Wendy Wong
July 3, 2006
Physics 590
Dr. Larry Gladney \& Bill Berner
Week 1, Homework 2
1.2.1

Assumptions \& Parameters:
My measuring tool, a 12" ruler, is accurate
I should have used a different method.

- Measurements are rounded to the nearest whole centimeter

| Body Part | $\begin{gathered} \text { Dimensions } \\ (\mathrm{cm}) \end{gathered}$ | Formula \& Thinking | Volume $\left(\mathrm{cm}^{3}\right)$ |
| :---: | :---: | :---: | :---: |
| Head Including ears | $\mathrm{r}=7$ | $\begin{aligned} & \mathrm{V}_{\text {sphere }}=4 / 3 \cdot \pi \cdot \mathrm{r}^{3} \\ & \mathrm{~V}_{\text {sphere }}=4 / 3 \cdot \pi \cdot 7^{3} \end{aligned}$ | 1,436.76 |
| Arms <br> From wrist to shoulder | $\begin{gathered} \mathrm{r}=3 \\ \mathrm{~h}=46 \end{gathered}$ | $\begin{aligned} \mathrm{V}_{\text {cylinder }}= & 4 / 3 \cdot \pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h} \\ \mathrm{~V}_{\text {cylinder }} & =4 / 3 \cdot \pi \cdot 7^{2} . \\ & 46 \end{aligned}$ | 2,601.24 |
| Hands <br> Both together, forming a rough rectangular prism | $\begin{aligned} & \mathrm{l}=16 \\ & \mathrm{w}=3 \\ & \mathrm{~h}=5 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\text {rectangle }}=1 \cdot \mathrm{w} \cdot \mathrm{~h} \\ & \mathrm{~V}_{\text {rectangle }}=16 \cdot 3 \cdot 5 \end{aligned}$ | 240 |
| Body <br> From shoulder to lower hip | $\begin{gathered} \mathrm{l}=32 \\ \mathrm{w}=13 \\ \mathrm{~h}=47 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\text {rectangle }}=1 \cdot \mathrm{w} \cdot \mathrm{~h} \\ \mathrm{~V}_{\text {rectangle }}=32 \cdot 13 \cdot 47 \end{gathered}$ | 19,552 |
| Legs From lower hip to ankle | $\begin{gathered} r=6 \\ h=66 \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\text {cylinder }}=4 / 3 \cdot \pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h} \\ & \mathrm{~V}_{\text {cylinder }}=4 / 3 \cdot \pi \cdot 6^{2} . \\ & 66 \end{aligned}$ | 7,464.42 |
| Feet <br> Both together, forming a rough rectangular prism | $\begin{aligned} & 1=20 \\ & w=7 \\ & h=9 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\text {rectangle }}=1 \cdot \mathrm{w} \cdot \mathrm{~h} \\ & \mathrm{~V}_{\text {rectangle }}=20 \cdot 7 \cdot 9 \end{aligned}$ | 1,260 |
| Estimate of the volume of my body: $32,554.42 \mathrm{~cm}^{3}$ |  |  |  |

The volume of my body is about $3.6 \times 10^{4} \mathrm{~cm}^{3}$.

### 1.2.2

Assumptions \& Parameters:

- My measuring tool, a tape measurer, is accurate
- Measurements are rounded to the nearest whole foot
- Emptying the bag of grass is included in the estimated time: it takes my friend, Heather, about 25 minutes to mow her backyard that is $30 \times 60^{\prime}$, or 1800 sq ft
- An American football field is 360 'x 160', including end zones and from one coaching box to the opposite coaching box

| Area | Dimensions <br> (ft) | Area <br> (ft ${ }^{2}$ ) | Estimated Time to Mow | Estimated Area mowed per minute (ft ${ }^{2}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| Backyard | $30 \times 60$ | 1,800 | 25 minutes | 72 |
| Football Field | $160 \times 360$ | 57,600 | 800 minutes or 13 hours and 20 minutes | 72 |

It would take about $\mathbf{1 3}$ hours for a person to mow a football field using an ordinary home lawn mower.

