Notes on Econ 102 Sect. 2, Fall 2005

 José-Víctor Ríos-Rull, , University of PennsylvaniaChapter 4 Growth Accounting
Evolved from notes written by Jesús Fernández-Villaverde

October 3, 2005

4 Growth Accounting

- Output is produced by inputs capital K and labor L, in combination with the available technology A
- Want: decompose the growth rate of output into the growth rate of capital input, the growth rate of labor input and technological progress. This exercise is called growth accounting.
- Why?

Aggregate production function

- Maps inputs into output:

$$
Y=F(A, K, L)
$$

A is called total factor productivity (TFP).

- Cobb-Douglas example:

$$
Y=A K^{\alpha} L^{1-\alpha}
$$

- Interpretation.

Discrete vs. Continuous Time

- In discrete time a variable is indexed by time: x_{t}.
- In continuous time a variable is a function of time: $x(t)$.
- We observe the world only in discrete time...
- but it is often much easier to work with continuous time!

From Growth Rates and Logarithms

- Remember that

$$
g_{x}(t-1, t)=\frac{x_{t}-x_{t-1}}{x_{t-1}}
$$

From Growth Rates and Logarithms

- Remember that and that

$$
\begin{aligned}
g_{x}(t-1, t) & =\frac{x_{t}-x_{t-1}}{x_{t-1}} \\
1+g_{x}(t-1, t) & =\frac{x_{t}}{x_{t-1}}
\end{aligned}
$$

From Growth Rates and Logarithms

- Remember that and that

$$
\begin{aligned}
g_{x}(t-1, t) & =\frac{x_{t}-x_{t-1}}{x_{t-1}} \\
1+g_{x}(t-1, t) & =\frac{x_{t}}{x_{t-1}}
\end{aligned}
$$

- Take logs

$$
\log \left[1+g_{x}(t-1, t)\right]=\log \left(\frac{x_{t}}{x_{t-1}}\right)
$$

From Growth Rates and Logarithms

- Remember that and that

$$
\begin{aligned}
g_{x}(t-1, t) & =\frac{x_{t}-x_{t-1}}{x_{t-1}} \\
1+g_{x}(t-1, t) & =\frac{x_{t}}{x_{t-1}}
\end{aligned}
$$

$$
\log \left[1+g_{x}(t-1, t)\right]=\log \left(\frac{x_{t}}{x_{t-1}}\right)
$$

- Taylor series expansion of $\log (1+y)$ around $y=0$:

$$
\left.\log (1+y)\right|_{y=0}=\ln 1+\frac{1}{1!} y+\text { higher order terms } \simeq y
$$

From Growth Rates and Logarithms

- Remember that

$$
\begin{aligned}
g_{x}(t-1, t) & =\frac{x_{t}-x_{t-1}}{x_{t-1}} \\
1+g_{x}(t-1, t) & =\frac{x_{t}}{x_{t-1}}
\end{aligned}
$$ and that

- Take logs

$$
\log \left[1+g_{x}(t-1, t)\right]=\log \left(\frac{x_{t}}{x_{t-1}}\right)
$$

- Taylor series expansion of $\log (1+y)$ around $y=0$:

$$
\left.\log (1+y)\right|_{y=0}=\ln 1+\frac{1}{1!} y+\text { higher order terms } \simeq y
$$

- Then:

$$
\begin{aligned}
\log \left[1+g_{x}(t-1, t)\right] & \simeq g_{x}(t-1, t) \simeq \log \left(\frac{x_{t}}{x_{t-1}}\right) \\
g_{x}(t-1, t) & \simeq \log x_{t}-\log x_{t-1}=\Delta \log x_{t}
\end{aligned}
$$

From Growth Rates and Logarithms

- Remember that

$$
\begin{aligned}
g_{x}(t-1, t) & =\frac{x_{t}-x_{t-1}}{x_{t-1}} \\
1+g_{x}(t-1, t) & =\frac{x_{t}}{x_{t-1}}
\end{aligned}
$$

and that

- Take logs

$$
\log \left[1+g_{x}(t-1, t)\right]=\log \left(\frac{x_{t}}{x_{t-1}}\right)
$$

- Taylor series expansion of $\log (1+y)$ around $y=0$:

$$
\left.\log (1+y)\right|_{y=0}=\ln 1+\frac{1}{1!} y+\text { higher order terms } \simeq y
$$

- Then:

$$
\begin{aligned}
\log \left[1+g_{x}(t-1, t)\right] & \simeq g_{x}(t-1, t) \simeq \log \left(\frac{x_{t}}{x_{t-1}}\right) \\
g_{x}(t-1, t) & \simeq \log x_{t}-\log x_{t-1}=\Delta \log x_{t}
\end{aligned}
$$

- Remember from calculus that validity of Taylor series expansion is local: g small!

