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Function representation by orthogonal functions

• We make the approximation that f (x) ≈
∑I

i=0 αiφi(x)
where φ are known functions.

• To “store” f (·), we really want to store the vector {αi}
• We need to choose good polynomials to economize on the

number of functions we need to evaluate each time we
approximate f (x).
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Chebyshev functions
Polynomials become too similar. Chebyshev functions are
orthogonal, meaning accuracy gains do not diminish as we
increase the number of functions.

These follow the recursive defintion:
T0(x) = 1, T1(x) = x , Ti(x) = 2xTi−1(x)− Ti−2(x) or
Ti(x) = cos(i cos−1(x))
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Where to evaluate

• The nth order Chebyshev function has roots given by
zi = − cos

(
(2i−1)π

2n

)
• If you approximate with nth order function, you need to fit at

m ≥ n + 1 points.
• These functions are only defined on [−1,1], so you need to

transform your domain. The best way is to ensure that
bounds of your domain fall on the first and last zero

• To transform from {xi} ∈ [x , x̄ ] with {zi} ∈ (−1,1) use

x(z) =
1
2

(sec(
π

2m
)z + 1)(x̄ − x) + x

• You can invert that for z(x)
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Perils of ignoring the math
• Notice, the representation always oscilates around the

true. This is the “equioscilation principle”

• Evenly spaced grids make for terrible approximation. Even
with other base functions, the Chebyshev zeros are often
good (says Judd)

• Why global functions instead of piecwise? To increase the
approximation accuracy everywhere we can easily add
points/bases.
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Defining weights

• With m = n + 1, “collocation,” weights to represent f are

αj =
2
m

m∑
i=1

Tj(zi)f (zi)

• The 0 order, α0 = 1
m
∑m

i=1 f (zi)

• The weights will be decreasing in absolute value. We can
“economize” on the number of functions to evalueate by
cutting off at some earlier n where θn is small.
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Algorithm for solving a growth model

Our plan is to approximate the value function by Chebyshev
functions. Why is this a bad idea?

1 We consider capital k ∈ [k , k̄ ], which means we’ll evaluate
at {ki} corresponding to {zi}

2 For the initial guess V 0(k) find {α0
j } such that

V 0(k) ≈
∑n

j=0 α
0
j Tj(z(k)) by solving for

α0
j = 2

m
∑m

i=1 Tj(zi)f (z(ki))

3 At each ki solve
V 1(ki) = maxk ′ u(ki , k ′) + β

∑n
j=0 α

0
j Tj(z(k ′))

4 Update by solving for {α1
j } : V 1(k) ≈

∑n
j=0 α

1
j Tj(z(k))

5 Stop when the decision rule converges given {αt}, {αt+1}
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The idea

• I can compute the model, but the direct mapping to the
data is not obvious.

• Instead, I choose another model which will represent the
statistical properties of the data. For the “auxilliary model” I
can (pick one)

• Write moment condtions
• Write a likelihood function

• Then I will get model parameters to minimize the distance
to this statistical description of the data.
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The method

• Find parameters such that estimating the auxilliary model
on data and model output is the same.

• Consider finding “true model” parameters β,
θ̂s(β) = arg maxθ L({xs(β)}; θ)

• L is this other statistical description of the data
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The method

• From the data, find θ̂d = arg maxθ L({x}; theta)

• Choose β such that β̂ = arg maxβ L({x}; θ̂s(β)).
• There is an unknown function θ̃(β) that “binds” the

paremeters. Find it by simulating and averaging θ̂s(β)

• In practice, we minimize the distance
(θ̂d − θ̃(β))T W (θ̂d − θ̃(β))
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The method

• To summarize, This involves 2 steps
• We have decisions of the form

∑
φ(x , α;β, θ)

• I solve the model around β, θ for α
• I then solve for θ̂s that is optimal in terms of my auxilliary

model
• Victor’s suggestion: I don’t want to be solving for α too

accurately when θ̂s is far from θ̂d

• Can I jointly solve for α, β, θ?
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An example

Following Smith (1993), we take a simple RBC model:

max
∞∑

t=0

βtu(ct , lt )

ct + xt = ztkαt l1−αt

kt+1 = (1− δ)kt + btxt

log zt = ρ log zt−1 + εt : ε ∼ N (0, σ2
ε )

log bt = φ log bt−1 + υt : υ ∼ N (0, σ2
υ)

Decision rules x(k , z,b) and h(k , z,b) are complicated
functions of the parameters. We cannot (generally) write an
explicit likelihood function.
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The appropriate auxilliary model
• We know that this model is well approximated by a

linearized form of states and decision rules
• Then the decision rules are linear in the endogenous and

exogenous states

kt+1 = Ωkt + Γut

lt+1 = Pkt + Υut

• With obbservations of kt , lt , we could obviously estimate
Ω, Γ,P,Υ by ML, but these are tricky functions of the true
structural parameters.

