1.2.1

Assumptions & Parameters:

• My measuring tool, a 12" ruler, is accurate

• *Measurements are rounded to the nearest whole centimeter*

Body Part	Dimensions (cm)	Formula & Thinking	Volume (cm ³)		
Head Including ears	r = 7	$V_{\text{sphere}} = 4/3 \cdot \pi \cdot r^3$ $V_{\text{sphere}} = 4/3 \cdot \pi \cdot 7^3$	1,436.76		
Arms From wrist to shoulder	r = 3 h = 46	$V_{\text{cylinder}} = 4/3 \cdot \pi \cdot r^2 \cdot h$ $V_{\text{cylinder}} = 4/3 \cdot \pi \cdot 7^2 \cdot 46$	2,601.24		
Hands Both together, forming a rough rectangular prism	1 = 16 w = 3 h = 5	$V_{\text{rectangle}} = \mathbf{l} \cdot \mathbf{w} \cdot \mathbf{h}$ $V_{\text{rectangle}} = 16 \cdot 3 \cdot 5$	240		
Body From shoulder to lower hip	1 = 32 w = 13 h = 47	$V_{\text{rectangle}} = 1 \cdot \mathbf{w} \cdot \mathbf{h}$ $V_{\text{rectangle}} = 32 \cdot 13 \cdot 47$	19,552		
Legs From lower hip to ankle	r = 6 h = 66	$V_{\text{cylinder}} = 4/3 \cdot \pi \cdot r^2 \cdot h$ $V_{\text{cylinder}} = 4/3 \cdot \pi \cdot 6^2 \cdot 66$	7,464.42		
Feet Both together, forming a rough rectangular prism	1 = 20 w = 7 h = 9	$V_{\text{rectangle}} = 1 \cdot w \cdot h$ $V_{\text{rectangle}} = 20 \cdot 7 \cdot 9$	1,260		
Estimate of the volume of my body: 32,554.42 cm ³					
The volume of my body is about 3.6 x 10 ⁴ cm ³ .					

I should have

method.

used a different

1.2.2

Assumptions & Parameters:

- ♦ *My* measuring tool, a tape measurer, is accurate
- Measurements are rounded to the nearest whole foot
- Emptying the bag of grass is included in the estimated time: it takes my friend, Heather, about 25 minutes to mow her backyard that is 30 x 60', or 1800 sq ft
- An American football field is 360' x 160', including end zones and from one coaching box to the opposite coaching box

Area	Dimensions (ft)	Area (ft ²)	Estimated Time to Mow	Estimated Area mowed per minute (ft ²)
Backyard	30 x 60	1,800	25 minutes	72
Football Field	160 x 360	57,600	800 minutes or 13 hours and 20 minutes	72

It would take about 13 hours for a person to mow a football field using an ordinary home lawn mower.

1.2.3

Assumptions & Parameters:

- *There are 1.1 million households There are 2 cars per American household*
 - Tread's depth is 1 cm
 - The 1-cm tread wears away after 50,000 miles or in about 5 years
 - All tires wear at the same rate or 1 cm in 5 years
 - Each year, all tires wear 1/5 cm
 - Average tire that Americans own are like my Corolla: 29 cm in diameter and 15 cm wide.
 - Space between the treads are not accounted for
 - Rubber that is worn on roads such as screech marks are not accounted for

Finding length of tire when flattened	Finding volume of tread of 1 tire	Finding the mass of the tread of 1 tire
D = 29 cm - 2 cm (tread on each	L = C = 84.82 cm	D = m/v
side, one end to opposite end)	W = 15 cm	$D_{rubber} = 1200 \text{ kg/m}^3$
$C = \pi d$	H = thread depth = 1 cm	2
$C = \pi 27$		$D_{rubber} = 1200 \text{ kg} / 1\text{m}^3$
C = 84.82 cm = length of rubber	$V_{\text{rectangle}} = 1 \cdot W \cdot h$	
when flattened	$V_{\text{rectangle}} = 84.82 \text{ x } 15 \text{ x } 1$	$\frac{1200 \text{kg}}{1 \text{ m}^3} = \frac{\text{kg}}{1.2723 \text{ x } 10^{-3} \text{ m}^3} =$
	$V_{rectangle} = 1,272.34 \text{ cm}^3$	1 m^3 $1.2/23 \times 10^{-5} \text{ m}^3$
	$V_{rectangle} = 0.8482 \text{ x } 0.15 \text{ x } 0.01$ m $V_{rectangle} = 1.2723 \text{ x } 10^{-3} \text{ m}^{3}$	$\frac{(1200 \text{ kg})(1.2723 \text{ x } 10^{-3} \text{ m}^3)}{1 \text{ m}^3} =$
	v rectangle 1.2725 X 10 III	1.52676 kg of tread per tire
	In 1 year, tire wears $1/5$ of $1.2723 \times 10^{-3} \text{ m}^3$	

