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Donor and Acceptor Modes in Photonic Band Structure
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Three-dimensionally periodic dielectric structures, photonic crystals, possessing a forbidden gap for
electromagnetic wave propagation, a photonic band gap, are now known. If the perfect 3D periodicity is
broken by a local defect, local electromagnetic modes can occur within the forbidden band gap. Addi-
tion of extra dielectric material locally, inside the photonic crystal, produces “donor” modes. Converse-
ly, removal of dielectric material from the crystal produces ““acceptor” modes. It is now possible to make
high-Q electromagnetic cavities of ~1 cubic wavelength, for short wavelengths at which metallic cavi-
ties are useless. These new dielectric cavities can cover the range from mm waves to uv wavelengths.
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There has been great progress recently in the creation
of artificial three-dimensionally periodic dielectric struc-
tures which are to photon waves as semiconductor crys-
tals are to electron waves. That is, these photonic crys-
tals have a photonic band gap, a band of frequencies in
which electromagnetic waves are forbidden [1], irrespec-
tive of propagation direction in space. Both face-cen-
tered-cubic lattice [2] and diamond symmetry [3] dielec-
tric structures have now been shown to produce a photon-
ic band gap.

The photonic band gap is very interesting in its own
right. It is an energy band in which optical modes, spon-
taneous emission, and zero-point fluctuations are all ab-
sent. Nevertheless, the photonic band gap might actually
be at its most interesting when the perfect translational
symmetry is disrupted in a controlled manner. For exam-
ple, by introducing a known degree of disorder, mobility
edges and the Anderson localization transition [4] can be
investigated.

Lasers, perhaps the most important application, also
require that the 3D translational symmetry should be
broken. Even while spontaneous emission into all 4z sr
would be inhibited, a local electromagnetic mode is still
necessary to accept the stimulated emission. In effect the
local defect-induced structure resembles a Fabry-Pérot
cavity, except that it reflects radiation back upon itself in
all 4x spatial directions. Independently, Meade et al. [5]
have proposed that this could be accomplished by intro-
ducing a simple defect into the system.

The perfect three-dimensional translational symmetry
of a dielectric structure can be lifted in either one of two
ways: (1) Extra dielectric material may be added to one
of the unit cells. We find that such a defect behaves very
much like a donor atom in a semiconductor. It gives rise
to donor modes which have their origin at the bottom of
the conduction band. (2) Conversely, translational sym-
metry can be broken by removing some dielectric materi-
al from one of the unit cells. Such defects resemble ac-
ceptor atoms in semiconductors. The associated acceptor

modes have their origin at the top of the valence band.
We will find that acceptor modes are particularly well-
suited to act as laser microresonator cavities. Indeed it
appears that photonic crystals made of sapphire or other
low-loss dielectrics will make the highest-Q single-mode
cavities (of volume ~14%) covering all electromagnetic
frequencies above the useful working range of supercon-
ducting metallic cavities. The short-wavelength limit in
the ultraviolet is set by the availability of optical materi-
als with refractive index = 2, the threshold index [2,3] for
the existence of a photonic band gap.

For these experiments, we have chosen a face-cen-
tered-cubic (fcc) photonic crystal [2] employing non-
spherical atoms. This fcc structure lends itself readily to
microfabrication since it consists of intersecting drill
holes [2] which can be made by reactive ion etching.
While such microstructures have already been fabricated
[6] in GaAs, we have chosen initially to investigate local
defect modes in larger structures on the scale of 1 cm
wavelengths. We selected a refractive index n = 3.6 for
the microwave material, matching that of the common
semiconductors Si and GaAs. Experiment is supplement-
ed by theoretical calculations of the photonic bound
states.

Photonic crystals generally consist of a continuous
three-dimensional web of dielectric material, made up of
interconnecting ribs. The Wigner-Seitz unit cell of our
photonic crystal [2] is the standard fcc rhombic dode-
cahedron [2] with “air atoms” created by drill holes cen-
tered on the top three faces, which exit through the bot-
tom three faces. Figure 1 is a {110) cross section of our
photonic crystal cutting through the center of a unit cube.
Shading represents dielectric material. The large dots
are centered on the air atoms and the rectangular dashed
line is a face-diagonal cross section of the unit cube.
Such structures are made simply by drilling three sets of
holes 35.26° off vertical into the {111) top face.

Since we could design the structure at will, donor de-
fects were chosen to consist of a single dielectric sphere

3380 © 1991 The American Physical Society



VOLUME 67, NUMBER 24

PHYSICAL REVIEW LETTERS

9 DECEMBER 1991

FIG. 1. A (110) cross-sectional view of our face-centered-
cubic photonic crystal [2] consisting of nonspherical “air
atoms”’ centered on the large dots. Dielectric material is repre-
sented by the shaded area. The rectangular dashed line is a
face-diagonal cross section of the unit cube. Donor defects con-
sisted of a dielectric sphere centered in an atom. We selected
an acceptor defect as shown, centered in the unit cube. It con-
sists of a missing horizontal slice in a single vertical rib.

centered in an air atom. Likewise, by breaking one of the
interconnecting ribs, it is easy to create acceptor modes.
We selected an acceptor defect as shown in Fig. 1, cen-
tered in the unit cube. It comprises a vertical rib which
has a missing horizontal slice.

