Ambiguous Business Cycles

Cosmin Ilut * Martin Schneider **

*Duke Univ.

**Stanford Univ.

Rochester, 2011

Motivation

- Role of uncertainty shocks in business cycles?
- usually: uncertainty = risk
- \Rightarrow agents confident in probability assessments
- \Rightarrow shocks to uncertainty = shocks to volatility
 - this paper: uncertainty = risk + *ambiguity* (*Knightian uncertainty*)
- $\Rightarrow\,$ allows for lack of confidence in prob assessments
- $\Rightarrow\,$ shocks to uncertainty can be shocks to confidence

Overview

• Standard business cycle model with ambiguity aversion

- recursive multiple priors preferences
- ambiguity about mean aggregate productivity
- \Rightarrow 1st order effects of uncertainty
- Methodology
 - study uncertainty shocks with 1st order approximation
 - simple estimation strategy based on linearization
 - motivate & bound set of priors by concern w/ nonstationarity
- Properties
 - ambiguity shocks work like "unrealized" news shocks with bias.
 - ▶ in medium scale DSGE model estimated on US data, ambiguity shocks
 - * generate comovement and account for $> \frac{1}{2}$ of fluctuations in Y, C, I, H.
 - ★ imply countercyclical asset premia.

Literature

- Multiple Priors Utility: Gilboa-Schmeidler (1989), Epstein and Wang (1994), Epstein and Schneider (2003).
- Business cycles with preference for robustness: Hansen, Sargent and Tallarini (1999), Cagetti, Hansen, Sargent and Williams (2002), Smith and Bidder (2011).
- Signals: Beaudry and Portier (2006), Christiano, Ilut, Motto and Rostagno (2008), Schmitt-Grohe and Uribe (2008), Jaimovich and Rebelo (2009), Lorenzoni (2009), Blanchard, L'Huillier and Lorenzoni (2010), Barsky and Sims (2010, 2011).
- Risk shocks: Justiniano and Primiceri (2007), Fernandez-Villaverde and Rubio-Ramirez (2007, 2010), Bloom (2009), Bloom, Floetotto and Jaimovich (2009), Christiano, Motto and Rostagno (2010), Gourio (2010), Arellano, Bai and Kehoe (2010)

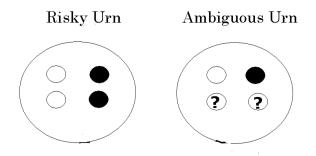
Ambiguity aversion & preferences

- *S* = state space
 - one element $s \in S$ realized every period
 - histories $s^t \in S^t$
- Consumption streams $C = (C_t(s^t))$
- Recursive multiple-priors utility (Epstein and Schneider (2003))

$$U_t(C; s^t) = u(C_t(s^t)) + \beta \min_{p \in \mathcal{P}_t(s^t)} E^p[U_{t+1}(C; s^{t+1})],$$

- Primitives:
 - felicity u (possibly over multiple goods) & discount factor β
 - one-step-ahead belief sets $\mathcal{P}_t(s^t)$ size captures (lack of) confidence
- Why this functional form?
 - preference for known odds over unknown odds (Ellsberg Paradox)
 - formally, weaken Independence Axiom

Ellsberg Paradox



- $\bullet\,$ bet on black from risky urn $\succ\,$ bet on black from ambiguous urn
- $\bullet\,$ bet on white from risky urn $\succ\,$ bet on white from ambiguous urn
- expected utility cannot capture choices, but $\min_{p \in \mathcal{P}} E^{p}[u(c)]$ can!

