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Online Appendix

Appendix A. Data Construction

Appendix A.1. Raw Data Series

All raw data series retrieved from the Bureau of Economic Analysis (BEA; www.bea.gov)

and the Bureau of Labor Statistics (BLS; www.bls.gov) for the period 1948:Q1–2006:Q4 were

current as of April 19, 2007.

National Income and Product Accounts (NIPA-BEA)

1. Table 1.1.5: Consumption of Durable Goods (CDt), Change in Inventories (ChInvt)

2. Table 1.7.5: Gross National Product (GNPt)

3. Tables 2.3.3 and 2.3.5: Quantity Index (QCONSit) and Nominal (CONSit) Nondurables

Consumption (excluding Energy) and Services (excluding Housing)14

4. Table 3.9.5: Government Investment in Equipment (GovIEQt), Government Invest-

ment in Structures (GovISTt)

5. Table 5.3.5: Private Fixed Investment in Equipment (PrivIEQt), Private Fixed Invest-

ment in Structures (PrivISTt)

Fixed Asset Tables (FAT-BEA)

1. Table 5.3.4: Official Price Index for Investment in Equipment (OPIEQt)

Bureau of Labor Statistics (BLS)

1. Aggregate Hours Index (Ht), BLS ID PRS85006033

2. Civilian Noninstitutional Population +16 (Pop16t), BLS ID LNU00000000

Cummins and Violante (2002), 1947–2000

1. Annual Quality-Adjusted Price Index for Investment in Equipment (QAPIEQCV
year)

2. Annual Quality-Adjusted Depreciation Rates for Total Capital (δCVyear)

14Goods i correspond to nondurables consumption in food, clothing and shoes, and others, and services
in household operations, transportation, medical care, recreation, and others.
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Capital Utilization Data

The data is available from the Statistics & Historical Data page for Principle Economic

Indicators – Industrial Production and Capacity Utilization (G.17) at

www.federalreserve.gov/econresdata/releases/statisticsdata.htm.

1. Electric Power Use: Manufacturing and Mining, Total industry from the survey of

industrial electric power conducted by the Board of Governors of the Federal Reserve

System. The voluntary survey was discontinued with the publication on December 15,

2005, of data for October 2005 since the response rate dropped significantly during the

early 2000s.

2. TCU: capacity utilization: total industry provided by the Board of Governors of the

Federal Reserve System. The Federal Reserve Board constructs estimates of capac-

ity utilization for a given industry by dividing an output index by a capacity index.

Capacity indexes try to capture the so-called sustainable maximum output, that is,

the largest level of output that a plant can achieve given the resources available when

operating the plant. Capacity indexes are constructed for 89 detailed industries (71 in

manufacturing, 16 in mining, and 2 in utilities), which mostly correspond to industries

at the three- and four-digit NAICS level. In the estimation exercise, we use quarterly

averages of the monthly series on the percent capacity. The data are available from

1967:1.

Appendix A.2. The Relative Price of Quality-Adjusted Investment

We construct the relative price of quality-adjusted investment, P I
t , as a Tornquist aggregate

of the price index of quality-adjusted equipment investment and the price index of structures

investment. We use the price index of consumption, PC
t , as a proxy for the price of structures

investment.15 Based on P I
t and PC

t , we define the relative price of investment goods (using

the consumption good as numeraire) as

Pt =
P I
t

PC
t

.

15As is the standard in previous literature, we use the consumption deflator as the price index for investment
in structures (see Fisher (2006) and Canova et al. (2010)). This provides internal consistency in the way
we compute the quality-adjusted price index for total (equipment + investment) investment —one of the
elements of output is investment; hence, the alternative use of an output (instead of a consumption) deflator
potentially distorts the very same measure we are trying to compute: an investment deflator.
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Its inverse, Vt = 1
Pt

, is investment-specific technical change. We set V0 = 1
P0

= 1, that is, we

assume real capital is equal to capital in efficiency units in 1947.

Quarterly Quality-Adjusted Price Index for Investment in Equipment, QAPIEQt.