The heart of our experimental apparatus is a photonic
crystal embedded in microwave absorbing pads as shown
in Fig. 2. The photonic crystals were 8-10 atomic layers
thick in the {111) direction. The cubic unit-cell length
was a =11 mm and the hole diameter was 5.16 mm, leav-
ing an empty volume fraction ~78%. Monopole anten-
nas, consisting of 6-mm pins, coupled radiation to the de-
fect mode. The HP 8510 Network Analyzer was set up
to measure transmission between the antennas. Figure
3(a) shows the transmission amplitude in the absence of a
defect. There is very strong attenuation (~1073) be-
tween 13 and 16 GHz marking the valence- and con-
duction-band edges of the forbidden gap. This is a tri-
bute to both the dynamic range of the network analyzer,
and the sizable imaginary wave vector in the forbidden
gap.

A transmission spectrum in the presence of an acceptor
defect is shown in Fig. 3(b). Most of the spectrum is
unaffected, except at the electromagnetic frequency
marked ‘“deep acceptor” within the forbidden gap. At
that precise frequency, radiation ‘“hops” from the
transmitting antenna to the acceptor mode and then to
the receiving antenna. The acceptor level frequency,
within the forbidden gap, is dependent on the volume of
material removed. Figure 4 shows the acceptor level fre-
quency as a function of defect volume removed from one
unit cell. When a relatively large volume of material is
removed, the acceptor level is deep, as shown in Fig. 3(b).
A smaller amount of material removed results in a shal-
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FIG. 2. Experimental configuration for the detection of local
electromagnetic modes in the vicinity of a lattice defect.
Transmission amplitude attenuation from one antenna to the
other is measured. At the local mode frequency the signal hops
by means of the local mode in the center of the photonic crystal
producing a local transmission peak. The signal propagates in
the (111) direction through 8-10 atomic layers.

low acceptor level, nearer the valence band. If the re-
moved material volume falls below a threshold volume,
the acceptor level falls within the continuum of levels
below the top of the valence band, becoming metastable.

On an expanded frequency scale we can measure the
resonator Q of the deep acceptor mode, which is
Q~1000, as limited by the loss tangent of the Emerson
& Cumming Stycast material of which the photonic crys-
tal was made.

The behavior of an off-center donor defect is shown in
Fig. 3(c). In that case the donor volume was slightly
above the required threshold for forming bound donor
modes. Already two shallow donor modes can be seen in
Fig. 3(c). When the donor is centered in the Wigner-
Seitz unit cell, the two modes merge to form doubly de-
generate donor modes as in Fig. 4. Single donor defects
seem to produce multiple donor levels. Figure 4 gives the
donor level frequency as a function of donor volume. As
in the case of acceptors, there is threshold defect volume
required for the creation of bound modes below the
conduction-band edge. However, the threshold volume
for donor defects is almost 10 times larger than the ac-
ceptor threshold volume. Apparently this is due to the
electric-field concentration in the dielectric ribs at the top
of the valence band. Bloch wave functions at the top of
the valence band are rather easily disrupted by the miss-
ing rib segment.

We have chosen in Fig. 4 to normalize the defect
volume to a natural volume of the physical system,
(A/2n)3, which is basically a cubic half wavelength in the
dielectric medium. More specifically, A is the vacuum
wavelength at the midgap frequency, and # is the refrac-
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FIG. 3. (a) Transmission attenuation through a defect-free
photonic crystal, as a function of microwave frequency. The
forbidden gap falls between 13 and 16 GHz. (b) Attenuation
through a photonic crystal with a single acceptor in the center.
The large acceptor volume moved its frequency near midgap.
The electromagnetic resonator Q was ~ 1000, limited only by
the loss tangent of the dielectric material. (c) Attenuation
through a photonic crystal with a single donor defect, an uncen-
tered dielectric sphere, leading to two shallow donor modes.

tive index of the dielectric medium. Since we are
measuring a dielectric volume, it makes sense to normai-
ize to a half-wavelength cube as measured at the dieiec-
tric refractive index. Based on the reasonable scaling of
Fig. 4, our choice of volume normalization would seem
justified. (Experimentally, the odd-shaped defect vol-
umes were measured by weighing the samples.)