Assumptions \& Parameters:

- There are 1.1 million households
This is an inaccurate
- Tread's depth is 1 cm
- The 1-cm tread wears away after 50,000 miles or in about 5 years
- All tires wear at the same rate or 1 cm in 5 years
- Each year, all tires wear $1 / 5 \mathrm{~cm}$
- Average tire that Americans own are like my Corolla: 29 cm in diameter and 15 cm wide.
- Space between the treads are not accounted for
- Rubber that is worn on roads such as screech marks are not accounted for

| Finding length of tire when flattened | Finding volume of tread of 1 tire | Finding the mass of the tread of 1 tire |
| :---: | :---: | :---: |
| $\mathrm{D}=29 \mathrm{~cm}-2 \mathrm{~cm}$ (tread on each side, one end to opposite end) $\begin{aligned} & \mathrm{C}=\pi \mathrm{d} \\ & \mathrm{C}=\pi 27 \end{aligned}$ <br> C $=84.82 \mathrm{~cm}=$ length of rubber when flattened | $\begin{aligned} & \hline \mathrm{L}=\mathrm{C}=84.82 \mathrm{~cm} \\ & \mathrm{~W}=15 \mathrm{~cm} \\ & \mathrm{H}=\text { thread depth }=1 \mathrm{~cm} \\ & \mathrm{~V}_{\text {rectangle }}=1 \cdot \mathrm{~W} \cdot \mathrm{~h} \\ & \mathrm{~V}_{\text {rectangle }}=84.82 \times 15 \times 1 \\ & \mathrm{~V}_{\text {rectangle }}=1,272.34 \mathrm{~cm}^{3} \\ & \mathrm{~V}_{\text {rectangle }}=0.8482 \times 0.15 \times 0.01 \\ & \mathrm{~m} \\ & \mathrm{~V}_{\text {rectangle }}=1.2723 \times 10^{-3} \mathrm{~m}^{3} \end{aligned}$ <br> In 1 year, tire wears $1 / 5$ of $1.2723 \times 10^{-3} \mathrm{~m}^{3}$ | $\begin{aligned} & \mathrm{D}=\mathrm{m} / \mathrm{v} \\ & \mathrm{D}_{\text {rubber }}=1200 \mathrm{~kg} / \mathrm{m}^{3} \\ & \mathrm{D}_{\text {rubber }}=1200 \mathrm{~kg} / 1 \mathrm{~m}^{3} \\ & \frac{1200 \mathrm{~kg}}{1 \mathrm{~m}^{3}}=\frac{\mathrm{kg}}{1.2723 \times 10^{-3} \mathrm{~m}^{3}}= \\ & \frac{(1200 \mathrm{~kg})\left(1.2723 \times 10^{-3} \mathrm{~m}^{3}\right)}{1 \mathrm{~m}^{3}}= \end{aligned}$ <br> 1.52676 kg of tread per tire |

Every 5 years, the amount of tire worn is:
$\left(1.1 \times 10^{6}\right.$ households $) \times(2 \mathrm{cars} /$ household $) \times(4$ tires / car $) \times(1.52676 \mathrm{~kg}$ tread $/$ tire $)=13,435,488 \mathrm{~kg}$ of tread
Each year, the amount of rubber worn is:
$1 / 5$ of $13,435,488 \mathrm{~kg}$ of tread $\rightarrow 13,435,488 \mathrm{~kg} \div 5=2,687,097.6 \mathrm{~kg}$
About $2.687 \times 10^{6} \mathrm{~kg}$ of rubber is put into the air in the United States every year.

My calculations were incorrect because of one minor error in notation.