We use the U.S. 1947-2000 annual series provided by Cummins and Violante (2002) for the

price index of equipment investment, QAPIEQCV
year, and impute the quarterly movements

of the official FAT-BEA price index of equipment investment, OPIEQt, using the Denton

method. For the years after 2000, we use the official price index OPIEQt, rescaled such that

it equates the value in Cummins and Violante (2002) in the year 2000. Thus, we assume

that the hedonic methods used to compute the official price index correctly quality-adjust

most types of equipment investment after 2000.

Quarterly Quality-Adjusted Price Index for Total Investment, P I
t . We use a Torn-

quist price index aggregate that weights growth rates of the price index of investment in

equipment and the price index of investment in structures by their nominal shares sIEQt and

sISTt . Nominal equipment investment is the sum of private equipment investment (PrivIEQt),

government equipment investment (GovIEQt), changes in inventories (ChInvt), and con-

sumer durables (CDt). Nominal structures investment is the sum of private structures in-

vestment (PrivISTt) and government structures investment (GovISTt). The growth rate of

the quarterly quality-adjusted price index for total investment is

λ(P I
t ) =

(
sIEQt + sIEQt−1

2

)
λ(QAPIEQt) +

(
sISTt + sISTt−1

2

)
λ(PC

t ),

where λ(xt) = (xt − xt−1)/xt and changes in the price index for consumption goods, λ(PC
t ),

serve as proxy for inflation in the price of structures. The level of quarterly quality-adjusted

price index for total investment is recovered recursively,

P I
t = P I

t−1[1 + λ(P I
t )].

We use the initial value P I
0 suggested in Cummins and Violante (2002).

Quarterly Price Index for Consumption, PC
t . We use a Tornquist price index aggregate

that weights growth rates of price indexes for nondurables consumption (food, clothing

and shoes, and others) and services (household operations, transportation, medical care,

recreation, and others) by their nominal shares. Let PC,i
t be the price index for nondurable

consumption/service good i in quarter t computed as the ratio between nominal consumption
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of good i, CONSit, and the quantity index of good i, QCONSit. Let sit be the corresponding

nominal share of good i in period t. Then, the growth rate of the price index for consumption

is

λ(PC
t ) =

∑

i

sit + sit−1

2
λ(PC,i

t ).

The level of the consumption price index is recovered recursively,

PC
t = PC

t−1 [1 + λ(PC
t )],

where we set PC
0 such that the initial relative price of investment is equal to one; see below.

Appendix A.3. Neutral Technical Change

The series of neutral technical change is computed using measures of real output Yt, real

capital Kt, and labor input Ht, together with an estimate of the input shares of production.

Real output Yt is computed as the nominal gross national product, GNPt, deflated by Pt. We

convert output, capital, and hours in per capita terms dividing by civilian noninstitutional

population Pop16t. We explicitly consider capital quality improvement represented by the

historical fall in the real price of investment. To do so, we build quarterly series for investment

in efficiency units and physical depreciation rates that we use to construct series of quality-

adjusted capital stock. Quality adjustments substantially change the series of capital — real

capital falls below capital in efficiency units and affects the trend of neutral technical change.

Quarterly Quality-Adjusted Investment, Xt. Total investment in efficiency units is

defined as total deannualized nominal investment deflated by the quality-adjusted price of

investment,

Xt =
InvEQt + InvSTt

P I
t

.

Quarterly Quality-Adjusted Depreciation Rates, δt. We build on the time-varying

annual physical depreciation rates for total capital provided in Cummins and Violante (2002)

for the period 1947-2000, δCVyear. For the years after 2000, we assume a constant depreciation

rate equal to that in year 2000. We define δ0 as the average quarterly depreciation rate over

the period 1955:Q3 to 2006:Q4: δ0 = 0.013.

Quarterly Quality-Adjusted Capital Stock, Kt. We have created quarterly quality-

adjusted investment series, Xt, and quarterly series for the quality-adjusted depreciation
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rate, δt. Then we can construct the series of capital in efficiency units recursively using the

perpetual inventory method,

Kt+1 = (1− δ0) Kt +Xt

where the initial capital stock in efficiency units, K0, is calibrated using the steady-state

investment equation
K0

Y0

=
V0 I0

Y0

(1− (1− δ0) exp (−λK))−1 .

