Computing and Estimating RBC Models With Global Methods

David Wiczer

UMN Economics

October 13, 2010

Outline

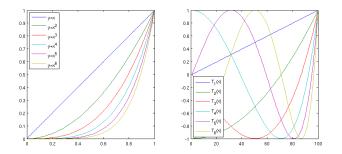
1 Chebyshev Approximation

Function representation by orthogonal functions

- We make the approximation that $f(x) \approx \sum_{i=0}^{l} \alpha_i \phi_i(x)$ where ϕ are known functions.
- To "store" $f(\cdot)$, we really want to store the vector $\{\alpha_i\}$
- We need to choose good polynomials to economize on the number of functions we need to evaluate each time we approximate *f*(*x*).

Chebyshev functions

Polynomials become too similar. Chebyshev functions are orthogonal, meaning accuracy gains do not diminish as we increase the number of functions.



These follow the recursive definition: $T_0(x) = 1$, $T_1(x) = x$, $T_i(x) = 2xT_{i-1}(x) - T_{i-2}(x)$ or $T_i(x) = \cos(i\cos^{-1}(x))$

Where to evaluate

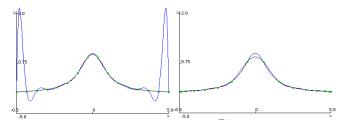
- The *n*th order Chebyshev function has roots given by $z_i = -\cos\left(\frac{(2i-1)\pi}{2n}\right)$
- If you approximate with *nth* order function, you need to fit at *m* ≥ *n* + 1 points.
- These functions are only defined on [-1, 1], so you need to transform your domain. The best way is to ensure that bounds of your domain fall on the first and last zero
- To transform from $\{x_i\} \in [\underline{x}, \overline{x}]$ with $\{z_i\} \in (-1, 1)$ use

$$x(z) = \frac{1}{2}(\sec(\frac{\pi}{2m})z+1)(\bar{x}-\underline{x})+\underline{x}$$

• You can invert that for z(x)

Perils of ignoring the math

• Notice, the representation always oscilates around the true. This is the "equioscilation principle"



- Evenly spaced grids make for terrible approximation. Even with other base functions, the Chebyshev zeros are often good (says Judd)
- Why global functions instead of piecwise? To increase the approximation accuracy *everywhere* we can easily add points/bases.

Defining weights

• With m = n + 1, "collocation," weights to represent *f* are

$$\alpha_j = \frac{2}{m} \sum_{i=1}^m T_j(z_i) f(z_i)$$

- The 0 order, $\alpha_0 = \frac{1}{m} \sum_{i=1}^m f(z_i)$
- The weights will be decreasing in absolute value. We can "economize" on the number of functions to evalueate by cutting off at some earlier *n* where θ_n is small.

Algorithm for solving a growth model

Our plan is to approximate the value function by Chebyshev functions. Why is this a bad idea?

- We consider capital $k \in [\underline{k}, \overline{k}]$, which means we'll evaluate at $\{k_i\}$ corresponding to $\{z_i\}$
- Provide For the initial guess $V^0(k)$ find $\{\alpha_j^0\}$ such that $V^0(k) \approx \sum_{j=0}^n \alpha_j^0 T_j(z(k))$ by solving for $\alpha_j^0 = \frac{2}{m} \sum_{i=1}^m T_j(z_i) f(z(k_i))$
- 3 At each k_i solve $V^1(k_i) = \max_{k'} u(k_i, k') + \beta \sum_{j=0}^n \alpha_j^0 T_j(z(k'))$
- **4** Update by solving for $\{\alpha_j^1\}$: $V^1(k) \approx \sum_{j=0}^n \alpha_j^1 T_j(z(k))$

5 Stop when the decision rule converges given $\{\alpha^t\}, \{\alpha^{t+1}\}$

Outline

2 Indirect Inference

(3)

The idea

- I can compute the model, but the direct mapping to the data is not obvious.
- Instead, I choose another model which will represent the statistical properties of the data. For the "auxilliary model" I can (pick one)
 - Write moment condtions
 - Write a likelihood function
- Then I will get model parameters to minimize the distance to this statistical description of the data.

The method

- Find parameters such that estimating the auxilliary model on data and model output is the same.
- Consider finding "true model" parameters β , $\hat{\theta}^{s}(\beta) = \arg \max_{\theta} \mathcal{L}(\{x_{s}(\beta)\}; \theta)$
- $\ensuremath{\mathcal{L}}$ is this other statistical description of the data

The method

- From the data, find $\hat{\theta}^d = \arg \max_{\theta} \mathcal{L}(\{x\}; theta)$
- Choose β such that $\hat{\beta} = \arg \max_{\beta} \mathcal{L}(\{x\}; \hat{\theta}^{s}(\beta)).$
- There is an unknown function $\tilde{\theta}(\beta)$ that "binds" the paremeters. Find it by simulating and averaging $\hat{\theta}^{s}(\beta)$
- In practice, we minimize the distance (θ^d - θ(β))^T W(θ^d - θ(β))

The method

- To summarize, This involves 2 steps
- We have decisions of the form $\sum \phi(x, \alpha; \beta, \theta)$
- I solve the model around β, θ for α
- I then solve for $\hat{\theta}^s$ that is optimal in terms of my auxilliary model
- Victor's suggestion: I don't want to be solving for α too accurately when θ^s is far from θ^d
- Can I jointly solve for α, β, θ ?

