Negotiation

Akihisa Kato and José Víctor Ríos Rull UPenn

December 1, 2021

Modeling a Match: Converntional Ways

- There are several ways of modeling a match of two individuals
 - represent them by a single utility function (unitary model)
 - each has her own utility function but Pareto weight is fixed over time
 - each has her own utility function and Pareto weight changes according to the outside values (Limited commitment)
- In the first and second formulation,
 - No need to keep track of Pareto weight as a state variable
 - the resource allocation within the match is fixed over time by fixed Pareto weight or equivalence scale
 - the match dissolution happens whenever at least one of them finds her outside values exceeds inside value

Modeling a Match: Converntional Ways

- There are several ways of modeling a match of two individuals
 - represent them by a single utility function (unitary model)
 - each has her own utility function but Pareto weight is fixed over time
 - each has her own utility function and Pareto weight changes according to the outside values (Limited commitment)
- In the third formulation,
 - allocation within a match and dissolution is a result of negotiation
 - need to keep track of Pareto weight as a state variable
 - they may find a new Pareto weight that can sustain a match through negotiation even when one's outside value exceeds her inside value

Modeling a Match: Our Approach

- Limited commitment can endogenize both allocation within a match and dissolution
- But keeping track of Pareto weights is computationally burden
- Our negotiation protocol maintains both endogenous allocation choice and dissolution outcome through negotiation, while no need to keep track of Pareto weight
- Specifically, they negotiate every period with additive utility shocks to the potential outcomes (remains in a match or dissolved)
- To describe out approach, consider a situation in which a married couple decides their allocation or getting divorce.

Time Line

- Potentially two-stage game
 - 1. Choose Satisfied (S) or Challenge (C)
 - If both choose S, set $\lambda = \lambda^{SS}$ and stay married
 - If both choose C, get divorce.
 - If one of them chooses C, go to the next stage.
 - 2. The one who chooses C offer new λ , and the other decides whether accept or reject (=divorce) it
- Challenge and high λ offer may result in better allocations for the Challenger, but it also increases the risk of being rejected and divorce.

		Husband	
		Satisfied	Challenge
Wife	Satisfied	λ^{SS}	λ^m or Div.
	Challenge	λ^f or Div.	Divorce

- First, they choose $\it Satisfied$ or $\it Challenge$

		Husband	
		Satisfied	Challenge
Wife	Satisfied	λ^{SS}	λ^m or Div.
vviie	Challenge	λ^f or Div.	Divorce

Satssfeed

- First, they choose Satisfied or Challenge
 - if both Accept, set PW $\lambda=1/2$

		Husband	
		Satisfied	Challenge
Wife	Satisfied	λ^{SS}	λ^m or Div.
vviie	Challenge	λ^f or Div.	Divorce

- First, they choose Satisfied or Challenge
 - If both Challenge, they divorce

(Challeenggee

		Husband	
		Satisfied	Challenge
Wife	Satisfied	λ^{SS}	λ^m or Div.
	Challenge	λ^f or Div.	Divorce

S:Challechge

- First, they choose Satisfied or Challenge
 - Now suppose wife chooses Challenge but husband selects Satisfied,
- Second, wife offers λ and husband decides *Accept* or *Reject* it.
 - husband receives new PW (λ^f) offer from wife, and decides accept or reject the offer
 - λ^f is chosen so that it maximizes the expected value of the wife

- We summarize the exact schedule of the negotiation process:
 - 1. Before private additive util shocks realize, decide λ to be offered
 - 2. Learn shocks of their own, but cannot observe spouse's shocks, and decide which to choose; Satisfied or Challenge
 - 3. If go to the second step, Accept or Reject proposed PW with the shock values
- In what follows,
 - EW and EV are end-of-period value functions of being married and single (after negotiation, before solving allocation problem)
 - \widetilde{EW} and \widetilde{EV} are start-of-period values (before negotiation)
 - \mathbf{s} summarizes the state variables relevant for a married household, while s^g is the state variables of an individual with gender g

Choice of λ to offer

- Before they receive additive utility shocks ϵ , they decide what λ to offer if challenges
- Let the husband's Acceptance policy function when wife offers λ^f as $\mathbb{I}^{A,m}(\mathbf{s},\lambda^f,\epsilon^m)$.
- Then, a wife's optimal choice λ^f is a solution of the following problem:

$$\begin{split} \lambda^{f*}(\mathbf{s}) &= \operatorname*{arg\,max}_{\lambda^f} \Big\{ \mathbb{E} \big[\mathbb{1}^{A,m}(\mathbf{s},\lambda^f,\epsilon^m) \big(EW^f(\mathbf{s},\lambda^f) + \epsilon_M^f \big) \\ &+ \big(1 - \mathbb{1}^{A,m}(\mathbf{s},\lambda^f,\epsilon^m) \big) \big(EV^f(s^f) + \epsilon_S^f \big) \big] \Big\}, \end{split}$$

- where ϵ_{ms}^f is the additive util shock to wife's values when her marital status is ms.