We obtain the unconditional mean of the investment-output ratio is 0.284, and the quarterly

capital per capita growth rate averages 1.08%. This yields an initial quarterly capital-output

ratio of 11.6 (or 2.92 annually), which together with the initial value of real output pins down

an initial efficient capital stock.

Neutral Technical Change, At. The series of neutral technical change is computed as

At =
Yt

Kα
t H

1−α
t

,

where α =
∑

t
αt
T

is the baseline capital share in Ŕıos-Rull and Santaeulàlia-Llopis (2010).

Appendix B. The Model

In terms of the transformed variables, the deterministic steady state of our model is charac-

terized by the following set of equations:

q∗ = e
1

1−αγa+ α
1−αγv (B.1)

v∗ = eγv

R∗ =
q∗v∗

β
− (1− δ0)

K∗

Y ∗
=

αq∗v∗

R∗

X∗

Y ∗
=

(
1− 1− δ0

q∗v∗

)
K∗

Y ∗

I∗ = X∗

I∗

K∗
= 1− 1− δ0

q∗v∗

C∗

Y ∗
=

1

g∗
− I∗

Y ∗
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For the technology shock processes, let Ât = lnAt−lnA0−γat and V̂t = lnVt−lnV0−γvt.
For other variables Xt, let x̂t = ln(Xt/X

∗). Then the log-linearized equilibrium conditions

are given by (we scale the labor supply shock lnBt by the factor −ν such that b̂t = −ν lnBt):

r̂t = ŷt − (k̂t + ût) +
1

1− α(ât + v̂t) (B.2)

ŵt = ŷt − ĥt
ĉt = Et[ĉt+1]− R∗

R∗ + 1− δ0

Et[r̂t+1] +
1

1− αEt[ât+1 + v̂t+1]

ĥt = ν(ŵt − ĉt) + b̂t

ŷt = g∗
C∗

Y ∗
ĉt + g∗

I∗

Y ∗
ît + ĝt

ŷt = (1− α)ĥt + α(k̂t + ût)−
α

1− α(ât + v̂t)

k̂t+1 =

(
1− I∗

K∗

)
(k̂t −R∗ût) +

I∗

K∗
ît −

1− I∗/K∗
1− α (ât + v̂t)

ût = ζr̂t.

Notice that δ′(ut) = δ1(1 + 1/ζ)u
1/ζ
t and δ

′′
(ut) = δ1(1 + 1/ζ)(1/ζ)u

1/ζ−1
t . Since in steady

state R∗ = δ′(u∗), we deduce that δ
′′
(u∗) = R∗/ζ, which delivers the last equation. The

exogenous shock processes evolve according to

ât = Ât − Ât−1 (B.3)

v̂t = V̂t − V̂t−1

Ât = ψ1,a(1− ψ2,a)Ât−1 + ψ2,aÂt−2 + σaεa,t

V̂t = ψ1,v(1− ψ2,v)V̂t−1 + ψ2,vV̂t−2 + σvεv,t

b̂t = ρbb̂t−1 + σbεb,t

ĝt = ρgĝt−1 + σgεg,t.

For the likelihood-based estimation of the technology shock processes and the complete

DSGE models, we use the Kalman filter. Since Ât and V̂t are potentially non-stationary, we

initialize the filter by assuming that all hat-variables are equal to zero in period t = −20,

where t = 1 corresponds to the first observation in our sample. In order to allow a marginal

data density comparison between the DSGE model and the VAR, the estimation in Section 4

is based on the likelihood function that conditions on the first four sample observations

(t = 1, . . . , 4). The variable utilization model is estimated based on the unconditional
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likelihood function. Parameter estimates for our benchmark specification are tabulated in

Table A-2.