An example

Following Smith (1993), we take a simple RBC model:

$$\max \sum_{t=0}^{\infty} \beta^{t} u(c_{t}, l_{t})$$

$$c_{t} + x_{t} = z_{t} k_{t}^{\alpha} l_{t}^{1-\alpha}$$

$$k_{t+1} = (1-\delta)k_{t} + b_{t} x_{t}$$

$$\log z_{t} = \rho \log z_{t-1} + \epsilon_{t} : \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$

$$\log b_{t} = \phi \log b_{t-1} + v_{t} : v \sim \mathcal{N}(0, \sigma_{v}^{2})$$

Decision rules x(k, z, b) and h(k, z, b) are complicated functions of the parameters. We cannot (generally) write an explicit likelihood function.

The appropriate auxilliary model

- We know that this model is well approximated by a linearized form of states and decision rules
- Then the decision rules are linear in the endogenous and exogenous states

$$k_{t+1} = \Omega k_t + \Gamma u_t$$
$$l_{t+1} = Pk_t + \Upsilon u_t$$

- With obbservations of k_t, l_t, we could obviously estimate Ω, Γ, P, Υ by ML, but these are tricky functions of the true structural parameters.
- It is not so different from a VAR, Smith (1993) uses

$$s_{t+1} = [y_{t+1} \ x_{t+1} \ y_t \ x_t]^T = Qs_t + E_t$$

• I'll use
$$s_t = [k_t \ l_t \ y_t \ (w_t l_t)]^T$$

Execution

- Estimate the auxilliary model with the data.
- Draw your random numbers first. Then the model moves around these numbers. We are doing a path simulation, so you're drawing {*e*_t, *v*_t}. You need to do *H* simulations length *T*
- Solve the model for decision rules as functions of the draws. Estimate the auxilliary model *H* times.

Execution

- Estimate the auxilliary model with the data.
- Draw your random numbers first. Then the model moves around these numbers. We are doing a path simulation, so you're drawing {*e*_t, *v*_t}. You need to do *H* simulations length *T*
- Solve the model for decision rules as functions of the draws. Estimate the auxilliary model *H* times.
- Minimize the distance

$$(\hat{\theta}^d - \frac{1}{H}\sum_{h=1}^H \hat{\theta}_h(\beta))^T V(\beta)^{-1} (\hat{\theta}^d - \frac{1}{H}\sum_{h=1}^H \hat{\theta}_h(\beta))$$

For the weight matrix, use the inverse of the variance at each estimate

Variance estimates

- The most obvious is to use the Delta method:
- The derivative of the mapping $\theta^{s}(\beta)$ can be evaluated $J = \frac{\partial \theta^{s}(\beta)}{\partial \beta}$
- The variance of the auxilliary model comes from our intermediate estimate $E E^{T}$
- Then $V(\beta) = JE E^T J^T$
- This is particularly computationally demanding, so there are analytical forms, see Gourierioux, Monfort and Renaux (1993)

The result

Smith uses US data from 1947:Q1 to 1988:Q4, I'm going to use 1964:Q1 to 2009:Q4

	$\hat{\alpha}$	$\hat{ ho}$	$\hat{\sigma}_{\epsilon}$	$\hat{\phi}$	$\hat{\sigma}_{arphi}$
Smith	0.2415	0.8961	0.01023	0.7851	0.0524
	(0.3798)	(0.0849)	(0.00078)	(0.0689)	(0.00889)
Me	0.347	0.928	0.0047	0.6988	0.0123
	(0.3798)	(0.0849)	(0.00078)	(0.0689)	(0.00889)

You can get my code from my website: http://www.econ.umn.edu/~wicze006/computation.html

Outline

Representing a value function with an exogenous state

- Basically we will discretize a dimension of V(k, e).
- Choose $\{e_s\}_{s=1}^S$ to evaluate and solve for $\{\theta_j^{e_s}\}$: $V(k, e_s) \approx \sum_{j=0}^n \theta_j^{e_s} T_j(z(k))$
- Then the value function, evaluated at chebyshev nodes {*k_i*} and exogenous state {*e_s*} is defined by

$$V(k_i, \boldsymbol{e_s}) = \max_{k'} u(k_i, k', \boldsymbol{e_s}) + \beta \sum_{r=1}^{S} \pi(\boldsymbol{e_r} | \boldsymbol{e_s}) \sum_{j=0}^{n} \theta_j^r T_j(\boldsymbol{z}(k'))$$