• It is not so different from a VAR, Smith (1993) uses

st+1 = [yt+1 xt+1 yt xt ]
T = Qst + Et

• I’ll use st = [kt lt yt (wt lt )]T
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Execution

1 Estimate the auxilliary model with the data.
2 Draw your random numbers first. Then the model moves

around these numbers. We are doing a path simulation, so
you’re drawing {εt , υt}. You need to do H simulations
length T

3 Solve the model for decision rules as functions of the
draws. Estimate the auxilliary model H times.

4 Minimize the distance

(θ̂d − 1
H

H∑
h=1

θ̂h(β))T V (β)−1(θ̂d − 1
H

H∑
h=1

θ̂h(β))

5 For the weight matrix, use the inverse of the variance at
each estimate
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Variance estimates

• The most obvious is to use the Delta method:
• The derivative of the mapping θs(β) can be evaluated

J = ∂θs(β)
∂β

• The variance of the auxilliary model comes from our
intermediate estimate E ET

• Then V (β) = JE ET JT

• This is particularly computationally demanding, so there
are analytical forms, see Gourierioux, Monfort and Renaux
(1993)
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The result
Smith uses US data from 1947:Q1 to 1988:Q4, I’m going to use
1964:Q1 to 2009:Q4

α̂ ρ̂ σ̂ε φ̂ σ̂υ
Smith 0.2415 0.8961 0.01023 0.7851 0.0524

(0.3798) (0.0849) (0.00078) (0.0689) (0.00889)
Me 0.347 0.928 0.0047 0.6988 0.0123

(0.3798) (0.0849) (0.00078) (0.0689) (0.00889)

You can get my code from my website:
http://www.econ.umn.edu/∼wicze006/computation.html

http://www.econ.umn.edu/~wicze006/computation.html
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Representing a value function with an exogenous state

• Basically we will discretize a dimension of V (k ,e).
• Choose {es}Ss=1 to evaluate and solve for
{θes

j } : V (k ,es) ≈
∑n

j=0 θ
es
j Tj(z(k))

• Then the value function, evaluated at chebyshev nodes
{ki} and exogenous state {es} is defined by

V (ki ,es) = max
k ′

u(ki , k ′,es) + β

S∑
r=1

π(er |es)
n∑

j=0

θr
j Tj(z(k ′))
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Representing a value function with an exogenous state

• We don’t worry about interpolating in the exogenous
direction. We never need values in between or the
derivative because we never choose an e′.

• For a second endogenous state variable, linear
interpolation between smooth Chebyshev approximations
is not a good strategy. Use bicubic splines or other
multidimensional basis functions. (code for this is also on
my website)
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Discretizing a process

• The general idea is to take a distribution f and find a set of
points {xi} and assign to them probability
Pr [xi ] =

∫ ci+1
ci

f (x)dx for some set of cutoff points
{ci} : ci ∈ (xi , xi+1)

• Generally we are concerned with making a markov chain
and generally dynamic process will not be row-identical.

• With Tauchen (1986), you can conveniently pick the points
of the process at which to evaluate and choose
probabilities to suit.

• To accurately approximate a process with the fewest
points, we can often do better. However, that may not be
the point
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Tauchen’s Method

• Fit z ′ = ρz + ε : ε ∼ N (0, σ2) with n× n transition matrix Π
and vector of points {zi}

• The stationary distribution of z ∼ N (0, σ2
z ) : σ2

z = σ2

1−ρ2

• Choose a grid for {zi}, commonly equidistant cutoffs
between z0 = λσz , zI = λσz and let ci =

zi+1+zi
2

• Because
Pr [z ′ ∈ [cj−1, cj ]|zi ] = Pr [ε′ ∈ (cj − ρzi , cj−1 − ρzi)|zi ]

pij = Φ

(
cj − ρzi

σ

)
− Φ

(
cj−1 − ρzi

σ

)
• on the ends: pi0 = Φ

(c0−ρzi
σ

)
piI = 1− Φ

(
cI−1−ρzi

σ

)
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Rouwenhorst method

• With extremely persistent processes, we often need many
points in Tauchen and the preformance is poor.

• From Kopecky and Suen (2009) a simple way to construct
the matrix. The size-N grid is evenly spaced over the
domain.

• The basic idea is to approximate a normal distribution with
binomials. CLT says this works

http://bcs.whfreeman.com/ips4e/cat_010/applets/CLT-Binomial.html
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Rouwenhorst method
• Let Φ(t , i) = [p + (1− p)t ]N−i(1− p + qt)i−1

• For i = 1, . . . ,N this yields Φ(t , i) =
∑N

j=1 πi,j t j−1 and
ΠN = [πij ]

• This is equivalent to a (more intuitive) matrix-recursive
formulation from the original paper. For N = 2

Π2 =

(
p 1− p

1− q q

)

ΠN≥3 =p
(

ΠN−1 0
0T 0

)
+ (1− p)

(
0 ΠN−1
0 0T

)
+(1− q)

(
0T 0

ΠN−1 0

)
+ q

(
0 0T

0 ΠN−1

)
• This has the flavor of using binomials to approximate a

normal.
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Rouwenhorst method

• We can choose p,q to hit various moments of a
distribtution, which they outline in the paper.

• Because z is normal, there are only so many targets. Let
p = q = 1+ρ

2 and spacing is
√

N − 1σ
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