Appendix C. Bayesian Estimation of Technology Shock Processes

As discussed in Section 2, the AR(2) shock processes are parameterized in terms of partial

autocorrelations ψ1 and ψ2; see (7). These processes are trend stationary if −1 < ψ1, ψ2 < 1

and become difference stationary if ψ1 = 1. We estimate the parameters subject to 0 ≤ ψ1 <

1 (deterministic trend) and ψ1 = 1 (stochastic trend). In the former case, we assume that

the first-order partial autocorrelation has a Beta distribution with mean 0.95 and standard

deviation of 0.02. For both the difference-stationary and trend-stationary specification, it

is assumed that the second-order partial autocorrelation is uniformly distributed on the

interval (−1, 1). Our priors are fairly agnostic with respect to the average growth rate of

the technology processes and the location parameters lnA0 and lnV0, which determine the

log levels of the technology disturbances. The priors for the innovation standard deviations

are centered at 1% with a large variance. A summary is provided in the first five columns

of Table A-1.

We estimate the two AR(2) processes independently, based on a sample that ranges from

1955:Q3 to 2006:Q4, conditioning on observations from 1954:Q3 to 1955:Q2. Posterior means

and 90% probability intervals are reported in the last four columns of Table A-1.
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Appendix D. Impulse Response to a Technology Shock

We will show that the impulse response function of labor productivity and hours worked

suffices to identify the labor supply elasticity. It is apparent from (B.2) that the two tech-

nology shocks enter the system in an identical manner, at least as far as detrended output,

consumption, wages, hours, capital, and the rental rate of capital are concerned. Hence,

without loss of generality we will focus on the response to an investment-specific technology

shock. We will assume that ψ1,v = 1 and define ṽt = v̂t/(1 − α) and omit the hats from all

other variables. Thus, the impulse response function has to satisfy the following equilibrium

conditions:

rt = yt − (kt + ut) + ṽt (D.1)

wt = yt − ht
ct = Et[ct+1]− r∗Et[rt+1] + Et[ṽt+1]

ht = ν(wt − ct)

yt = scct + siit

yt = (1− α)ht + α(kt + ut)− αṽt
kt+1 = (1− δ∗)(kt −R∗ut) + δ∗it − (1− δ∗)ṽt
ut = ζrt

ṽt = −ψ2,vṽt−1 +
σv

1− αεv,t,

where r∗ = R∗/(R∗ + 1 − δ0), sc = g∗C∗/Y ∗, si = g∗I∗/Y ∗, and δ∗ = 1 − (1 − δ0)/(q∗v∗).

To construct the impulse response function, we assume that the system is in its steady state

prior to t = 1, that εv,1 = 1, and εv,t = 0 for t > 1. Thus, the time-path of the technology

growth process is given by

ṽt = (−ψ2,v)
t−1 σv

1− α, Et[ṽt+1] = ṽt. (D.2)
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After period 1 there is perfect foresight along the impulse response, and for any variable xt

it is the case that Et[xt+1] = xt+1. With this in mind, we write the system for t > 1 as

wt = yt − ht (D.3)

∆ct+1 = r∗yt+1 − r∗(kt+1 + ut+1 − ṽt+1)− ṽt+1

ht = ν(wt − ct)

yt = scct + siit

wt = α(kt + ut − ṽt)− αht
kt+1 = (1− δ∗)(kt −R∗ζrt) + δ∗it − (1− δ∗)ṽt
rt =

1

1 + ζ
(yt − kt + ṽt).

The Frisch elasticity can be obtained from the response function of wages, i.e., labor pro-

ductivity, and hours worked, because it has to satisfy

∆ht+1 = ν(∆wt+1 −∆ct+1). (D.4)

While we do not use direct information on consumption in our empirical analysis, we can

deduce from (D.3) that

∆ct+1 = r∗yt+1 − r∗(kt+1 + ut+1 − ṽt+1)− ṽt+1

= r∗(wt+1 + ht+1)− r∗(α−1wt+1 + ht+1)− ṽt+1

= r∗(1− α−1)wt+1 − ṽt+1.