A stylized business cycle model with ambiguity

- Representative agent with recursive multiple priors utility.
- Felicity from consumption, hours

$$u(C_t, N_t) = \frac{C_t^{1-\gamma}}{1-\gamma} - \beta N_t$$

• Output Y_t produced by

$$Y_t = Z_t N_{t-1}$$

- Labor chosen one period in advance
- Belief sets that enter utility
 - specify ambiguity about exogenous productivity
 - beliefs about endogenous variables derived from "structural knowledge" of economy
 - ▶ true TFP process: iid lognormal with $E[Z_t] = 1$, var $(\log Z_t) = \sigma_z^2$

Belief set: time variation in ambiguity

- Agents experience changes in confidence, described by process a_t
- \Rightarrow Representation of one-step-ahead belief set \mathcal{P}_t

$$\log Z_{t+1} = \mu_t - \frac{1}{2}\sigma_z^2 + \sigma_z \varepsilon_{z,t+1}$$
$$\mu_t \in [-a_t, a_t]$$

• Examples for evolution of (lack of) confidence a_t

Linear, homoskedastic law of motion

$$a_t = (1 - \rho_a) \, \bar{a} + \rho_a a_{t-1} + \varepsilon_{a,t}$$

Interpretation: intangible information affects confidence Feedback from realized volatility

$$a_t = \sqrt{2\eta}\sigma_{z,t}$$

Interpretation: observed turbulence lowers confidence Follows if \mathcal{P}_t is "constant entropy" ball around true DGP:

$$\mu_t \in [-\boldsymbol{a}_t, \boldsymbol{a}_t] \Leftrightarrow \boldsymbol{R}_t = \frac{\mu_t^2}{2\sigma_{\boldsymbol{z},t}^2} \leq \eta$$

Social planner problem

Bellman equation

$$V(N, Z, a) = \max_{N'} \left[u(ZN, N') + \beta \min_{\mu \in [-a,a]} E^{\mu} V(N', Z', a') \right]$$

• Worst-case belief: future technology is low

$$\mu^* = -a$$

 \Rightarrow planner acts <u>as if</u> bad times ahead

- Interpretation: precautionary behavior
- First order effects of ambiguity.

Characterizing equilibrium

Two Steps

• Solve planner problem under worst case belief $\mu^* = -a$ Optimal hours from FOC

$$1 = E^{-a} \left[\beta \left(Z' N' \right)^{-\gamma} Z' \right]$$

Ocharacterize variables under true shock process (in logs)

$$n_t = -\left(1/\gamma - 1\right)\left(a_t + \frac{1}{2}\gamma\sigma_z^2\right)$$
$$y_{t+1} = z_{t+1} + n_t$$

 \Rightarrow Worst case belief reflected in action $n_t,$ but not in shock realization z_{t+1}

Properties of equilibrium

Dynamics

$$egin{aligned} y_{t+1} &= z_{t+1} + n_t \ n_t &= -\left(1/\gamma - 1
ight)\left(a_t + rac{1}{2}\gamma\sigma_z^2
ight) \ a_t &= \left(1 -
ho_a
ight)ar{a} +
ho_a a_{t-1} + arepsilon_{a,t} \end{aligned}$$

- first order effects of uncertainty on output, even as $\sigma_z^2
 ightarrow 0$
- if substitution effect is strong enough $(1/\gamma>1)$:
- Ioss of confidence generates a recession
- Increase in confidence leads to an expansion
 - TFP is not unusual in either cases
- hours do not forecast TFP if $cov(a_t, z_{t+1}) = 0$
- Asset prices reflect time varying ambiguity premia
 - price of 1-step-ahead consumption claim = $\frac{E_t C_{t+1}}{R_t^t} \exp\left(-a_t \gamma \sigma_z^2\right)$

Comparison of shocks

- Ambiguity shocks $n_t = -(1/\gamma 1)(a_t + \frac{1}{2}\gamma\sigma_z^2)$
 - \blacktriangleright loss of confidence generates recession if $1/\gamma>1$
 - hours do not forecast TFP: regress z_{t+1} on n_t to get slope 0
 - time varying ambiguity premium on consumption claim $= a_t$
- News & noise shocks $n_t = (1/\gamma 1) \left(\pi s_t \frac{1}{2}\gamma \left(1 \pi\right) \sigma_z^2\right)$
 - ▶ signal about productivity $s_t = z_{t+1} + \sigma_s \epsilon_{s,t}$ with $\pi := \sigma_z^2 / (\sigma_z^2 + \sigma_s^2)$
 - bad signal (news or noise) generates recession if 1/ $\gamma > 1$
 - hours forecast TFP: regress z_{t+1} on n_t to get slope $\gamma/(1-\gamma)$
 - constant risk premium on consumption claim
- Volatility shocks $n_t = -(1/\gamma 1) \frac{1}{2} \gamma \sigma_{z,t}^2$
 - ► volatility process $\sigma_{z,t}^2 = var_t(z_{t+1})$, mean adjusts so $E_t Z_{t+1} = 1$
 - \blacktriangleright volatility increase generates recession if $1/\gamma>1$
 - hours do not forecast TFP (but forecast turbulence)
 - time varying risk premium on consumption claim = $\gamma \sigma_{z,t}^2$