### 1.2.4

Assumptions \& Parameters:

- The density of a rock is $3 \mathrm{~kg} / \mathrm{l}$ or $3 \mathrm{~kg} / 1000 \mathrm{~cm}^{3}$
- The density of aluminum is $2.70 \mathrm{~g} / \mathrm{ml}$
- The density of gold is $19.3 \mathrm{~g} / \mathrm{ml}$
- $D=m / v$
- 1 ton is equivalent to about 907.18 kg
$\begin{array}{rlll}\mathrm{D}_{\text {Rock }}=\frac{3 \mathrm{~kg}}{1}= & \frac{3 \mathrm{~kg}}{1000 \mathrm{~cm}^{3}} & =\frac{0.003 \mathrm{~kg}}{\mathrm{~cm}^{3}} \\ & \frac{0.003 \mathrm{~kg}}{\mathrm{~cm}^{3}} & X \quad \frac{1 \mathrm{Ton}}{907.18 \mathrm{~kg}}=3.306951211 \times 10^{-6} \mathrm{~T} / \mathrm{cm}^{3}\end{array}$

$$
\begin{aligned}
\frac{3.306951211 \times 10^{-6} \mathrm{~T}}{\mathrm{~cm}^{3}} & =\frac{1 \mathrm{~T} .}{\mathrm{X} \mathrm{~cm}^{3}} \\
\mathrm{X} & =302,393.3334 \mathrm{~cm}^{3}
\end{aligned}
$$

$\mathrm{V}_{\text {sphere }}=4 / 3 \cdot \pi \cdot \mathrm{r}^{3}$
$\mathrm{r}^{3}=\mathrm{V} /(4 / 3 \cdot \pi)$
$\mathrm{r}^{3}=302,393.3334 \mathrm{~cm}^{3} /(4 / 3 \cdot \pi)$
$\mathrm{r}^{3}=72,191.09065 \mathrm{~cm}^{3}$
$\mathrm{r}=41.63844808 \mathrm{~cm}$

## The volume of a rock that weighs one ton is about $3 \times 10^{5} \mathrm{~cm}^{3}$ with a radius of about $4 \times 10^{1} \mathrm{~cm}$.

### 1.2.5

Assumptions \& Parameters:

- The universe is now 13.7 billion years old
- The universe has been expanding constantly at the speed of light, $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- The radius of the universe is $13.7 \times 10^{9}$ light years now

Speed of light $=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \times 3600 \mathrm{~s} /$ hour x 24 hours/day x 365 days/year $=9.4544928 \times 10^{15} \mathrm{~m} /$ year Speed of light $=9.4544928 \times 10^{15} \mathrm{~m} /$ year

Light travels in 13.7 billion years:
$9.4544928 \times 10^{15} \mathrm{~m}$ /year $\times 13.7$ billion years $=1.295265514 \times 10^{26} \mathrm{~m}$
Therefore, the universe's radius is $1.295265514 \times 10^{26} \mathrm{~m}$.
(If the universe is assumed to be 10 billion years old, then $9.4544928 \times 10^{15} \mathrm{~m} / \mathrm{year} \times 10$ billion years $=9.4544928 \times 10^{25} \mathrm{~m}$; and the universe's radius is $9.4544928 \times 10^{25} \mathrm{~m}$. In this case, the volume of the universe would be $3.540000437 \times 10^{78} \mathrm{~m}^{3}$ or $3.540 \times$ $10^{78} \mathrm{~m}^{3}$.)

Finding the volume of the universe:

$$
\begin{aligned}
& \mathrm{V}_{\text {sphere }}=4 / 3 \cdot \pi \cdot \mathrm{r}^{3} \\
& \mathrm{~V}_{\text {sphere }}=4 / 3 \cdot \pi \cdot\left(1.295265514 \times 10^{26} \mathrm{~m}\right)^{3} \\
& \mathrm{~V}_{\text {sphere }}=9.110807615 \times 10^{78} \mathrm{~m}^{3} \\
& \mathrm{~V}_{\text {sphere }}=9.111 \times 10^{78} \mathrm{~m}^{3}
\end{aligned}
$$

The volume of the universe is about $9.111 \times 10^{78} \mathrm{~m}^{3}$.