It is interesting to compare our local modes to those of
a one-dimensional Fabry-Pérot resonator, constructed in
the usual manner of quarter-wave multilayer dielectric
mirrors. In such a resonator the mirrors face each other
and are usually separated by an integral number of half
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FIG. 4. Donor and acceptor mode frequencies as a function
of normalized donor and acceptor defect volume. The points
are experimental and the corresponding lines are calculated.
Defect volume is normalized to (A/2n)3, where A is the midgap
vacuum wavelength and #n is the refractive index. A finite de-
fect volume is required to bind a mode in the forbidden gap.

wavelengths. The net effect of the left and right mirrors
facing each other is that they combine to form a mono-
lithic 1D periodic dielectric structure, but with a quarter
wavelength of phase slip introduced into the very center.
This same quarter wavelength of phase slip is often em-
ployed in distributed feedback lasers [7], effectively con-
verting them into Fabry-Pérot resonators. The standing-
wave mode is sometimes [8] regarded as a bound state
split off into the 1D band gap and localized to the
quarter-wave defect in the periodic structure. In one di-
mension, however, nothing requires that the defect be
one-quarter wavelength long. A phase slip, no matter
how small, allows a bound mode to form in the forbidden
gap, usually near a band edge. This is in distinction to
Fig. 4 where a finite-sized defect volume is required to
bind a mode.

This is similar to the comparison between 1D and 3D
quantum mechanics. In one dimension even an infini-
tesimal quantum well will bind [9] a state. In three di-
mensions, a finite-depth potential well is required to pro-
duce [9] a bound state. Figure 4 is telling us that the
same requirement for a finite defect volume applies to 3D
confined photon modes. John and Wang [10] have shown
that the requirement for a finite-volume-integrated polar-
izability can be satisfied even by a single resonant atom if
undamped by nonradiative decay. Then an individual
atom is capable of binding a local electromagnetic mode
at its resonant transition frequency. They call this a
photon-atom bound state. Inhibited spontaneous emis-
sion is accompanied with strong self-dressing of the atom
by its own localized radiation fields, leading to anomalous
Lamb shifts.

We have also performed calculations of the frequency
spectrum of these dielectric systems. In order to solve for
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the electromagnetic modes, we expand Maxwell’s equa-
tions in plane waves, employing the techniques of Ho,
Chan, and Soukoulis [3]. We employ the supercell
method, placing one defect in a repeated cell of dielectric
material. Our calculations were performed in supercells
containing eight fcc Wigner-Seitz cells, and we have per-
formed tests on larger supercells containing eight conven-
tional fcc cubic unit cells (32 Wigner-Seitz cells). Be-
cause the distance between defects is relatively small,
there is significant overlap between the localized modes
on neighboring defects. This overlap manifests itself as a
dispersion of the impurity band, and the frequency of the
bound state is taken to be the band center. We expanded
the H(r) magnetic field in a basis of 4000 plane waves,
and the lowest eigenvalues were obtained by the Natara-
jan and Vanderbilt [11] iterative diagonalization tech-
nique.

The solid lines in Fig. 4 show good qualitative agree-
ment with the experimental points. The discrepancy be-
tween theory and experiment is larger for defects in su-
percells than for purely bulk systems, where better than
1% agreement has been achieved. There are two impor-
tant reasons for this larger discrepancy. First, because of
the larger unit-cell size, it is necessary to work at a lower
plane-wave cutoff. Second is the small number of primi-
tive unit cells used in the supercell approximations. As in
Ref. [5], the dispersion of the impurity band is quite large
in the eight-atom supercell, ~ (20-80)% of the gap width
for various states. Increasing the supercell to 32 atoms
reduces the bandwidth by 80%.

The extension of these 3D dielectric resonators to laser
wavelengths is marked by the following considerations.
The refractive index we have chosen to work with
(n=3.6) is a good match to the common semiconductors
of which lasers are made. Furthermore, the fcc geometry
we are using has begun [6] to be microfabricated in
GaAs. Such microresonators will be particularly valuable
for making tiny low-threshold lasers. But their value is
greatly increased if the photonic band gap inhibits spon-
taneous emission. In a semiconductor laser, this would
lead to near unity quantum efficiency into the lasing
mode. Photon number state squeezing [12] into that
mode would be greatly enhanced. Inhibited spontaneous
emission requires that the broad semiconductor lumines-
cence band should be centered within the forbidden gap.
In semiconductor lasers, population inversion and gain
first appear at the red edge of the luminescence band, i.e.,

nearer to the valence band. This suggests that acceptor
modes would be the appropriate type for lasers.

The other advantage for acceptor-mode laser cavities is
associated with our acceptor defect geometry. The verti-
cal rib with a missing horizontal slice, as in Fig. 1, can be
readily microfabricated. It should be possible to create it
in II1I-V materials by growing an aluminum-rich epitaxial
layer and lithographically patterning it down to a single
dot the size of one of the vertical ribs. After regrowth of
the original III-V composition and reactive ion etching of
the photonic crystal, HF acid etching, whose [13] selec-
tivity = 108, will be used to remove the Al-rich horizon-
tal slice from the one rib containing such a layer. The
resonant frequency of the microcavity can be controlled
by the thickness of the Al-rich sacrificial layer.
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