Modeling Spin-Forbidden Monomer Self-Initiation Reactions in Spontaneous Free-Radical Polymerization of Acrylates and Methacrylates

Shi Liu,† Sriraj Srinivasan,‡ Jianmin Tao,† Michael C. Grady,§ Masoud Soroush,∥ and Andrew M. Rappe*,†
†The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
‡Arkema Inc., 900 First Avenue, King of Prussia, Pennsylvania 19406, United States
§DuPont Experimental Station, Wilmington, Delaware 19898, United States
∥Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States

ABSTRACT: A spin-forbidden reaction is a reaction in which the total electronic spin-state changes. The standard transition-state theory that assumes a reaction occurs on a single potential energy surface with spin-conservation cannot be applied to a spin-forbidden reaction directly. In this work, we derive the crossing coefficient based on the Wentzel−Kramers−Brillouin (WKB) theory to quantify the effect of intersystem crossing on the kinetics of spin-forbidden reactions. Acrylates and methacrylates, by themselves, can generate free radicals that initiate polymerization at temperatures above 120 °C. Previous studies suggest that a triplet diradical is a key intermediate in the self-initiation. The formation of a triplet diradical from two closed-shell monomer molecules is a spin-forbidden reaction. This study provides a quantitative analysis of singlet−triplet spin crossover of diradical species in self-initiation of acrylates and methacrylates, taking into account the effect of intersystem crossing. The concept of crossing control is introduced and demonstrated computationally to be a new likely route to generate monoradicals via monomer self-initiation in high temperature polymerization.

1. INTRODUCTION

The standard transition-state theory has played a paradigmatic role in understanding chemical reactions quantitatively.1 Based on the Born−Oppenheimer approximation, standard transition-state theory assumes that a transformation proceeds on a single potential energy surface (PES). However, many chemical transformations occur with a change of spin-state involving more than one PES.2−4 These reactions are “spin-forbidden” because they are formally forbidden in nonrelativistic quantum mechanics. Intersystem crossing refers to the nonadiabatic transition between two electronic states of different multiplicity.2 The spin−orbit coupling (SOC), the coupling between the spin angular momentum and its orbital angular momentum, originates from the interactions between the magnetic dipole moment of the electron and the magnetic field associated with the orbital motion of the electron in the electrostatic field of a nucleus,5 and it gives the mechanism for hopping from one PES to another.6 Spin-forbidden reactions are common for organometallic reactions because of the degeneracy (or near degeneracy) of d orbitals of the transition metal giving rise to close-lying states with different spin-states.7,8

Previous theoretical and experimental studies9−13 on the spontaneous free-radical polymerization of acrylates revealed that acrylate monomers can self-initiate at high temperatures, opening a new route for designing initiator-free polymerization processes. It was proposed (Figure 1) that two acrylate (methacrylate) monomers dimerize in a [2 + 2] nonconcerted cycloaddition reaction to form a singlet diradical. The singlet diradical passes to a triplet state nonradiatively, producing a triplet diradical that is energetically more stable. A third acrylate (methacrylate) monomer then abstracts a hydrogen atom from the triplet diradical and two monoradicals are formed.12 A methacrylate singlet diradical can also transfer a hydrogen atom to a third monomer to form two monoradicals.9−12 However, a quantitative description of the singlet−triplet crossover, which influences the rate of self-initiation, is not yet available. Previous quantum chemistry calculations showed that the energy barrier of the [2 + 2] cycloaddition reaction of acrylates estimated by B3LYP is about 45 kJ/mol higher than that obtained with MP2 using various basis sets.10 Such a large discrepancy of the energy barriers predicted by density functional theory (DFT) and a many-body wavefunction-based method is an indication...
of the complicated electronic structure of the diradical intermediates14,15 involved in the monomer self-initiation reactions. In this study, we carried out a benchmark study to evaluate the performance of various density functionals on self-initiation reactions. In addition, the production of a triplet diradical from two singlet monomers is a spin-forbidden reaction requiring the change of spin-state. Standard transition-state theory that assumes the reaction occurs on a single PES with spin-conservation, however, cannot be directly applied to spin-forbidden reactions. This article aims to provide a quantitative description of the monomer self-initiation reaction within the framework of nonadiabatic transition-state theory (NA-TST)18 with full consideration of the effect of intersystem crossing.