Moving between Continuous and Discrete Time

- Let $x(t)$ be a variable that depends of t. We write

$$
\dot{x}(t) \equiv \frac{d x(t)}{d t} .
$$

Moving between Continuous and Discrete Time

- Let $x(t)$ be a variable that depends of t. We write

$$
\dot{x}(t) \equiv \frac{d x(t)}{d t}
$$

- Time derivative: $\quad \dot{x}(t)=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}$

Moving between Continuous and Discrete Time

- Let $x(t)$ be a variable that depends of t. We write

$$
\dot{x}(t) \equiv \frac{d x(t)}{d t}
$$

- Time derivative: $\dot{x}(t)=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}$
- Take logs

$$
\frac{d \log [x(t)]}{d t}=\frac{\dot{x}(t)}{x(t)}=g_{x}(t)
$$

Moving between Continuous and Discrete Time

- Let $x(t)$ be a variable that depends of t. We write

$$
\dot{x}(t) \equiv \frac{d x(t)}{d t}
$$

- Time derivative: $\dot{x}(t)=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}$
- Take logs

$$
\frac{d \log [x(t)]}{d t}=\frac{\dot{x}(t)}{x(t)}=g_{x}(t)
$$

- Then:

$$
\frac{\dot{x}(t)}{x(t)}=\frac{\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}}{x(t)}
$$

Moving between Continuous and Discrete Time

- Let $x(t)$ be a variable that depends of t. We write $\quad \dot{x}(t) \equiv \frac{d x(t)}{d t}$.
- Time derivative: $\dot{x}(t)=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}$
- Take logs

$$
\frac{d \log [x(t)]}{d t}=\frac{\dot{x}(t)}{x(t)}=g_{x}(t)
$$

$$
\frac{\dot{x}(t)}{x(t)}=\frac{\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}}{x(t)}
$$

- When Δt is small (let's say a year):

$$
g_{x}(t)=\frac{\dot{x}(t)}{x(t)} \simeq \frac{x(t+1)-x(t)}{x(t)}=g_{x}(t-1, t) \simeq \Delta \log x_{t}
$$

Growth Rates of Ratios: Suppose $k(t)=\frac{K(t)}{L(t)}$. What is $g_{k}(t)$?

Growth Rates of Ratios: Suppose $k(t)=\frac{K(t)}{L(t)}$. What is $g_{k}(t)$?

1 Take logs

$$
\log (k(t))=\log (K(t))-\log (L(t))
$$

Growth Rates of Ratios: Suppose $k(t)=\frac{K(t)}{L(t)}$. What is $g_{k}(t)$?

1 Take logs

$$
\log (k(t))=\log (K(t))-\log (L(t))
$$

2 Differentiate with respect to time

$$
\begin{aligned}
\frac{d \log ((k(t))}{d t} & =\frac{d \log (K(t))}{d t}-\frac{d \log (L(t))}{d t} \\
\frac{\dot{k}(t)}{k(t)} & =\frac{\dot{K}(t)}{K(t)}-\frac{\dot{L}(t)}{L(t)} \\
g_{k}(t) & =g_{K}(t)-g_{L}(t)
\end{aligned}
$$

Growth Rates of Ratios: Suppose $k(t)=\frac{K(t)}{L(t)}$. What is $g_{k}(t)$?

1 Take logs

$$
\log (k(t))=\log (K(t))-\log (L(t))
$$

2 Differentiate with respect to time

$$
\begin{aligned}
\frac{d \log ((k(t))}{d t} & =\frac{d \log (K(t))}{d t}-\frac{d \log (L(t))}{d t} \\
\frac{\dot{k}(t)}{k(t)} & =\frac{\dot{K}(t)}{K(t)}-\frac{\dot{L}(t)}{L(t)} \\
g_{k}(t) & =g_{K}(t)-g_{L}(t)
\end{aligned}
$$

3 Growth rate of a ratio $=$ the difference of the growth rates:

$$
g_{k}(t)=g_{K}(t)-g_{L}(t)
$$

Growth Rates of Ratios: Suppose $k(t)=\frac{K(t)}{L(t)}$. What is $g_{k}(t)$?

1 Take logs

$$
\log (k(t))=\log (K(t))-\log (L(t))
$$

2 Differentiate with respect to time

$$
\begin{aligned}
\frac{d \log ((k(t))}{d t} & =\frac{d \log (K(t))}{d t}-\frac{d \log (L(t))}{d t} \\
\frac{\dot{k}(t)}{k(t)} & =\frac{\dot{K}(t)}{K(t)}-\frac{\dot{L}(t)}{L(t)} \\
g_{k}(t) & =g_{K}(t)-g_{L}(t)
\end{aligned}
$$

3 Growth rate of a ratio $=$ the difference of the growth rates:

$$
g_{k}(t)=g_{K}(t)-g_{L}(t)
$$

4 A constant ratio that both variables grow at same rate:

$$
g_{k}(t)=0 \Rightarrow g_{K}(t)=g_{L}(t)
$$

Growth Rates of Weighted Products. Suppose $Y(t)=K(t)^{\alpha} L(t)^{1-\alpha}$ What is $g_{Y}(t)$?
[1] Take logs $\quad \log (Y(t))=\alpha \log (K(t))+(1-\alpha) \log (L(t))$
[2] Differentiate

$$
\begin{aligned}
\frac{d \log (Y(t))}{d t} & =\alpha \frac{d \log (K(t))}{d t}+(1-\alpha) \frac{d \log (L(t))}{d t} \\
\frac{\dot{Y}(t)}{Y(t)} & =\alpha \frac{\dot{K}(t)}{K(t)}+(1-\alpha) \frac{\dot{L}(t)}{L(t)} \\
g_{Y}(t) & =\alpha g_{K}(t)+(1-\alpha) g_{L}(t)
\end{aligned}
$$