General framework: Rep. agent & Markov uncertainty

- Notation (as before *s* = exogenous state)
 - X = endogenous states (e.g. capital)
 - ► A = agent actions (e.g. consumption, investment)
 - Y = other endogenous variables (e.g. prices)
- Recursive equilibrium
 - ▶ Functions for actions A, other endog vars Y, value V s.t., for all (X, s):

$$V(X,s) = \max_{A \in B(Y,X,s)} \left\{ u(c(A)) + \beta \min_{p \in \mathcal{P}(s)} E^p \left[V(X',s') \right] \right\}$$

s.t. X' = T(X, A, Y, s, s')

- endog var determination: G(A, Y, X, s) = 0
- ▶ true exogenous Markov state process $p^{*}\left(s
 ight)\in\mathcal{P}\left(s
 ight)$
- Analysis again in 2 steps
 - find recursive equilibrium
 - characterize variables under "true" state process

Characterizing equilibrium: a guess-and-verify approach

- basic idea
 - **1** guess the worst case belief p^0
 - 2 find recursive equilibrium under expected utility & belief p^0
 - 0 compute value function under worst case belief, say V^0
 - verify that the guess p^0 indeed achieves the minimum
- "essentially linear" economies & productivity shocks
 - ▶ environment *T*, *B*, *G* s.t. 1st order approx. ok under expected utility
 - ambiguity is about mean of innovations to s
- simplification in essentially linear case
 - in step 1, guess that worst case mean is linear in state variables
 - step 2 uses loglinear approximation around "zero risk" steady state (sets risk to zero, but retains worst case mean)
 - step 4 then checks monotonicity of value function

An estimated DSGE model with ambiguity

- Similar to CEE (2005), SW (2007)
- Intermediate goods producers
 - Price setting monopolist; competitive in the factor markets
 - ★ mark-up shocks.
- Final goods producers.
 - Combines intermediate goods to produce a homogenous good.
- Households: ambiguity-averse
 - Own capital stock, consume, monopolistically supply specialized labor
 - investment adjustment costs, internal habit in consumption.
 - ★ efficiency of investment and price of investment shocks.
- "Employment agencies"
 - aggregate specialized labor into homogenous labor.
- Government
 - ► Taylor-type interest rule: reacts to inflation, output gap and growth.
 - \star government spending and monetary policy shocks.

Technology

• The intermediate good *j* is produced using the function:

$$Y_{j,t} = Z_t K_{j,t}^{\alpha} \left(\epsilon_t L_{j,t} \right)^{1-\alpha} - F_t$$

• Final goods:

$$Y_t = \left[\int_0^1 Y_{j,t}^{\frac{1}{\lambda_{f,t}}} dj\right]^{\lambda_{f,t}}$$

• Capital accumulation:

$$ar{K}_{t+1} = (1-\delta)ar{K}_t + \left[1 - S\left(\zeta_t rac{I_t}{I_{t-1}}\right)\right] I_t.$$

• Beliefs about technology:

$$\log Z_{t+1} = \rho_z \log Z_t + \mu_t + \sigma_u \varepsilon_{z,t+1}$$
$$\mu_t \in [-a_t, a_t]$$
$$a_t - \bar{a} = \rho_a (a_{t-1} - \bar{a}) + \sigma_a \varepsilon_{a,t}$$