The rest of the paper is organized as follows. The derivation of intersystem crossing coefficient within the framework of nonadiabatic transition-state theory is described in Section 2. Section 3 presents the results and discussions. Finally, conclusions are made in Section 4.

2. THEORY AND COMPUTATIONAL METHODS

2.1. Crossing Coefficient in Nonadiabatic Transition-State Theory. In a spin-forbidden reaction involving \(N\) atoms, the crossing points between two PESs of different multiplicity form a hypersurface with \(3N - 7\) dimensions. The minimum energy crossing point (MECP) is the point with the lowest energy at the crossing hypersurface. The rate coefficient at a given temperature, \(k(T)\), is computed based on statistical rate theory19 using the following equation:

\[
k(T) = \frac{1}{\hbar Q_b(T)} \int_0^\infty G_{\text{MECP}}(E) e^{-E/k_b T} dE
\]

where \(\hbar\) is Planck’s constant, \(k_b\) is Boltzmann’s constant, \(Q_b(T)\) is the partition function of the reactants, and \(G_{\text{MECP}}(E)\) is the crossing-probability-weighted density of states at the MECP for a given \(E\) relative to the zero-point of the reactants. \(G_{\text{MECP}}(E)\) can be estimated with

\[
G_{\text{MECP}}(E) = \int_0^E P(\epsilon_h) N_{\text{MECP}}(E - \epsilon_h) d\epsilon_h
\]

where \(P(\epsilon_h)\) is the crossing probability with energy \(\epsilon_h\) along the direction of hopping, and \(N_{\text{MECP}}(E - \epsilon_h)\) is the density of states at the MECP with the remaining energy \(E - \epsilon_h\). Therefore, \(G_{\text{MECP}}(E)\) is simply a semiclassical representation of the number of ways to distribute total energy \(E\) between the hopping degree of freedom and the rest of the rotational and vibrational degrees of freedom weighted by the hopping probability. The crossing probability \(P(\epsilon_h)\) can be calculated using either the double-passage Landau–Zener (L-Z) formula19–21 or the Wentzel–Kramers–Brillouin (WKB) theory.18,22,23 The double-passage L-Z formula for the crossing probability is given by

\[
p_{L-Z}(\epsilon_h) = 2 \left[1 - \exp \left(-\frac{\pi \beta}{4\sqrt{E}}\right)\right]
\]

while the WKB theory gives the crossing probability as

\[
p_{\text{WKB}}(\epsilon_h) = \pi^2 \beta^{1/3} \Delta F(\epsilon, -\epsilon)^{3/2}
\]

where

\[
\Delta F = |F_1 - F_2|, \quad F = |F_1 F_2|^2
\]

\(A_i\) is the Airy function, \(E_i\) is the crossing energy, \(\mu\) is the reduced mass orthagonal to the seam of crossing, and \(F_1\) and \(F_2\) are the gradients of PESs with different multiplicity at the MECP. \(H_{ij}\) is the spin–orbit coupling matrix element \(\langle \Psi_i | H_{SO} | \Psi_j \rangle\), in which \(H_{SO}\) is the two-electron Breit–Pauli spin–orbit operator.24–27 The factor of 2 in the L-Z formula in eq 3 takes into account the transition events that occur via both a single passage and a double passage (not crossing on the first passage but crossing during the second passage) through the crossing region:

\[
p_{L-Z}(\epsilon_h) = (1 - p_{L-Z}) + p_{L-Z}(1 - p_{L-Z})
\]

where

\[
p_{L-Z} \ll 1
\]

\[
p_{L-Z} = \exp \left(-\frac{\pi \beta}{4\sqrt{E}}\right) = \exp \left(-\frac{2\pi h_{12}^2}{\Delta F h \sqrt{\frac{\Delta E}{\mu}}\sqrt{2\epsilon_h}}\right)
\]

\(p_{L-Z}\), as illustrated in Figure 1b, is the Landau–Zener probability of hopping from one adiabatic state to another adiabatic state (in other words, remaining in the initial diabatic state), and \((1 - p_{L-Z})\) is the hopping probability from one diabatic state to the other diabatic state. However, the L-Z formula fails to account for the crossing at energies below \(\epsilon_h\), because \(\epsilon_h\) must be larger than \(E_i\) in order to apply eqs 3 and 5. The WKB theory, on the other hand, considers the crossing below \(E_i\) via the use of the Airy function. Since the crossing barrier is high compared to \(k_b T\), most crossings occur in this system for \(\epsilon_h < E_i\). Therefore we apply eq 4 based on the WKB theory to quantify the crossing probability.