Representing a value function with an exogenous state

- We don't worry about interpolating in the exogenous direction. We never need values in between or the derivative because we never choose an *e*'.
- For a second endogenous state variable, linear interpolation between smooth Chebyshev approximations is not a good strategy. Use bicubic splines or other multidimensional basis functions. (code for this is also on my website)

Discretizing a process

- The general idea is to take a distribution *f* and find a set of points {*x_i*} and assign to them probability
 Pr[*x_i*] = ∫<sub>*c_i*^{*c_{i+1}} <i>f*(*x*)*dx* for some set of cutoff points
 {*c_i*} : *c_i* ∈ (*x_i*, *x_{i+1}*)

 </sub></sup>
- Generally we are concerned with making a markov chain and generally dynamic process will not be row-identical.
- With Tauchen (1986), you can conveniently pick the points of the process at which to evaluate and choose probabilities to suit.
- To accurately approximate a process with the fewest points, we can often do better. However, that may not be the point

Tauchen's Method

- Fit z' = ρz + ε : ε ~ N(0, σ²) with n × n transition matrix Π and vector of points {z_i}
- The stationary distribution of $z \sim \mathcal{N}(0, \sigma_z^2)$: $\sigma_z^2 = \frac{\sigma^2}{1-\sigma^2}$
- Choose a grid for {z_i}, commonly equidistant cutoffs between z₀ = λσ_z, z_i = λσ_z and let c_i = ^{z_{i+1}+z_i}/₂
- Because

 $Pr[z' \in [c_{j-1}, c_j]|z_i] = Pr[\epsilon' \in (c_j - \rho z_i, c_{j-1} - \rho z_i)|z_i]$

$$p_{ij} = \Phi\left(rac{c_j -
ho z_i}{\sigma}
ight) - \Phi\left(rac{c_{j-1} -
ho z_i}{\sigma}
ight)$$

• on the ends: $p_{i0} = \Phi\left(\frac{c_0 - \rho Z_i}{\sigma}\right)$ $p_{il} = 1 - \Phi\left(\frac{c_{l-1} - \rho Z_i}{\sigma}\right)$

Rouwenhorst method

- With extremely persistent processes, we often need many points in Tauchen and the preformance is poor.
- From Kopecky and Suen (2009) a simple way to construct the matrix. The size-*N* grid is evenly spaced over the domain.
- The basic idea is to approximate a normal distribution with binomials. CLT says this works

Rouwenhorst method

- Let $\Phi(t, i) = [p + (1 p)t]^{N-i}(1 p + qt)^{i-1}$
- For i = 1, ..., N this yields $\Phi(t, i) = \sum_{j=1}^{N} \pi_{i,j} t^{j-1}$ and $\Pi_N = [\pi_{ij}]$
- This is equivalent to a (more intuitive) matrix-recursive formulation from the original paper. For N = 2

$$\Pi_{2} = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}$$
$$\Pi_{N\geq 3} = p \begin{pmatrix} \Pi_{N-1} & \mathbf{0} \\ \mathbf{0}^{T} & \mathbf{0} \end{pmatrix} + (1-p) \begin{pmatrix} \mathbf{0} & \Pi_{N-1} \\ 0 & \mathbf{0}^{T} \end{pmatrix}$$
$$+ (1-q) \begin{pmatrix} \mathbf{0}^{T} & \mathbf{0} \\ \Pi_{N-1} & \mathbf{0} \end{pmatrix} + q \begin{pmatrix} \mathbf{0} & \mathbf{0}^{T} \\ \mathbf{0} & \Pi_{N-1} \end{pmatrix}$$

• This has the flavor of using binomials to approximate a normal.

Rouwenhorst method

- We can choose *p*, *q* to hit various moments of a distribution, which they outline in the paper.
- Because z is normal, there are only so many targets. Let $p = q = \frac{1+\rho}{2}$ and spacing is $\sqrt{N-1}\sigma$

Conditional Mean	$\mathbf{E}(y_{t+1} y_t = \overline{y}_i)$	$(q-p)\psi + (p+q-1)\overline{y}_i$		
Conditional Variance	$\operatorname{var}(y_{t+1} y_t = \overline{y}_i)$	$\frac{4\psi^2}{(N-1)^2} \left[(N-i) (1-p) p + (i-1) q (1-q) \right]$		
Unconditional Mean	$\mathrm{E}(y_t)$	$\frac{(q-p)\psi}{2-(p+q)}$		
Unconditional Second Moment	$\mathrm{E}(y_t^2)$	$\psi^2 \left\{ 1 - 4s \left(1 - s\right) + \frac{4s(1-s)}{N-1} \right\}$		
First-order Autocovariance	$\operatorname{Cov}(y_t, y_{t+1})$	$(p+q-1)\operatorname{var}(y_t)$		
First-order Autocorrelation	$\operatorname{Corr}(y_t, y_{t+1})$	p + q - 1		

Table 1: Selected Moments of the Markov Chain