6 Introduction to Human Capital

- Education levels are very different across countries.
- Rich countries tend to have higher educational levels than poor countries.
- We have the intuition that education (learning skills) is an important factor in economic growth.

Production Function

- Cobb-Douglas aggregate production function:

$$
Y=K^{\alpha} H^{\beta}(A L)^{1-\alpha-\beta}
$$

- Again we have constant returns to scale.
- Human capital and labor enter with a different coefficient.

Inputs Accumulation

- Society accumulates human capital according to:

$$
\dot{H}=s_{h} Y-\delta H
$$

- Capital accumulation equation:

$$
\dot{K}=s_{k} Y-\delta K
$$

- Technological progress: $\frac{\dot{A}}{A}=g>0$.
- Labor force grows at constant rate: $\frac{\dot{L}}{L}=n>0$.
- Human Capital accumulates with schools. More schools more capital.
- But eventually there are decreasing returns to the combination of human and physical capital.

Alternative Specification (similar but different than Jones)

- Cobb-Douglas aggregate production function:

$$
Y=K^{\alpha}(A H)^{1-\alpha-\beta}
$$

- Human Capital Accumulates

$$
\dot{H}=e^{\phi u} L
$$

where u is fraction of time studying, and ϕ is a parameter.
-Then, again it is exactly like the basic model without human capital, at some point it cannot grow any more.

- In Jones there is no actual growth in H, it is just

$$
H=e^{\phi u} L
$$

It generates differences in levels.

Rewriting the Model in Efficiency Units

- Redefine the variables in efficiency units:

$$
\tilde{x} \equiv \frac{X}{A L}
$$

- Then, dividing the production function by $A L$:

$$
\tilde{y}=\tilde{k}^{\alpha} \tilde{h}^{\beta}
$$

- Decreasing returns to scale in per efficiency units.

Human Capital Accumulation

- The evolution of inputs is determined by:

$$
\begin{aligned}
& \dot{\tilde{k}}=s_{k} \tilde{k}^{\alpha} \tilde{h}^{\beta}-(n+g+\delta) \tilde{k} \\
& \dot{\tilde{h}}=s_{h} \tilde{k}^{\alpha} \tilde{h}^{\beta}-(n+g+\delta) \tilde{h}
\end{aligned}
$$

- System of two differential equations.
- Solving it analytically it is bit tricky so we will only look at the BGP.

Phase Diagram

- Solving the system analytically it is bit tricky.
- Alternatives:

1. Use numerical methods.
2. Linearize the system.
3. Phase diagram.

Balanced Growth Path Analysis I

- To find the BGP equate both equations to zero:

$$
\begin{aligned}
& s_{k} \tilde{k}^{* \alpha} \tilde{h}^{* \beta}-(n+g+\delta) \tilde{k}^{*}=0 \\
& s_{h} \tilde{k}^{* \alpha} \tilde{h}^{* \beta}-(n+g+\delta) \tilde{h}^{*}=0
\end{aligned}
$$

- From first equation:

$$
\tilde{h}^{*}=\left(\frac{(n+g+\delta)}{s_{k}} \tilde{k}^{* 1-\alpha}\right)^{\frac{1}{\beta}}
$$

Balanced Growth Path Analysis II

- Plugging it in the second equation

$$
\begin{gathered}
s_{h} \tilde{k}^{* \alpha} \frac{(n+g+\delta)}{s_{k}} \tilde{k}^{* 1-\alpha}-(n+g+\delta)\left(\frac{n+g+\delta}{s_{k}} \tilde{k}^{* 1-\alpha}\right)^{\frac{1}{\beta}}=0 \Rightarrow \\
\frac{s_{h}}{s_{k}} \tilde{k}^{*}=\left(\frac{n+g+\delta}{s_{k}} \tilde{k}^{* 1-\alpha}\right)^{\frac{1}{\beta}}
\end{gathered}
$$

- Work with the expression.

Some Algebra

$$
\begin{gathered}
\frac{s_{h}}{s_{k}} \tilde{k}^{*}=\left(\frac{n+g+\delta}{s_{k}} \tilde{k}^{* 1-\alpha}\right)^{\frac{1}{\beta}} \Rightarrow \\
\tilde{k}^{* 1-\frac{1-\alpha}{\beta}}=\tilde{k}^{*-\frac{1-\alpha-\beta}{\beta}}=\frac{s_{k}}{s_{h}}\left(\frac{(n+g+\delta}{s_{k}}\right)^{\frac{1}{\beta}} \Rightarrow \\
\tilde{k}^{*}=\left(\frac{s_{k}^{1-\beta} s_{h}^{\beta}}{n+g+\delta}\right)^{\frac{1}{1-\alpha-\beta}} \\
\tilde{h}^{*}=\left(\frac{s_{k}^{\alpha} s_{h}^{1-\alpha}}{n+g+\delta}\right)^{\frac{1}{1-\alpha-\beta}}
\end{gathered}
$$

Evaluating the Model

-The central issue for growth is the value of β.

- If $\beta=1 / 3$ we have that small differences in $\left\{s_{h}, s_{k}, \phi, n, g, \delta\right\}$ can account for (relatively) large differences in output per capita across countries.
- According to Jones differences in k account for a factor of 2 differences in output, differences in educational attainment account ro 2.2 (using educational attainment differentials and the return to schooling). The reminder is still 7 or 8 times that have to be imputed to differences in TFP.