Using eqs 1 and 2, and the property of the Laplace transform...
\[\mathcal{L}\{f^E_1(x)f^E_1(E-x) \ dx\} = \mathcal{L}\{f^E_1(x)\} \mathcal{L}\{f^E_2(x)\} = f_1(s)f_2(s) \]

we obtain

\[k(T) = \frac{p(T)Q_{MECP}(T)}{h} \frac{Q_R(T)}{Q_R(T)} e^{-E_f/kT} \]

where \(P(T) \) is the Laplace transform of \(P_{1}(E_0) \) and \(Q_{MECP}(T) \) is the partition function of the MECP \((s = 1/k_\text{B}T \text{ is used in the Laplace transform). Based on the WKB theory, we can approximate the rate constant (see detailed derivations in the Supporting Information) with \]

\[k(T) = \Gamma(T) \frac{k_B T}{h} \frac{Q_{MECP}(T)}{Q_R(T)} e^{-E_f/kT} \]

where the crossing coefficient, \(\Gamma(T) \), is given by

\[\Gamma(T) = \frac{\alpha^{3/2}\beta}{2\sqrt{\epsilon_0/(k_\text{B}T)}} \left[1 + \frac{1}{2} \exp \left(\frac{1}{12\beta^2 (k_\text{B}T\epsilon_0)^{3/2}} \right) \right] \]

Recall the microscopic rate constant derived in the standard transition-state theory with tunneling corrections\(^{18,28} \)

\[k^{\text{TST}}(T) = \kappa(T) \frac{k_B T}{h} \frac{Q_{TS}(T)}{Q_R(T)} e^{-E_f/kT} \]

where \(\kappa(T) \) is the tunneling coefficient, \(Q_{TS} \) is the partition function of the transition state, and \(E_f \) is the energy barrier. We note that eq 7 is analogous to eq 9, and therefore the MECP in a spin-forbidden reaction can be considered as the "transition state": the barrier is given by the crossing energy and the nonclassical effect that comes from internuclear crossing is incorporated in the crossing coefficient.

2.2. Computational Methods.

We carried out a benchmark study to determine cost-effective density functionals for the study of monomer self-initiation reactions. Three composite procedures, CBS-QB3,\(^{29,30} \) G3(MP2)-RAD,\(^{31} \) and G4(MP2)-6X\(^{32-34} \) are used to investigate three different cycloaddition reactions listed in Figure 2. These composite quantum chemistry methods combine high-level theory (coupled cluster) with relatively small basis sets (e.g., CCSD(T)/6-31G* in G4(MP2)-6X) and low-level theory (Hartree–Fock) with complete basis sets (CBS). The composite procedures are performed with Gaussian 09 program package.\(^{35} \) A wide variety of density functionals, B3LYP,\(^{36-38} \) PBE0,\(^{39} \) BMK,\(^{40} \) TPSS,\(^{41} \) TPSSh,\(^{42} \) revTPSS,\(^{43} \) M06-L,\(^{44} \) M06, M06-2X,\(^{45} \) and oB97x-D,\(^{46} \) and three different basis sets, 6-31G*, 6-311G**, and 6-31+G(2df,p), are used to calculate the same energy barriers. These energy barrier values are then compared with those obtained using the composite procedures. DFT calculations are carried out with GAMESS.\(^{37} \) Restricted-open-shell Hartree–Fock (ROHF) wavefunctions are used in this study over unrestricted-open-shell Hartree–Fock (UHF) wavefunctions, because previous studies have shown that UHF wavefunctions have the problem of spin contamination for radical reactions.\(^{48,49} \) Frequency calculations are performed for all the optimized stationary structures (reactants, products, and transition states). The MECPs for various monomer self-initiation reactions are identified with DFT. Spin–orbit coupling constants for these DFT-optimized MECPs are then computed using spin–orbit configuration interaction (SO–CI) method with a multiclonfigurational wavefunction of CASCF (complete active space multiconfiguration self-consistent field) type. The active space of the CASCF wavefunction is designed to have eight active electrons in eight active orbitals. We also computed the SOC constant using spin–orbit multiconfigurational quasidegenerate second-order perturbation theory (SOCQDPT2) with the same active space.\(^{50} \) Other quantities, such as \(\mu \), \(f_1 \), and \(f_2 \), are calculated by analyzing the vibrational frequencies at the MECP on both singlet and triplet states. The algorithms for the code (GLOWfreq) used for analysis can be found in cited literature.\(^{51,52} \)