Choice in the First Stage

- Each chooses Satisfied or Challenge in the first stage
- They received their private additive utility shocks, but cannot observe spouse's shocks
- Let the wife's expected values conditional on choosing Satisfied and Challenge as $\widehat{W}^{S,f}(\mathbf{s}, \lambda, \epsilon)$ and $\widehat{W}^{C,f}(\mathbf{s}, \lambda, \epsilon)$.
- Wife's expected value of choosing Satisfied is

$$\begin{split} \widehat{W}^{S,f}(\mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon}) &= \underbrace{\mathbb{1}^{S,m}(\mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon}^m) \Big(EW^f(\mathbf{s}, 1/2) + \epsilon_M^f \Big)}_{\text{husband Satisfied}} \\ &+ \underbrace{\Big\{ 1 - \mathbb{1}^{S,m}(\mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon}^m) \Big\} \Big[\max \Big\{ EW^f(\mathbf{s}, \boldsymbol{\lambda}^m) + \epsilon_M^f, EV^f(\boldsymbol{s}^f) + \epsilon_S^f \Big\} - \kappa \Big]}_{\text{husband Challenge}} \end{split}$$

Choice in the First Stage

- In case if wife chooses challenge, her expected value is

$$\widehat{W}^{C,f}(\mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon}) = \underbrace{\mathbb{1}^{S,m}(\mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon}^m) \mathbb{1}^{A,m}(\mathbf{s}, \boldsymbol{\lambda}^f, \boldsymbol{\epsilon}^m) \Big(EW^f(\mathbf{s}, \boldsymbol{\lambda}^f) + \boldsymbol{\epsilon}_M^f \Big)}_{\text{husband Satisfied and Accept}} + \underbrace{\Big\{ 1 - \mathbb{1}^{S,m}(\mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon}^m) \mathbb{1}^{A,m}(\mathbf{s}, \boldsymbol{\lambda}^f, \boldsymbol{\epsilon}^m) \Big\} \Big(EV^f(\mathbf{s}^f) + \boldsymbol{\epsilon}_S^f \Big)}_{\text{otherwise}} - \kappa$$

- where κ denotes the utility cost of Challenge.

Choice in the First/Second Stage

- The policy function of choices at the first stage, Satisfied/Challenge is

$$\mathbb{1}^{S,f}(\mathbf{s},\boldsymbol{\lambda},\boldsymbol{\epsilon}^f) = \begin{cases} 1 \text{ if } \widehat{W}^{S,f}(\mathbf{s},\boldsymbol{\lambda},\boldsymbol{\epsilon}^f) \geq \widehat{W}^{C,f}(\mathbf{s},\boldsymbol{\lambda},\boldsymbol{\epsilon}^f) \\ 0 \text{ otherwise} \end{cases}$$

and the policy function of choices at the second stage if husband challenges,
Accept/Reject is

$$\mathbb{1}^{A,f}(\mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon}^f) = \begin{cases} 1 \text{ if } EW^f(\mathbf{s}, \lambda^{m*}) + \epsilon_M^f \ge EV^f(s^f) + \epsilon_S^f \\ 0 \text{ otherwise} \end{cases}$$

Choice in the First/Second Stage

- Thus, the start-of-period expected value of a wife is

$$\widetilde{EW}^f(\mathbf{s}) = \mathbb{E}\Big[\mathbb{1}^{S,f}(\mathbf{s},\boldsymbol{\lambda})\widehat{W}^{S,f}(\mathbf{s},\boldsymbol{\lambda},\boldsymbol{\epsilon}^f) + \{1 - \mathbb{1}^{S,f}(\mathbf{s},\boldsymbol{\lambda})\}\widehat{W}^{C,f}(\mathbf{s},\boldsymbol{\lambda},\boldsymbol{\epsilon}^f)\Big]$$

- where the expectation is taken over ϵ 's.
- The husband's expected value functions and policy functions are defined symmetrically.
- Note that start-of-period expected value functions/policy functions do not depend λ as it is determined during the negotiation process (s does not contain λ)