Every <u>5 years</u>, the amount of tire worn is:

 (1.1×10^6) households) x (2 cars / household) x (4 tires / car) x (1.52676 kg tread / tire) = 13,435,488 kg of tread

Each year, the amount of rubber worn is: 1/5 of 13,435,488 kg of tread \rightarrow 13,435,488 kg \div 5 = 2,687,097.6 kg My calculations were incorrect because of one minor error in notation.

About 2.687 x 10^6 kg of rubber is put into the air in the United States every year.

1.2.4

Assumptions & Parameters:

- The density of a rock is 3 kg/l or 3 kg/1000 cm^3
- The density of aluminum is 2.70 g/ml
- The density of gold is 19.3 g/ml
- D = m/v
- ♦ 1 ton is equivalent to about 907.18 kg

$$D_{\text{Rock}} = \frac{3 \text{ kg}}{1} = \frac{3 \text{ kg}}{1000 \text{ cm}^3} = \frac{0.003 \text{ kg}}{\text{ cm}^3}$$
$$\frac{0.003 \text{ kg}}{\text{ cm}^3} \qquad X \qquad \frac{1 \text{ Ton}}{907.18 \text{ kg}} = 3.306951211 \text{ x } 10^{-6} \text{ T/cm}^3$$

$$\frac{3.306951211 \times 10^{-6} \text{ T}}{\text{cm}^3} = \frac{1 \text{ T}}{\text{X cm}^3}$$

X =
$$302,393.3334 \text{ cm}^3$$

$$V_{sphere} = 4/3 \cdot \pi \cdot r^{3}$$

$$r^{3} = V / (4/3 \cdot \pi)$$

$$r^{3} = 302,393.3334 \text{ cm}^{3} / (4/3 \cdot \pi)$$

$$r^{3} = 72,191.09065 \text{ cm}^{3}$$

$$r = 41.63844808 \text{ cm}$$

The volume of a rock that weighs one ton is about 3×10^5 cm³ with a radius of about 4×10^1 cm.

1.2.5

Assumptions & Parameters:

- The universe is now 13.7 billion years old
- The universe has been expanding constantly at the speed of light, 2.998 x 10^8 m/s
- The radius of the universe is 13.7×10^9 light years now

Speed of light = $2.998 \times 10^8 \text{ m/s}$

 2.998×10^8 m/s x 3600 s /hour x 24 hours/day x 365 days/year = 9.4544928×10^{15} m/year Speed of light = 9.4544928×10^{15} m/year

Light travels in 13.7 billion years: 9.4544928 x 10^{15} m/year x 13.7 billion years = 1.295265514 x 10^{26} m Therefore, the universe's radius is 1.295265514 x 10^{26} m.

(If the universe is assumed to be 10 billion years old, then $9.4544928 \ge 10^{15}$ m/year ≥ 10 billion years $= 9.4544928 \ge 10^{25}$ m; and the universe's radius is $9.4544928 \ge 10^{25}$ m. In this case, the volume of the universe would be $3.540000437 \ge 10^{78}$ m³ or $3.540 \ge 10^{78}$ m³.)

Finding the volume of the universe: $V_{sphere} = 4/3 \cdot \pi \cdot r^3$ $V_{sphere} = 4/3 \cdot \pi \cdot (1.295265514 \text{ x } 10^{26} \text{ m})^3$ $V_{sphere} = 9.110807615 \text{ x } 10^{78} \text{ m}^3$ $V_{sphere} = 9.111 \text{ x } 10^{78} \text{ m}^3$

The volume of the universe is about 9.111 x 10⁷⁸ m³.