3. RESULTS AND DISCUSSIONS

3.1. Benchmark Study on Cycloaddition Reactions.

Tables 1–3 present the energy barriers obtained with the composite procedures and various density functionals with three different basis sets for the [2 + 2] cycloaddition reaction of ethylene, [2 + 2] cycloaddition reaction of MA, and [2 + 4] cycloaddition reaction of MA, respectively. For each of the cycloaddition reactions, we find that the three composite methods predict similar energy barriers. It is seen from Table 1 that for the [2 + 2] cycloaddition reaction of ethylene, CBS-QB3 predicts a barrier of 196 kJ/mol, G3(MP2)-RAD 201 kJ/mol, and G4(MP2)-6X 181 kJ/mol, all agreeing reasonably well with the experimental value of 180 kJ/mol. This indicates that for the [2 + 2] cycloaddition reaction of ethylene, CBS-QB3 is in the best agreement with those predicted by DFT. Spin–orbit interaction (SO–CI) method with a multiclonfigurational wavefunction of CASCF (complete active space multiconfiguration self-consistent field) type. The active space of the CASCF wavefunction is designed to have eight active electrons in eight active orbitals. We also computed the SOC constant using spin–orbit multiconfigurational quasidegenerate second-order perturbation theory (SOCQDPT2) with the same active space. Other quantities, such as \(\mu \), \(f_1 \), and \(f_2 \), are calculated by analyzing the vibrational frequencies at the MECP on both singlet and triplet states. The algorithms for the code (GLOWfreq) used for analysis can be found in cited literature.\(^{51,52} \)

![Figure 2](image-url)

Figure 2. (a) [2 + 2] cycloaddition reaction of ethylene. (b) [2 + 2] cycloaddition reaction of methyl acrylate. (c) [2 + 4] cycloaddition reaction of methyl acrylate.
that the electronic structure of the diradical transition state of [2 + 2] cycloaddition is significantly different from the concerted pericyclic transition state of [2 + 4] cycloaddition.30,34 The [2 + 2] cycloaddition reactions of acrylates are responsible for self-initiation of the monomers. Based upon these, we select TPSS/6-31G*, TPSSh/6-31G*, and PBE0/6-31G* due to their superior performances and lower computation costs in studying the [2 + 2] cycloaddition reactions to carry out further calculations described in the next sections.

3.2. Monomer Self-Initiation of MA

We identified the MECP in the monomer self-initiation of MA using PBE0/6-31G*, TPSS/6-31G*, and TPSSh/6-31G*. T1 diagnostic reveals that the MECP optimized with PBE0/6-31G* has $T_1 = 0.017$, and the transition state for the spin-allowed [2 + 2] cycloaddition reaction has $T_1 = 0.021$, both showing large multireference character. The spin–orbit coupling matrix element H_{12} at the crossing point is computed using CASSCF wavefunctions with eight active electrons in eight active orbitals. We designed the active space by selecting four π orbitals from each acrylate molecule (π and π* orbitals from the C=C bond, and π and π* orbitals from the C=O bond). This construction allows an appropriate description of diradical intermediate (breakage of the C=C π bond and formation of the C−C σ bond) and also includes possible effects from nearby C=C groups. The optimized active space is shown in Figure 3a. The H_{12} estimated with SO−CI at the MECP optimized by PBE0/6-31G* is 0.94 cm$^{-1}$, which is close to the value (1.63 cm$^{-1}$) obtained using SO-MCQDPT2. Both methods suggest a weak spin–orbit coupling at the crossing point. The partition functions of the reactants and MECPs are constructed as products of rigid-rotor and harmonic-oscillator partition functions of the reactants and MECPs.

