Notes for Econ 4 Sect. 2, Fall 2005 Instructor:

José-Víctor Ríos-Rull, University of Pennsylvania

Chapter 2 NIPA Evolved from notes written by Jesús Fernández-Villaverde

September 22, 2005

2 NIPA

A Guide to NIPA's

- National Income and Product Accounts
- It is how we measure economic activity.
- When did it begin? Role of Simon Kuznets and Stone:
 - 1. Noble Prize in Economics 1971.
 - 2. Prof. at Penn during the key years of NIPA creation.
- Elaborated by the Bureau of Economic Analysis and published in the *Survey* of *Current Business*. http://www.bea.gov/

2.1 The Measurement of Economic Activity

Question: How are macroeconomic aggregates measured?

Gross Domestic Product (GDP)

Can be measured in three different, but equivalent ways:

- 1. Production Approach.
- 2. Expenditure Approach.
- 3. Income Approach.

Computing GDP through Production

- Calculate nominal GDP by adding value of production of all industries: production surveys.
- Problem of double-counting: i.e. USX and GM.
- Value Added=Revenue—Intermediate Goods.
- Nominal GDP=Sum of Value Added of all Industries.

Composition of GDP

Industries	Val. Add.	in % of GDP
Total Nom. GDP	10,082.2	100.0%
Agr., Forestry, Fish.	140.7	1.4%
Mining	139.0	1.4%
Construction	480.0	4.8%
Manufacturing	1,423.0	14.1%
Transp., Publ. Ut.	819,5	8.1%
Wholesale Trade	680,7	6.8%
Retail Trade	931.8	9.2%
Fin., Insur., Real Est.	2,076.9	20.6%
Services	2,226.6	22.1%
Government	1,281.3	12.7%
Stat. Disc.	-117.3	-1.2%

Nominal GDP

- For 2001, nominal GDP was \$10,082,200,000,000
- Population, July 2001 was 285,317,559
- Nominal GDP per capita is roughly \$35,300

Computing GDP through Expenditure

C = Consumption

I = (Gross Private) Investment

G = Government Purchases

 $X = \mathsf{Exports}$

M = Imports

Y = Nominal GDP

$$Y \equiv C + I + G + (X - M)$$

Consumption (C)

- Durable Goods: 3 years rule.
- Nondurable Goods.
- Services.

Gross Private Investment (I)

- Nonresidential Fixed Investment.
- Residential Fixed Investment.
- Inventory Investment.

Stocks vs. Flows

Investment and the Capital Stock

- Capital Stock: total amount of physical capital in the economy
- Depreciation: the part of the capital stock that wears out during the period
- Capital Stock at end of this period=Capital Stock at end of last period+Gross
 Investment in this period—Depreciation in this period
- Net Investment=Gross Investment—Depreciation=Capital Stock, end this period — Capital Stock, end of last period.

Investment and the Capital Stock

- Capital Stock: total amount of physical capital in the economy
- Depreciation: the part of the capital stock that wears out during the period
- Capital Stock at end of this period=Capital Stock at end of last period+Gross
 Investment in this period—Depreciation in this period
- Net Investment=Gross Investment—Depreciation=Capital Stock, end this period — Capital Stock, end of last period.

Inventory Investment

- Why included in GDP
- Inventory Investment=Stock of Inventories at end of this year—Stock of Inventories at the end of last year
- Final Sales=Nominal GDP—Inventory Investment

Government Purchases (G)

- Sum of federal, state and local purchases of goods and services.
- Certain government outlays do not belong to government spending: transfers (SS and Interest Payments).
- Government Investment.

Exports (E) and Imports (M)

- Exports: deliveries of US goods and services to other countries.
- Imports: deliveries of goods and services from other countries to the US.
- Trade Balance=Exports-Imports
- Trade Deficit: if trade balance negative.
- Trade Surplus: if trade balance positive

Composition of GDP - Spending	in billion \$	in % of GDP
Total Nom. GDP	10,082.2	100.0%
Consumption	6,987.0	69.3%
Durable Goods	835.9	8.3%
Nondurable Goods	2,041.3	20.2%
Services	4,109.9	40.8%
Gross Private Investment	1,586.0	15.7%
Nonresidential	1,201.6	11.9%
Residential	444.8	4.4%
Changes in Inventory	-60.3	-0.6%
Government Purchases	1,858.8	18.4%
Federal Gov.	628,1	6.2%
State & Local Gov.	1,229.9	12.2%
Net Exports	-348.9	-3.5%
Exports	1,034.1	10.2%
Imports	1,383.0	13.7%
Gross National Product	10,104.1	100.2%

Computing GDP through Income

National Income: broadest measure of the total incomes of all Americans

Gross Domestic Product (10,082.2) + Factor Income from abroad (316.9) - Factor Income to abroad (295.5) = Gross National Product (10,104.1)=

Depreciation (1,329.3)+ Net National Product (8,774.8) =

Indirect Taxes (774.8)- Other Adjustments (-152.0) + National Income (8,122.0)

1. Employees' Compensation: wages, salaries and fringe benefits.

1. Employees' Compensation: wages, salaries and fringe benefits.

2. Proprietors' Income: income of noncorporate business.

- 1. Employees' Compensation: wages, salaries and fringe benefits.
- 2. Proprietors' Income: income of noncorporate business.
- 3. Rental Income: income that landlords receive from renting, including "imputed" rent less expenses on the house, such as depreciation.