Thus, for t > 1 the impulse response function of wages and hours needs to satisfy

∆ht+1 = ν

[
∆wt+1 − r∗(1− α−1)wt+1 + (−ψ2,v)

t σv
1− α

]
. (D.5)

Since r∗, α, ψ2,v, and σv can be identified independently from information other than that

contained in the impulse response function of hours and wages to a technology shock, we

deduce that ν is identifiable as long as the initial response of hours worked to a technol-

ogy shock is non-zero. Moreover, ν remains identifiable in the presence of variable capital

utilization ζ > 0.

Appendix E. Further Results

Table A-3 reports the full set of parameter estimates for the highest posterior probability

specifications based on the data sets Y/H, H, P, Y/H, H, X, and Y/H, H, P, X.
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Appendix F. Variable Capital Utilization

Calibration: To implement the indirect inference procedure to calibrate θ(a) = [ψ1,a, ψ2,a, σa]
′,

we need to construct the model implied measured TFP, which is given by

Amt =
Yt

(Km
t )αH1−α

t

, (F.1)

where Km
t stands for measured capital, that is, the economy’s capital stock when abstracting

from utilization dependent depreciation rates. Measured capital stock evolves as

Km
t+1 = (1− δ)Km

t +Xt. (F.2)

We add equations (F.1)-(F.2) to the equilibrium conditions of our model.

The indirect inference procedure to calibrate θ(a) can be described by the following steps:

1. Given θ(−a) = [α, β, δ0, ν, ζ, ψ1,v, ψ2,v, σv]
′, pick θs(a) ∈ T(a), where T(a) is a grid with

50,000 triplets defined as follows:

[0.25, 0.265, . . . , 1.00]⊗ [−0.2,−0.192, . . . , 0.2]⊗ [0.001, 0.0015, . . . , 0.01]

Thus, s = 1, . . . , 50, 000.

2. Simulate the model 10,000 periods16 setting lnA0 and γa to zero.

3. Fit an AR(2) model to the model implied measured TFP

lnAmt = ρm1,a lnAmt−1 + ρm2,a lnAmt−2 + σma ε
m
t (F.3)

and estimate it using least squares. Given the sample size, we do not have to worry

about the small sample effects of OLS.

4. Convert the least squares estimates of ρm1,a, ρ
m
2,a, and σma into θm(a).

5. Evaluate the discrepancy function Q(θ(a); θ(−a)) at θm(a). The discrepancy function is

defined as

Q(θ(a); θ(−a)) = [θ̄m(a),D − θm(a),S(θ(a), θ(−a))]
′V̄ −1

(a) [θ̄m(a),D − θm(a),S(θ(a), θ(−a))].

We used the additional subscripts D and S to denote estimates computed based on

the actual and simulated data, respectively. In fact, θ̄m(a),D corresponds to the posterior

means reported in Table A-1, and V̄(a) is the posterior covariance matrix.

16We simulate the model economy for 10,200 periods and discard the first 200.
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6. If s < 50, 000, go to step 1. Otherwise, compute

θ̂(a) = argminθ(a)∈T(a) Q(θ(a); θ(−a)).
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Table A-1: Priors and Posteriors for Technology Shock Parameters

Prior Distribution Deterministic Trend Stochastic Trend
Name Domain Density Para (1) Para (2) Mean 90 % Intv. Mean 90 % Intv.
γa IR Normal 0.00 0.10 -.001 [-.002, .000] .000 [-.001, .001]
ψ1,a [0, 1) Beta 0.95 0.02 0.97 [0.96, 0.99] 1.00
ψ2,a (−1, 1) Uniform -1.0 1.00 -0.03 [-0.15, 0.09] -0.06 [-0.19, 0.05]
σa IR+ InvGamma 0.01 4.00 .007 [.006, .008] .007 [.006, .008]
γv IR Normal 0.00 0.10 .008 [.007, .008] .007 [.005, .009]
ψ1,v [0, 1) Beta 0.95 0.02 0.99 [0.99, 1.00] 1.00
ψ2,v (−1, 1) Uniform -1.0 1.00 -0.76 [-0.84, -0.69] -0.81 [-0.90, -0.73]
σv IR+ InvGamma 0.01 4.00 .003 [.003, .004] .003 [.003, .004]
lnA0 IR Normal 0.00 100 4.84 [4.74, 4.95] -2.66 [-97.4, 76.5]
lnV0 IR Normal 0.00 100 -0.14 [-0.24, -0.06] -0.85 [-79.9, 86.1]

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,
and Normal distributions; the upper and lower bound of the support for the Uniform distri-
bution; and s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.