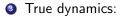
Solution method: Steps

- Let x_t and s_t denote endog and exog vars
- **(**) Find deterministic "distorted" steady state x_o and s_o based on

$$\log Z_o = \rho_z \log Z_o - \bar{a} + 0$$

Linearize around distorted SS: Find A, B :

$$\begin{aligned} x_t - x_o &= A(x_{t-1} - x_o) + B(s_t - s_o) \\ s_t &= \begin{bmatrix} s_t^* \\ a_t \\ z_t \end{bmatrix} = \underbrace{\begin{bmatrix} \rho & 0 & 0 \\ 0 & 0 & \rho_a \\ 0 & \rho_z & -1 \end{bmatrix}}_{P} \begin{bmatrix} s_{t-1}^* \\ z_{t-1} \\ a_{t-1} \end{bmatrix} + \Xi_t \\ \Xi_t &= \begin{bmatrix} \varepsilon_t \\ \varepsilon_t^a \\ \varepsilon_t^z \\ \varepsilon_t^z \end{bmatrix} \sim N(0, \Sigma) \\ \widetilde{E}_{t-1} z_t &= \rho_z z_{t-1} - a_{t-1} \end{aligned}$$



True DGP:

$$z_t = \rho_z z_{t-1} + \varepsilon_t^z = \widetilde{E}_{t-1} z_t + \varepsilon_t^z + a_{t-1}$$

Endogenous variables:

$$\begin{aligned} x_t - x_o &= A(x_{t-1} - x_o) + B(s_t - s_o) \\ s_t - s_o &= P(s_{t-1} - s_o) + \widehat{\Xi}_t, \ \widehat{\Xi}_t = \begin{bmatrix} \varepsilon_t \\ \varepsilon_t^a \\ \varepsilon_t^z \end{bmatrix} + \begin{bmatrix} 0_{(n-2)\times 1} \\ 0 \\ a_{t-1} \end{bmatrix} \end{aligned}$$

- 2 Zero risk steady state
 - In Steady State:

$$\widehat{\Xi} = \left[\begin{array}{c} \mathbf{0}_{(n-1)\times 1} \\ \overline{\mathbf{a}} \end{array} \right]$$

Steady state exogenous vars s^{SS}:

$$s^{SS} - s_o = P(s^{SS} - s_o) + (\widehat{\Xi} - \Xi_o)$$

▶ Then solve for endogenous vars *x*^{SS}:

$$x^{SS} - x_o = A(x^{SS} - x_o) + B(s^{SS} - s_o)$$

A bound on ambiguity

Beliefs about technology

$$\log Z_{t+1} = \rho_z \log Z_t + \mu_t + \sigma_u \varepsilon_{z,t+1}$$
$$\mu_t \in [-a_t, a_t]$$
$$a_t - \bar{a} = \rho_a (a_{t-1} - \bar{a}) + \sigma_a \varepsilon_{a,t}$$

- ▶ agents view innovations as risky $(\sigma_u \varepsilon_{z,t+1})$ and ambiguous (μ_t)
- they know empirical moments of true $\{\mu_t^*\}$, but not the exact sequence
- empirical moments say log $Z_{t+1} \rho_z \log Z_t \sim i.i.\mathcal{N}\left(0, \sigma_z^2\right)$; $\sigma_z^2 > \sigma_u^2$
- agents respond to uncertainty about μ_t^* as if minimizing over $[-a_t, a_t]$
- Constrain a_t to lie in a maximal interval $[-a^{\max}, a^{\max}]$
 - ▶ require that "boundary" beliefs $\pm a_{max}$ imply "good enough" forecasts:
 - there exists σ_u² s.t. for every potential true DGP {μ_t^{*}}, a_{max} or -a_{max} is best forecasting rule at least α of the time
 - ▶ a_{\max} is best forecasting rule at date t if true mean $\mu_t^* > a_{\max}$
 - ▶ for example, $\alpha = 5\%$ implies $a_{max} = 2\sigma_z$ = bound used in estimation

Parametrization

Recall

$$a_t - \bar{a} = \rho_a \left(a_{t-1} - \bar{a} \right) + \sigma_a \varepsilon_{a,t}$$

• Restrictions: process *a_t* s.t.