- 1. Employees' Compensation: wages, salaries and fringe benefits.
- 2. Proprietors' Income: income of noncorporate business.
- 3. Rental Income: income that landlords receive from renting, including "imputed" rent less expenses on the house, such as depreciation.
- 4. Corporate Profits: income of corporations after payments to their workers and creditors.

- 1. Employees' Compensation: wages, salaries and fringe benefits.
- 2. Proprietors' Income: income of noncorporate business.
- 3. Rental Income: income that landlords receive from renting, including "imputed" rent less expenses on the house, such as depreciation.
- 4. Corporate Profits: income of corporations after payments to their workers and creditors.
- 5. Net interest: interest paid by domestic businesses plus interest earned from foreigners.

Labor and Capital Share

- Labor share: the fraction of national income that goes to labor income
- Capital share: the fraction of national income that goes to capital income.
- Labor Share= Labor Income National Income
- Capital Share $=\frac{\text{Capital Income}}{\text{National Income}}$
- Proprietor's Income?

	Billion \$US	% of Nat. Inc.
National Income	8,122.0	100.0%
Comp. of Employees	5,874.9	72.3%
Proprietors' Income	727.8	9.0%
Rental Income	137.9	1.7%
Corporate Profits	731.6	9.0%
Net Interest	649.8	8.0%

Other Income Concepts: Personal Income

• Income that households and noncorporate businesses receive

Personal Income (8,685.3) =

National Income (8,122.0)- Retained Earnings (289) - Net Interest (649.8)- Contributions for Social Insurance (726.1) + Personal Interest Income (1,091.3 + Government) and Business Transfers (1,137.0)

Other Income Concepts: Disponable Personal Income

Income that households and noncorporate businesses can spend, after having satisfied their tax obligations

```
Personal Income (8,685.3)
```

- -Personal Tax and Nontax Payments (1,292.1)
- = Disposable Personal Income (7,393.2)

Investment and Saving

- Private Saving (S): gross income minus consumption and taxes plus transfers from the government (TR) and from abroad (-NFP).
- From income side Y = C + S + T TR + NFP
- From expenditure side Y = C + I + G + X M

$$\underbrace{I}_{\text{Private Investment}} = \underbrace{S}_{\text{Private Saving}} + \underbrace{T - TR - G}_{\text{Public Saving}} + \underbrace{M - X + NFP}_{\text{Foreign Saving}}$$

Some Nontrivial Issues

• Releases of Information and revisions.

• Methodological Changes.

• Technological Innovation.

• Underground Economy.

• Welfare.

2.2 Price Indices and Growth Rates

Question: How to compute the price level?

Idea: Measure price of a particular basket of goods today versus price of same basket in some base period

Example: Economy with 2 goods, hamburgers and coke

 $h_t = \#$ of hamburgers produced, period t

 p_{ht} = price of hamburgers in period t

 $c_t = \#$ of coke produced, period t

 p_{ct} = price of coke in period t

 $(h_0, p_{h0}, c_0, p_{c0})$ same variables in period 0

$$L_t = \frac{p_{ht} h_0 + p_{ct} c_0}{p_{h0} h_0 + p_{c0} c_0}$$

$$P_t = \frac{p_{ht} \ h_t + p_{ct} \ c_t}{p_{h0} \ h_t + p_{c0} \ c_t}$$

Problems with Price Indices

- Laspeyres index tends to overstate inflation.
- Paasche index tends to understate inflation.
- Fisher Ideal Index: geometric mean: $(L_t \times Pa_t)^{0.5}$.
- Chain Index.

From Nominal to Real GDP

- Nominal GDP: total value of goods and services produced.
- Real GDP: total production of goods and services in physical units.
- How is real GDP computed in practice, say in 2002?
 - 1. Pick a base period, say 1996
 - 2. Measure dollar amount spent on hamburgers.
 - 3. Divide by price of hamburgers in 2002 and multiply by price in 1996. (this equals the number of hamburgers sold in 2002, multiplied by the price of hamburgers in 1996 -the base period).
 - 4. Sum over all goods and services to get real GDP.

For our example ...

