Penn Arts & Sciences Logo

Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments

Guéguen F., Stille P., Dietze V., Gieré R.
2 012
Atmospheric Environment
Passive air samplers have been installed in industrial, urban, rural and remote forested environments in order to collect coarse airborne particles for subsequent chemical characterization. To identify principal polluting sources, isotopic tracers, such as Sr, Nd and Pb isotopic ratios, have been used. The mass deposition rates (MDRs) of trace metals, determined for each of the studied environments, clearly indicate that industrial and traffic sites are especially affected by air pollution. Elements such as V, Pb, Fe, Cr, Co, Mo, Cd, Ni, As, Sb and Zn are notably enriched in samples from industrial zones, whereas V, Mn, Ba, Sr, Al, U, Th, rare earth elements (REE), Zr, Y, Cs, Rb, Sb, Sn and Cu are principal components of the airborne particles collected close to areas influenced by heavy traffic. The chemical/isotopic baseline composition derived from the airborne particles is the result of mixing of particles from different industrial sources, traffic and fertilizers. The monthly analysis of trace-metal MDRs of the collected airborne particle samples from different stations around the industrial zone allows for the detection of distinct atmospheric dust-deposition events during the year, characterized by high MDRs. “Natural” dusts from regional soil re-suspension, including from more distant regions like the Sahara desert, might overprint the regional atmospheric baseline composition, as suggested by trace metal trajectories in ternary diagrams and by Sr, Nd and Pb isotope data.
EES Authors: 
Reto Gieré
Research Track Category: 

Department of Earth and Environmental Science / University of Pennsylvania, 251 Hayden Hall, 240 South 33rd Street, Philadelphia, PA 19104-6316