)

x(t + At) — x(t)

Time derivative: r(t) = Al;tmo At
dlog[x(t z(t
Take logs [z(¢)] _ (¢) — ga(t)
dt x(t)

. . t+At)—x(t
Then: z(t) limas—0 2l A?ﬁ a2y

z(t) z(t)
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Moving between Continuous and Discrete Time

Let x(t) be a variable that depends of t. We write r(t) = daél—gt)
x(t + At) — x(t)
. L N —
Time derivative: CB( ) = A%go At
Take logs dlog[z(?)] _ z(t) — ga(t)
dt z(t) 7"
- . t+At)—x(t
Then: z(t) _ limas—s0 x( A% x(t)
z(t) z(t)

When At is small (let's say a year):

:I:(t) _x(t+1) —=(t)
z(t) z(t)

58

gx(t) = = gz(t — 1,t) ~ Alog x¢




K(1)

Growth Rates of Ratios: Suppose k(t) = OR

What is gy (t)?
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K(1)

Growth Rates of Ratios: Suppose k(t) = OR

What is gy (t)?

1 Take logs log(k(t)) = log(K(¢)) — log(L(?))
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K(t)

Growth Rates of Ratios: Suppose k(t) = 7~

L(t)

What is gj(t)?

1 Take logs log(k(t)) = log(K (¢)) — log(L(t))
2 Differentiate with respect to time

dlog(K(t)) dlog(L(t))

dlog((k(t))
dt

k(t)
k(t)

gr(t)

dt
K(t) L(t)
K(t) L(t)

gr(t) —gr(t)
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Growth Rates of Ratios: Suppose k(t) = % What is gp.(t)?

1 Take logs log(k(t)) = log(K (¢)) — log(L(t))
2 Differentiate with respect to time

dlog((k(t))  dlog(K(t)) dlog(L(t))
dt dt dt
k(t) K@) L)
k(t) — K(t) L(t)

gr(t) = gx(t) —gr(t)

3 Growth rate of a ratio = the difference of the growth rates:

9r(t) = gk (t) — gr(t)
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Growth Rates of Ratios: Suppose k(t) = % What is gp.(t)?

1 Take logs |Og(k(t)) — |Og(K(t)) — |Og(L(t))
2 Differentiate with respect to time
dlog((k(t)) _ dlog(K(t)) dlog(L(t))
dt Codt dt
k(t) K(t) L(t)
k() K() L)

gk(t) = gk (t) —gr(t)
3 Growth rate of a ratio = the difference of the growth rates:

gr(t) = gk (t) — gr(t)

4 A constant ratio that both variables grow at same rate:
gx(t) = 0= gk (t) = gr(?)
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Growth Rates of Weighted Products. Suppose Y (t) = K(t)O‘L(t)l_a
What is gy (t)?

[1] Take logs log(Y(t)) = alog(K(t)) + (1 — «) log(L(t))

[2] Differentiate

dlog(Y(?)) _ adlog(K(t)) +(1_a)dlog(L(t))
dt o dt | dt
Y(t) = K(t) L(t)
OB O A0

gy(t) = a gk(t)+(1—a) gr(t)

Growth rate = weighted sum, (weights equal to share parameters)
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Growth Accounting

Observations in discrete time.
Production Function: Y (t) = F (A(t), K(t), L(t))
Differentiating with respect to time and dividing by Y (¢)

Y(t)  FAAQR)A(t) | FRK(t)K(t) | FrL(t)L(t)

Y(t) | Y(t) A®) | Y() K@) Y(t) L)

Useful benchmark: Cobb-Douglas Y'(t) = A(t)K (t)*L(t)1 .
Why? (factor shares)

Taking logs and differentiating with respect to time gives
gy (t) = ga(t) + agk(t) + (1 — a)gr(t)
ga is called TFP growth or multifactor productivity growth.
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The Cobb-Douglas Production Function and its properties

e Under competition factors of production are paid their marginal produc-
tivities.
_ OF(K, L) _ OF(K, L)

w = = (1-a)AK®* L™° r = —aAKe 1l
OL 0K

e Labor and capital shares of output in any year t are

Wt Lt o (1 — Oé)AtK? Lt_aLt
i Yy

=1—«

re Ky _ a Ay Kol K, _
Yy Yy

(87

e Cobb-Douglas production functions are consistent with the Kaldor facts.

62



Doing the Accounting

Pick « (capital share).

Measure gy, g and gy, from the data.

ga is the residual ga(t) = gy (t) — a g (t) — (1 — a) gr(?)

Therefore g 4 is also called the Solow residual.

Severe problems if missmeasurement (gx is hard to measure).
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Data for the US

e We pick a = %
Per. gy | agk (1 —a)gr, | TFP (g4)
48— 98 [[ 2.5 | 0.8 (32%) | 0.2 (8%) | 1.4 (56%)
48 — 73 | 3.3 1.0 (30%) | 0.2 (6%) | 2.1 (64%)
73-05 || 1.5 | 0.7 (47%) | 0.3 (20%) | 0.6 (33%)
05— 98 || 2.5 | 0.8 (32%) | 0.3 (12%) | 1.4 (56%)

e Key observation: Productivity Slowdown in the 70’s

e Note: the late 90’s look much better
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Reasons for the Productivity Slowdown

. Sharp increases in the price of oil in 70’s

. Structural changes: more services and less and less manufacturing goods
produced

. Slowdown in resources spent on R&D in the late 60’s.
. TFP was abnormally high in the 50's and 60’s

. Information technology (IT) revolution in the 70’s
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Growth Accounting for Other Countries

e One key question: was fast growth in East Asian growth miracles mostly
due to technological progress or mostly due to capital accumulation?

e Why is this an important question?

Country Per. gy a | agr | (1 —a)gr, gA
Germany 60-90 3.2 0.4 59% —8% 49%
Italy 6000 | 4.1 0.38 | 49% 3% | 48%
UK 60-90 | 2.5 0.39 | 52% —4% | 52%
Argentina 40-80 3.6 | 0.54 43% 26% 31%
Brazil 40-80 | 6.4 | 0.45 | 51% 20% | 29%
Chile 40-80 | 3.8 | 0.52 | 34% 26% | 40%
Mexico 40-80 | 6.3 0.63 | 41% 23% | 36%
Japan 60-00 | 6.8 | 0.42 | 57% 14% | 29%
Hong Kong 66-90 7.3 | 0.37 42% 28% 30%
Singapore 66-900 | 8.5 0.53 | 73% 31% | —4%
South Korea || 66-90 | 10.3 | 0.32 | 46% 42% | 12%
Taiwan 66-90 | 9.1 | 0.29 | 40% 40% | 20%
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