Nominal GDP in 2002
$$= h_{2000} p_{h2000} + c_{2000} p_{c2000}$$

Real GDP in 1996 $= h_{2000} p_{h1996} + c_{2000} p_{c1996}$

Note that

$$\mathsf{GDP} \; \mathsf{deflator} \; = \; \frac{\mathsf{Nominal} \; \mathsf{GDP}}{\mathsf{Real} \; \mathsf{GDP}} = \frac{h_{2002} \; p_{h2002} \; + c_{2002} \; p_{c2000}}{h_{2002} \; p_{h1996} + c_{2002} \; p_{c1996}}$$

Measuring Inflation

• $\pi_t = \frac{P_t - P_{t-1}}{P_{t-1}}$ where P_t is the "Price Level".

GDP deflator: basket related to current composition of GDP.

Consumer Price Index (CPI): basket related to consumers

$$\mathsf{CPI} = \frac{h_{1992}p_{h1999} + c_{1992}p_{c1999}}{h_{1992}p_{h1992} + c_{1992}p_{c1992}}$$

- CPI important because of automatic income adjustments (Social Security)
- CPI may overstate inflation (Boskin Commission)

An Interesting Example

• How expensive is to treat a Heart attack? (Cutler et al. (1998)).

```
    mid-1980's: $12,000.
    late-1990's: $20,000.
```

- Would you say there was a 66% (=20,000/12,000-1) raise in price?
- Let's take a look at life expectancy after treatment (and controlling for other varibles):
 - 1. mid-1980's: 5 years after heart attack.
 - 2. late-1990's: 6 years after heart attack.
- Who much is one year of life worth to you?

More on Growth Rates

• Growth rate of Y (GDP) from t-1 to t is

$$g_Y(t-1,t) = \frac{Y_t - Y_{t-1}}{Y_{t-1}}$$

• Five year growth rate (between t-5 and t) is $g_Y(t-5,t) = \frac{Y_t - Y_{t-5}}{Y_{t-5}}$

• Suppose GDP= Y_{t-1} in t-1 and it grows at rate $g_Y(t-1,t)$. How big is GDP in period t?

$$\frac{Y_t - Y_{t-1}}{Y_{t-1}} = g_Y(t-1,t)$$

$$Y_t - Y_{t-1} = g_Y(t-1,t) * Y_{t-1}$$

$$Y_t = g_Y(t-1,t) * Y_{t-1} + Y_{t-1}$$

$$Y_t = [1 + g_Y(t-1,t)] Y_{t-1}$$

$$Y_{1999} = \$1000, g_Y = 4.\%, \rightarrow Y_{2000} = 1.04 * \$1000 = \$1040$$

• Suppose GDP grows at g and at t=0, GDP= Y_0 , then $Y_t=(1+g)^t\ Y_0$

ullet Reverse question: Suppose we know GDP at 0 and at t. Want to know at what constant rate GDP must have grown

$$Y_t = (1+g)^t Y_0$$

$$(1+g)^t = \frac{Y_t}{Y_0}$$

$$(1+g) = \left(\frac{Y_t}{Y_0}\right)^{\frac{1}{t}}$$

$$g = \left(\frac{Y_t}{Y_0}\right)^{\frac{1}{t}} - 1$$

• Eg. $Y_{1900} = \$1,000$, $Y_{2000} = \$15,000$. The constant rate is

$$g = \left(\frac{\$15,000}{\$1,000}\right)^{\frac{1}{100}} - 1 = 0.027 = 2.7\%$$

• How long des it take to double? Since $\log(a^b) = b * \log(a)$

$$\log \left[(1+g)^t \right] = \log \left(\frac{Y_t}{Y_0} \right)$$

$$t * \log(1+g) = \log \left(\frac{Y_t}{Y_0} \right)$$

$$t = \frac{\log \left(\frac{Y_t}{Y_0} \right)}{\log(1+g)} = \frac{\log(2)}{\log(1+g)}$$

with g=1% it takes 70 years and with g=2%, 35.

2.3 Transactions with the Rest of the World

Trade Balance=Exports-Imports

Current Acco. Balance=Trade Balance+Net Unilateral Transfers

- Unilateral transfers: include aid to poor countries, interest payments to foreigners for US government debt, and grants to foreign researchers or institutions.
- Net wealth position of the US: difference between what the US is owed and what it owes to foreign countries.
- Capital account balance: equals to the change of the net wealth position of the US

2.4 Unemployment Rate

- Labor force: number of people, 16 or older, that are either employed or unemployed but actively looking for a job.
- Unemployment Rate= $\frac{\text{number of unemployed people}}{\text{labor force}}$
- Unemployment Rate is countercyclical
- What is the current unemployment rate now?

2.5 Interest Rates (The relative price of waiting)

- ullet A loan in t of $\$B_t$ that specifies that in period t+1 $\$B_{t+1}$ has to be repayed. The nominal interest rate on the loan $i_t=rac{B_{t+1}-B_t}{B_t}$
 - Relative price of money between today and tomorrow
- Real interest rate $r_t = i_t \pi_t$
 - Relative price of goods between today and tomorrow