Table 1. Energy Barrier (E_0) in kJ/mol for [2 + 2] Cycloaddition Reaction of Ethylene and Absolute Percent Deviation (APD) Relative to G4(MP2)-6X for Various Density Functionals and Basis Sets

<table>
<thead>
<tr>
<th>Method</th>
<th>E_0 (APD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>168 (18.7%)</td>
<td>PBE0</td>
<td>164 (8.2%)</td>
<td>BMK</td>
<td>156 (11.6%)</td>
<td>TPSS</td>
<td>148 (5.3%)</td>
<td>TPSSh</td>
<td>162 (3.9%)</td>
<td>G4(MP2)-6X</td>
<td>201</td>
</tr>
<tr>
<td>6-31G*</td>
<td>163 (8.2%)</td>
<td>6-31G*</td>
<td>160 (8.4%)</td>
<td>6-31G*</td>
<td>155 (10.3%)</td>
<td>6-31G*</td>
<td>149 (5.3%)</td>
<td>6-31G*</td>
<td>162 (3.9%)</td>
<td>6-31G*</td>
<td>173 (10.7%)</td>
</tr>
<tr>
<td>6-31G**</td>
<td>20 (28.1%)</td>
<td>6-31G**</td>
<td>173 (11.1%)</td>
<td>6-31G**</td>
<td>171 (11.0%)</td>
<td>6-31G**</td>
<td>149 (1.8%)</td>
<td>6-31G**</td>
<td>173 (10.7%)</td>
<td>6-31G**</td>
<td>173 (10.7%)</td>
</tr>
<tr>
<td>revTPSS</td>
<td>140 (10.3%)</td>
<td>revTPSS</td>
<td>143 (8.3%)</td>
<td>revTPSS</td>
<td>165 (5.9%)</td>
<td>revTPSS</td>
<td>202 (29.4%)</td>
<td>revTPSS</td>
<td>195 (24.7%)</td>
<td>revTPSS</td>
<td>204 (30.7%)</td>
</tr>
<tr>
<td>CBS-QB3</td>
<td>155 (9.9%)</td>
<td>CBS-QB3</td>
<td>137 (8.4%)</td>
<td>CBS-QB3</td>
<td>180 (15.6%)</td>
<td>CBS-QB3</td>
<td>214 (37.1%)</td>
<td>CBS-QB3</td>
<td>207 (32.7%)</td>
<td>CBS-QB3</td>
<td>207 (32.7%)</td>
</tr>
</tbody>
</table>

Table 2. Energy Barrier (E_0) in kJ/mol for [2 + 2] Cycloaddition Reaction of Methyl Acrylate and Absolute Percent Deviation (APD) Relative to G4(MP2)-6X for Various Density Functionals and Basis Sets

<table>
<thead>
<tr>
<th>Method</th>
<th>E_0 (APD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>187 (19.7%)</td>
<td>PBE0</td>
<td>164 (4.8%)</td>
<td>BMK</td>
<td>188 (11.6%)</td>
<td>TPSS</td>
<td>162 (5.3%)</td>
<td>TPSSh</td>
<td>162 (3.9%)</td>
<td>G4(MP2)-6X</td>
<td>201</td>
</tr>
<tr>
<td>6-31G*</td>
<td>164 (8.2%)</td>
<td>6-31G*</td>
<td>160 (8.4%)</td>
<td>6-31G*</td>
<td>155 (10.3%)</td>
<td>6-31G*</td>
<td>149 (5.3%)</td>
<td>6-31G*</td>
<td>162 (3.9%)</td>
<td>6-31G*</td>
<td>173 (10.7%)</td>
</tr>
<tr>
<td>6-31G**</td>
<td>20 (28.1%)</td>
<td>6-31G**</td>
<td>173 (11.1%)</td>
<td>6-31G**</td>
<td>171 (11.0%)</td>
<td>6-31G**</td>
<td>149 (1.8%)</td>
<td>6-31G**</td>
<td>173 (10.7%)</td>
<td>6-31G**</td>
<td>173 (10.7%)</td>
</tr>
<tr>
<td>revTPSS</td>
<td>140 (10.3%)</td>
<td>revTPSS</td>
<td>143 (8.3%)</td>
<td>revTPSS</td>
<td>165 (5.9%)</td>
<td>revTPSS</td>
<td>202 (29.4%)</td>
<td>revTPSS</td>
<td>195 (24.7%)</td>
<td>revTPSS</td>
<td>204 (30.7%)</td>
</tr>
<tr>
<td>CBS-QB3</td>
<td>155 (9.9%)</td>
<td>CBS-QB3</td>
<td>137 (8.4%)</td>
<td>CBS-QB3</td>
<td>180 (15.6%)</td>
<td>CBS-QB3</td>
<td>214 (37.1%)</td>
<td>CBS-QB3</td>
<td>207 (32.7%)</td>
<td>CBS-QB3</td>
<td>207 (32.7%)</td>
</tr>
</tbody>
</table>