The last four columns contain posterior means and 90% credible intervals. To estimate the
stochastic trend version of the model, we set ψ1,a = ψ1,v = 1.
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Table A-2: Posterior Estimates for Benchmark Specification

Series Y/H, H, P
Shocks A, V, B
Unit Root No
α 0.361 [0.326, 0.395]
ν 0.852 [0.344, 1.326]
γa -0.002 [-0.004, 0.000]
ψ1,a 0.983 [0.973, 0.993]
ψ2,a -0.103 [-0.242, 0.038]
σa 0.007 [0.007, 0.008]
γv 0.007 [0.007, 0.008]
ψ1,v 0.990 [0.986, 0.993]
ψ2,v -0.714 [-0.796, -0.632]
σv 0.003 [0.003, 0.004]
ρb 0.968 [0.952, 0.986]
σb 0.012 [0.010, 0.014]
lnH∗ -0.037 [-0.072, -0.004]
lnY0 9.137 [8.628, 9.692]
lnV0 -0.095 [-0.153, -0.037]

Note: The following parameters are fixed during the estimation: β = 0.99 and δ0 = 0.013.
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Table A-3: Posterior Estimates for Highest Posterior Probability Specifications

Series Y/H, H, P Y/H, H, X Y/H, H, P, X
Shocks A, V, G A, V, B, G A, V, B, G
Unit Root Yes Yes No
α 0.340 [0.306, 0.374] 0.323 [0.292, 0.353] 0.391 [0.381, 0.402]
ν 0.419 [0.168, 0.643] 0.964 [0.328, 1.539] 0.170 [0.048, 0.284]
γa 0.000 [-0.001, 0.001] 0.000 [-0.001, 0.001] -0.001 [-0.001, -0.001]
ψ1,a 1.000 1.000 0.950 [0.931, 0.968]
ψ2,a -0.020 [-0.148, 0.120] -0.006 [-0.089, 0.073] -0.088 [-0.203, 0.029]
σa 0.007 [0.006, 0.008] 0.007 [0.007, 0.008] 0.007 [0.007, 0.008]
γv 0.007 [0.006, 0.008] 0.007 [0.006, 0.008] 0.008 [0.007, 0.008]
ψ1,v 1.000 1.000 0.991 [0.988, 0.994]
ψ2,v -0.694 [-0.769, -0.620] -0.059 [-0.140, 0.025] -0.646 [-0.722, -0.570]
σv 0.003 [0.003, 0.004] 0.007 [0.006, 0.008] 0.003 [0.003, 0.004]
ρb 0.967 [0.951, 0.983] 0.953 [0.935, 0.970]
σb 0.011 [0.009, 0.013] 0.009 [0.008, 0.010]
ρg 0.962 [0.944, 0.982] 0.972 [0.952, 0.993] 0.963 [0.949, 0.978]
σg 0.038 [0.021, 0.056] 0.004 [0.003, 0.006] 0.010 [0.008, 0.011]
lnH∗ -0.028 [-0.067, 0.009] -0.024 [-0.064, 0.012] -0.027 [-0.049, -0.004]
lnY0 -32.284 [-49.319, -17.905] 8.377 [4.489, 12.753] 8.627 [8.548, 8.704]
lnV0 27.552 [17.036, 41.493] -0.044 [-3.062, 2.724] -0.148 [-0.229, -0.066]

Note: The following parameters are fixed during the estimation: β = 0.99, δ0 = 0.013, and
g∗ = 1.2 (in models with G-shock).