1 a_t is positive:

$$\bar{a} - m \frac{\sigma_a}{\sqrt{1 - \rho_a^2}} \ge 0$$

2 a_t is bounded by the discipline of the non-stationary argument

$$\bar{\mathbf{a}} + m \frac{\sigma_{\mathbf{a}}}{\sqrt{1 - \rho_{\mathbf{a}}^2}} \le 2\sigma_z$$

Scale

$$\bar{a} = n\sigma_z, \ n \in [0,1]$$

• Directly estimate n, ρ_a .

Estimation

- Linearization \rightarrow estimation using standard Kalman filter methods.
- Data: US 1984Q1-2010Q1: Output, consumption, investment, price of investment growth, hours, FFR, inflation.
- Law of motion for a_t is estimated
- Estimates:
 - productivity dynamics

$$\rho_z = 0.95, \sigma_z = 0.0045$$

confidence dynamics

$$ar{a} = 0.0043,
ho_{a} = 0.96, \sigma_{a} = 0.00041$$

other parameters broadly consistent with previous studies.

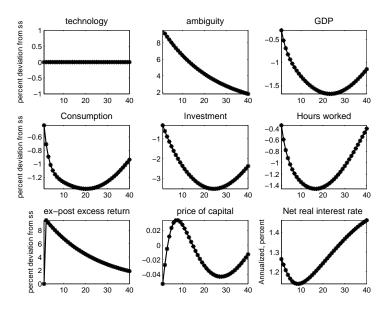
Role of ambiguity in fluctuations

• Variance decompositions: business cycle frequency

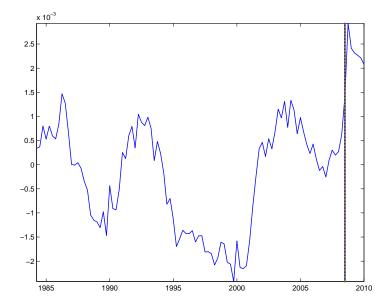
Shock/Var.	Output	Consumption	Investment	Hours
Ambiguity	27	51	14	30
Stationary techn.	11	13	9	2
Efficiency of invest.	33	7	53	32
Stochastic Growth	7	7	6	13
Price mark-up	12	12	12	13

- any other shocks < 5% for above variables.
- ▶ long-run theoretical decomposition: $\varepsilon_{a,t}$ about 50% of fluctuations.

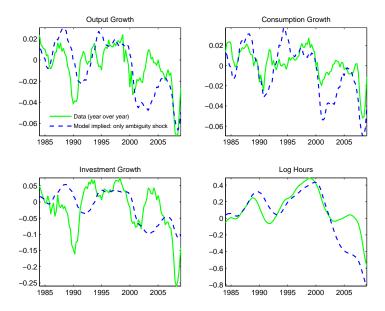
Dynamics: loss of confidence



Estimated ambiguity path



Historical shock decomposition



Welfare cost of fluctuations through ambiguity

Setting $\sigma_z = 0$ vs estimate $\implies \bar{a} = 0$ vs estimate

- Welfare: $\overline{V} \equiv$ Value function under "zero risk steady state" (with estimated \overline{a})
 - Welfare cost of fluctuations, as % of $C_{SS}(\bar{a} = 0)$, due to:
 - ambiguity:

$$\lambda^{ambig} = \left[\overline{V} - V^{SS}(\overline{a} = 0)
ight](1 - eta)eta^{-1} = 13\%$$

risk (known probability distributions):

$$\lambda^{\textit{risk}} = V_{\sigma\sigma}(1-eta)eta^{-1} = 0.01\%$$

* $V_{\sigma\sigma}$: effect of fluctuations in $\varepsilon_{z,t+1}$ in a second order approx. of V(.).

• Other vars: Output, Capital, Consumption, Hours lower by 15%

Conclusion

• Standard business cycle model with ambiguity aversion:

- recursive multiple priors preferences.
- ambiguity about mean productivity.
- discipline from modeling concern with nonstationarity
- With ambiguity, uncertainty shocks have 1st order effects:
 - can apply standard linearization techniques for solution and estimation
 - work like "unrealized" news shocks with bias
 - potentially large role in business cycle
- Next
 - characterize further essentially linear settings