Table 3. Energy Barrier (E_0) in kJ/mol for [2 + 4] Cycloaddition Reaction of Methyl Acrylates and Absolute Percent Deviation (APD) Relative to G4(MP2)-6X for Various Density Functionals and Basis Sets

<table>
<thead>
<tr>
<th>Method</th>
<th>E_0 (APD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>128 (17.3%)</td>
<td>PBE0</td>
<td>100 (5.5%)</td>
<td>BMK</td>
<td>126 (15.6%)</td>
<td>TPSS</td>
<td>93 (9.6%)</td>
<td>TPSSh</td>
<td>108 (1.1%)</td>
<td>G4(MP2)-6X</td>
<td>156</td>
</tr>
<tr>
<td>6-31G*</td>
<td>130 (16.2%)</td>
<td>6-31G*</td>
<td>101 (5.5%)</td>
<td>6-31G*</td>
<td>126 (15.6%)</td>
<td>6-31G*</td>
<td>98 (9.6%)</td>
<td>6-31G*</td>
<td>108 (1.1%)</td>
<td>6-31G*</td>
<td>173 (10.7%)</td>
</tr>
<tr>
<td>6-31G**</td>
<td>122 (22.2%)</td>
<td>6-31G**</td>
<td>100 (6.4%)</td>
<td>6-31G**</td>
<td>126 (18.1%)</td>
<td>6-31G**</td>
<td>95 (12.6%)</td>
<td>6-31G**</td>
<td>104 (4.3%)</td>
<td>6-31G**</td>
<td>173 (10.7%)</td>
</tr>
<tr>
<td>revTPSS</td>
<td>89 (18.2%)</td>
<td>revTPSS</td>
<td>99 (9.4%)</td>
<td>revTPSS</td>
<td>114 (4.7%)</td>
<td>revTPSS</td>
<td>121 (11.3%)</td>
<td>revTPSS</td>
<td>123 (12.6%)</td>
<td>revTPSS</td>
<td>123 (12.6%)</td>
</tr>
<tr>
<td>CBS-QB3</td>
<td>89 (18.2%)</td>
<td>CBS-QB3</td>
<td>99 (9.4%)</td>
<td>CBS-QB3</td>
<td>114 (4.7%)</td>
<td>CBS-QB3</td>
<td>121 (11.3%)</td>
<td>CBS-QB3</td>
<td>123 (12.6%)</td>
<td>CBS-QB3</td>
<td>123 (12.6%)</td>
</tr>
</tbody>
</table>

dx.doi.org/10.1021/jp503796j.J. Phys. Chem. A 2014, 118, 9310−9318
The electronic structure of the crossing seam is explored by constructing the singlet and triplet potential energy surfaces (PESs) around the MECP. Single-point energy calculations are carried out for various combinations of bond length \(r(C1-C3) \) and dihedral angle \(\Phi(C4-C3-C2-C1) \) with PBE0/6-31G* (atom labels are shown in Figure 4). The 2D PESs are presented in Figure 4a,b, and the crossing seam is determined in Figure 4c and plotted in each map. The results show that the minimum of the triplet PES is located along the path of spin-allowed \([2+2]\) cycloaddition reaction and before the formation of the singlet transition state (with \(\Phi \) approaching zero for ring closure). This electronic feature provides the tendency of intersystem crossing from singlet state to triplet state. Second, the crossing seam spans a variety of structures with similar singlet-state energies (within 10 kJ/mol for \(-180° < \Phi < -60°\) as \(r \approx 1.7 \) Å, suggesting a flat energy profile within the crossing seam for a relatively large portion of configuration space. The flat energy surface most likely promotes the crossing events due to the availability of more energetically accessible configurations at a given temperature. In addition, within the crossing seam, the MECP is found to be closest to the minimum of the triplet PES without any barrier in between, which suggests that the relaxation after the intersystem crossing is spontaneous. We further calculate the spin-orbit coupling matrix elements for all the structures with individually optimized CASSCF wave functions. A 2D map of the corresponding \(H_{12} \) values is shown in Figure 4d; the \(H_{12} \) values are small and insensitive to the structural change.

