Mortensen-Pissarides labor market environment

Annaliina Soikkanen

October 2, 2013

Motivation and agenda

- ▶ In perfectly competitive labor markets there is no involuntary unemployment and households can freely choose how much to work at the market wage
- To provide a theory that better explains the unemployment patterns observed in reality, Mortensen-Pissarides model introduces search frictions to the labor market
- Plan for this presentation is to
 - ► Introduce basic Mortensen-Pissarides labor market model
 - Discuss key takeaways and possible variations of the model

Conceptual set-up

- Continuum of firms and workers
- Each firm has one job which is either vacant and searching or filled and producing
- Each worker is either unemployed and searching or employed and producing
- ▶ Finding a productive match is time-consuming and costly
- Workers and vacancies are randomly matched to create a job
- Wages are determined through Nash bargaining
- ▶ Jobs are destroyed at an exogenous rate λ

Matching function

- ▶ Total labor force L=1, v=number of vacancies, u=unemployment
- ▶ Matching function M(u, v) gives the number of jobs formed at a given point in time:
 - Increasing in both arguments
 - Constant returns to scale
- ▶ Defining a varible $Q^e = \frac{v}{u}$, which reflects market tightness, we can express

Pr(unemployed finds a job):
$$\phi^w(Q^e) = \frac{M(u,v)}{u} = M(\frac{u}{v},1)Q^e$$

Pr(vacancy is filled):
$$\phi^f(Q^e) = \frac{M(u,v)}{v} = M(\frac{u}{v},1)$$

Key elements of the Mortensen-Pissarides labor market environment

- Mortensen-Pissarides labor market environment has 3 key elements:
 - 1. Flows between labor market states
 - 2. Job creation
 - 3. Wage determination
- ► Each of these three elements can be solved for one equation which together characterize the steady state equilbrium *u*, *Q*^e and *w* of the Mortensen-Pissarides labor market environment

1. Key elements - Flows between labor market state

- ▶ During a small time interval δt number of people transitioning
 - into unemployment is $\lambda(1-u)\delta t$
 - out of unemployment is $u\phi^w(Q^e)\delta t$
- ullet Change in unemployment is given by $\dot{(u)}=\lambda(1-u)-u\phi^w(Q^e)$
- ▶ In steady state, employment rate is constant, allowing us to express the steady state unemployment as

$$u = \frac{\lambda}{\lambda + \phi^w(Q^e)}$$

► Equation characterizing the steady state unemployment rate is also known as the Beveridge curve

2. Key elements - Job creation

- ▶ J = present discounted value of expected profit from a filled job
- $ightharpoonup V = ext{present discounted value of expected profit from a vacancy}$
- Considering vacancies and jobs as assets of the firm, under complete markets, the capital cost of an asset must equal its rate of return:

$$rV = -c + \phi^f(Q^e)(J - V) \tag{1}$$

$$rJ = p - w + \lambda(V - J) \tag{2}$$

where c = hiring cost, w = wage, p = value of output

- \blacktriangleright All firms free to post vacancies, so new vacancies posted until $V{=}0$
- ▶ Combining (1) and (2) with V = 0 yields the job creation equation

$$p - w - \frac{(r + \lambda)c}{\phi^f(Q^e)} = 0 \tag{3}$$

3. Key elements - Wage determination

- ▶ A job yields a surplus of $J_i + W_i U V$ due to search frictions
- Wage rate w_i is the solution to the Nash bargaining problem over this surplus

$$w_i = \operatorname{argmax}(W_i - U)^{\beta} (J_i - V)^{1 - \beta} \tag{4}$$

 β = bargaining power of worker U = present discounted value of expected income when unemployed W_i = present discounted value of expected income when employed

Using the value functions for U and V, the steady state wage equation can be expressed as

$$w = (1 - \beta)z + \beta(p + cQ^e)$$
 (5)

z = UI benefit + other possible income during unemployment

Key takeaways and variations of the model

- Key distinctions with respect to perfectly competitive labor markets
 - Jobs enjoy rents in equilibrium due to search frictions
 - Labor effort is fixed
 - Unemployment persists in equilibrium
- ▶ In the context of business cycle models, Mortensen-Pissarides labor market provides a a possible method to improve the fit of the models in terms of the fluctuations in hours worked
- Variations of the model include for example
 - Different wage determination processes
 - Endogenous job destruction
 - On the job search

Backup

Workers

Value functions for the worker are

$$rU = z + \phi^{W}(Q^{e})(W - U) \tag{6}$$

$$rW = w + \lambda(U - W) \tag{7}$$

▶ rU can be interpreted as the worker's reservation wage

Steady state equilbrium - graphical presentation

