Penn Arts & Sciences Logo

Characterization of a Cerium-rich pyrochlore-based ceramic nuclear waste form

Authors: 
Gieré R., Segvich S., Buck E.C.
Year: 
2 003
Source: 
Materials Research Society, Symposium Proceedings
Abstract: 
Titanate ceramics have been proposed as candidate materials for immobilizing excess weapons plutonium. This study focuses on the characterization of a titanate-based ceramic through X-ray diffraction (XRD), electron probe microanalysis, and electron energy-loss spectroscopy (EELS). Three distinct phases have been identified, and their volume fraction was determined from element distribution maps using Scionimage-NIH Analysis software. This analysis revealed that the pyrochlore-group phase betafite (A2Ti2O7) forms the matrix of the ceramic and occupies 90.4% of the volume. Uniformly distributed in this matrix are perovskite (A2Ti2O6) and Hf-enriched rutile (TiO2), which account for 6.4 vol% and 3.1 vol%, respectively. The studied ceramic exhibits a very low porosity (0.3 vol%), which is characterized by small (<6 μm), rounded and isolated voids. In the studied ceramic, A-site cations are represented by Ca, rare earth elements, and Hf. The powder XRD pattern of the ceramic allowed refining the unit cell parameters for the cubic betafite, which is characterized by a cell edge of 10.132±0.003Å. The EELS data indicate that Ce is present as both Ce3+ and Ce4+ in betafite, whereas in perovskite, all Ce is trivalent.
EES Authors: 
Reto Gieré

Department of Earth and Environmental Science / University of Pennsylvania, 251 Hayden Hall, 240 South 33rd Street, Philadelphia, PA 19104-6316