3.4. Monomer Self-Initiation Reactions of EA, nBA, and MMA

The spin-forbidden transitions in polymerization of ethyl acrylate (EA), \(\eta \)-butyl acrylate (nBA), and methyl methacrylate (MMA) are studied using PBE0/6-31G*. Results given in Table 5 indicate that the overall nonadiabatic rate coefficients are on the same order for MA, EA, and nBA. This indicates that the size of the end-substituent alkyl group has little influence on the energy of the MECP and the crossing probability. The calculated \(k_{\text{NA}} \) at 413 K (1.04 \(\times \) 10\(^{-13}\) M\(^{-1}\) s\(^{-1}\)) for the monomer self-initiation reaction of nBA agrees reasonably well with the value obtained from a mechanistic model (1.0 \(\times \) 10\(^{-13}\) M\(^{-1}\) s\(^{-1}\)). In the case of methyl methacrylate, the hopping probability is similar to that of acrylates, but the barrier between reactants and MECP is lower than that of acrylates, which is likely due to the stabilization effect of the methyl group attached to the tertiary carbon. The rate coefficients of MMA self-initiation reactions are 3–4 orders higher than those of acrylates.

3.5. Crossing Control

The higher rate constant for MMA suggests a potential route to achieve faster self-initiation: lowering the energy of the MECP by stabilizing the diradical with favorable functional groups. It is also possible to tune the rate constant via “crossing control”, that is, promoting intersystem crossing by heavy-atom substitution. To this end, the four types of halogen-substituted methyl acrylates shown in Figure 5 are studied. The MECPs for \(F_2 \), \(Cl_2 \), and \(Br \)-substituted methyl acrylates are optimized with PBE0/6-31G*. For I-substituted methyl acrylate, we use Huzinaga’s model core.

Table 4. Spin-Orbit Coupling Matrix Element \(H_{12} \) in cm\(^{-1}\), \(\mu \) in Atomic Mass Unit, \(F \) and \(\Delta \Phi \) in Hartree/Bohr, and Crossing Energy \(E_c \) in kJ/mol for Methyl Acrylate Calculated with PBE0/6-31G*, TPSSh/6-31G*, and TPSSh/6-31G*\(^{at} \)

<table>
<thead>
<tr>
<th>(H_{12})</th>
<th>PBE0/6-31G*</th>
<th>TPSSh/6-31G*</th>
<th>TPSSh/6-31G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>1.33</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>11.8671</td>
<td>11.8574</td>
<td>11.8613</td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.07526</td>
<td>0.05307</td>
<td>0.06465</td>
<td></td>
</tr>
<tr>
<td>(\Delta \Phi)</td>
<td>0.10648</td>
<td>0.13059</td>
<td></td>
</tr>
<tr>
<td>(E_c)</td>
<td>127.5</td>
<td>130.5</td>
<td>124.6</td>
</tr>
<tr>
<td>(T)</td>
<td>298</td>
<td>391</td>
<td>413</td>
</tr>
<tr>
<td>(\Gamma(T))</td>
<td>9.73 (\times) 10(^{-5})</td>
<td>2.20 (\times) 10(^{-5})</td>
<td>1.19 (\times) 10(^{-5})</td>
</tr>
<tr>
<td>(k^\text{S}(T))</td>
<td>2.71 (\times) 10(^{-16})</td>
<td>8.22 (\times) 10(^{-11})</td>
<td>5.75 (\times) 10(^{-10})</td>
</tr>
<tr>
<td>(k^\text{NA}(T))</td>
<td>2.64 (\times) 10(^{-20})</td>
<td>1.80 (\times) 10(^{-15})</td>
<td>1.10 (\times) 10(^{-14})</td>
</tr>
</tbody>
</table>