Growth rate $=$ weighted sum, (weights equal to share parameters)

Growth Accounting

- Observations in discrete time.
- Production Function: $Y(t)=F(A(t), K(t), L(t))$
- Differentiating with respect to time and dividing by $Y(t)$

$$
\frac{\dot{Y}(t)}{Y(t)}=\frac{F_{A} A(t)}{Y(t)} \frac{\dot{A}(t)}{A(t)}+\frac{F_{k} K(t)}{Y(t)} \frac{\dot{K}(t)}{K(t)}+\frac{F_{L} L(t)}{Y(t)} \frac{\dot{L}(t)}{L(t)}
$$

- Useful benchmark: Cobb-Douglas $Y(t)=A(t) K(t)^{\alpha} L(t)^{1-\alpha}$.
- Why? (factor shares)
- Taking logs and differentiating with respect to time gives

$$
g_{Y}(t)=g_{A}(t)+\alpha g_{K}(t)+(1-\alpha) g_{L}(t)
$$

- g_{A} is called TFP growth or multifactor productivity growth.

The Cobb-Douglas Production Function and its properties

- Under competition factors of production are paid their marginal productivities.
$w=\frac{\partial F(K, L)}{\partial L}=(1-\alpha) A K^{\alpha} L^{-\alpha} \quad r=\frac{\partial F(K, L)}{\partial K}=\alpha A K^{\alpha-1} L^{1-\alpha}$
- Labor and capital shares of output in any year t are

$$
\begin{aligned}
\frac{W_{t} L_{t}}{Y_{t}} & =\frac{(1-\alpha) A_{t} K_{t}^{\alpha} L_{t}^{-\alpha} L_{t}}{Y_{t}}=1-\alpha \\
\frac{r_{t} K_{t}}{Y_{t}} & =\frac{\alpha A_{t} K_{t}^{\alpha-1} L_{t}^{1-\alpha} K_{t}}{Y_{t}}=\alpha
\end{aligned}
$$

- Cobb-Douglas production functions are consistent with the Kaldor facts.

Doing the Accounting

- Pick α (capital share).
- Measure g_{Y}, g_{K} and g_{L} from the data.
- g_{A} is the residual $g_{A}(t)=g_{Y}(t)-\alpha g_{K}(t)-(1-\alpha) g_{L}(t)$
- Therefore g_{A} is also called the Solow residual.
- Severe problems if missmeasurement (g_{K} is hard to measure).

Data for the US

- We pick $\alpha=\frac{1}{3}$

Per.	g_{Y}	αg_{K}	$(1-\alpha) g_{L}$	TFP $\left(g_{A}\right)$
$48-98$	2.5	$0.8(32 \%)$	0.2	(8%)
$48-73$	3.3	$1.0(30 \%)$	0.2	(6%)
$48-1.4)$	$2.1(64 \%)$			
$73-95$	1.5	$0.7(47 \%)$	$0.3(20 \%)$	$0.6(33 \%)$
$95-98$	2.5	$0.8(32 \%)$	$0.3(12 \%)$	$1.4(56 \%)$

- Key observation: Productivity Slowdown in the 70's
- Note: the late 90 's look much better

Reasons for the Productivity Slowdown

1. Sharp increases in the price of oil in 70's
2. Structural changes: more services and less and less manufacturing goods produced
3. Slowdown in resources spent on R\&D in the late 60's.
4. TFP was abnormally high in the 50 's and 60 's
5. Information technology (IT) revolution in the 70's

Growth Accounting for Other Countries

- One key question: was fast growth in East Asian growth miracles mostly due to technological progress or mostly due to capital accumulation?
- Why is this an important question?

Country	Per.	g_{Y}	α	αg_{K}	$(1-\alpha) g_{L}$	g_{A}
Germany	$60-90$	3.2	0.4	59%	-8%	49%
Italy	$60-90$	4.1	0.38	49%	3%	48%
UK	$60-90$	2.5	0.39	52%	-4%	52%
Argentina	$40-80$	3.6	0.54	43%	26%	31%
Brazil	$40-80$	6.4	0.45	51%	20%	29%
Chile	$40-80$	3.8	0.52	34%	26%	40%
Mexico	$40-80$	6.3	0.63	41%	23%	36%
Japan	$60-90$	6.8	0.42	57%	14%	29%
Hong Kong	$66-90$	7.3	0.37	42%	28%	30%
Singapore	$66-90$	8.5	0.53	73%	31%	-4%
South Korea	$66-90$	10.3	0.32	46%	42%	12%
Taiwan	$66-90$	9.1	0.29	40%	40%	20%