\(^{at}\)The crossing coefficient \(\Gamma(T) \), and adiabatic rate constant \(k^\text{S}(T) \) without crossing correction and non-adiabatic rate constant \(k^\text{NA}(T) \) in M\(^{-1}\) s\(^{-1}\) at various temperatures (\(T \) in K) are evaluated from the WKB theory.
potential (MCP)57,58 and the matched MCP-dzp basis set59 to identify the MECP. Figure 5 presents the structures of the optimized MECPs. Table 6 gives the values of H_{12} and crossing energies. We also evaluate the effect of basis set on the magnitude of H_{12} for Br-substituted MA. The value of H_{12}

Table 6. Spin-Orbit Coupling Matrix Element H_{12} in cm-1 and Crossing Energy E_c in kJ/mol for Halogen-Substituted Methyl Acrylates

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{12}</td>
<td>0.61</td>
<td>1.69</td>
<td>7.86</td>
<td>10.7</td>
</tr>
<tr>
<td>E_c</td>
<td>100</td>
<td>82.5</td>
<td>91.6</td>
<td>92.5</td>
</tr>
</tbody>
</table>

Figure 5. MECPs for four types of halogen-substituted methyl acrylates.
obtained with 6-31G*, MCP-dzp, and MCP-tzvp are 7.85, 5.94, and 5.71 cm⁻¹, respectively. The halogen-substitution appears to stabilize the MECP, which is likely due to the resonance donation of electron density from the halogen lone pair to the attached carbon. This is confirmed by Natural Bond Orbital (NBO) analysis⁶⁰ that the occupancy of NBO at the radical center (shown in Figure 6) increases from 0.97577 in MA to 1.09487 (increased by 12.2%) in Br-substituted MA. Furthermore, heavy halogen atoms, such as Br and I, significantly increase the magnitude of spin–orbit coupling, which is expected to induce higher probability of crossing from the singlet state to the triplet state. The nonadiabatic rate constant for the self-initiation reaction of Br-substituted methyl acrylates is found to be 5.66 × 10⁻¹⁴ M⁻¹ s⁻¹ at 298 K with a crossing probability of 2.0 × 10⁻³, which are significantly higher than for MA (k₂MA = 2.64 × 10⁻²⁰ M⁻¹ s⁻¹ with Γ = 9.7 × 10⁻¹⁵). This agrees with previous experimental observations that halogen-containing acrylate monomers polymerize at a much higher rate.⁶¹

4. CONCLUSIONS
The benchmark study of [2 + 2] cycloaddition reaction of methyl acrylate presented in this paper indicated that special attention is required for reactions involving diradicals in order to predict energy barriers reliably. PBE0, TPSSh, and in particular TPSS with a 6-31G* basis set are computationally efficient levels of theory for exploring monomer self-initiation reactions of acrylates. We applied nonadiabatic transition-state theory based on the WKB theory of crossing probability to describe the kinetics of the monomer self-initiation reactions. We found that intersystem crossing of a singlet diradical to a triplet diradical is a rate-limiting step in self-initiation. Methyl methacrylate has a higher rate constant than acrylates studied in this work, which is due to the lower energy barrier between MMA and the crossing point. Crossing control via heavy-atom substitution was demonstrated and is likely to provide a new route of applying spin-chemistry in free-radical polymerization.

ACKNOWLEDGMENTS
This material is based upon work partially supported by the National Science Foundation under the grants CBET-1160169 and CBET-1159736. S.L. was supported by the National Science Foundation grant CBET-1159736. J.T. acknowledges the Air Force Office of Scientific Research, through grant FA9550-10-1-0248. A.M.R. acknowledges the National Science Foundation grant CMMI-1334241. Computational support was provided by the High-Performance Computing Modernization Office of the U.S. Department of Defense. M.S. acknowledges support by the National Science Foundation through the grant CBET-1160169. We acknowledge Prof. Jeremy N. Harvey and Dr. David Glowacki for sharing their scripts analyzing the vibration frequencies at crossing points.

REFERENCES

ASSOCIATED CONTENT
Supporting Information
Derivations of the crossing coefficient in the nonadiabatic transition state theory. Structures and vibrational frequencies at stationary points, transition states, and minimum energy crossing points. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Author
*E-mail: rappe@sas.upenn.edu.

Notes
The authors declare no competing financial interest.

