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Abstract

The “virtual crystal” (VC) approach is a tractable way of studying configurationally disordered systems; the potentials which
represent atoms of two or more elements are averaged into a composite atomic potential. This approach has the advantage that a
single configuration with a smaller unit cell represents the disordered system. However, due to the different local environment
of the virtual atom, some properties may not be reproduced. In this work, we develop a new virtual crystal approach and apply it
to the study of the stress-induced phase transition in Pb(Zr1/2Ti1/2)O3. We compare four averaging algorithms for the construc-
tion of the virtual atom pseudo-potentials and we assess the accuracy of each by comparing with a superlattice prediction of the
equations of state.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Perfectly periodic systems are often difficult to achieve
experimentally. Moreover, nonuniform aperiodic systems
often provide the greatest utility in many applications. In
order for theory to reach the goal of modeling these systems,
new methods must be employed that will incorporate inho-
mogeneities without necessitating the use of extremely large
unit cells which would make the problem computationally
intractable. One frequently used approach is to formulate a
hybrid atom or virtual atom that takes into account all the
inhomogeneities. While this virtual crystal approximation
(VCA) [1] is incapable of differentiating local environmen-
tal features of real materials, it can be useful in ascertaining
averaged properties.

Standard approaches for implementing the VCA within
density functional theory involve real-space averaging of
the component potentials into a virtual crystal (VC) poten-
tial. The use of the VCA in condensed matter physics has
primarily focused on the study of semi-conducting solid
solutions and ferromagnetic alloys. The VCA has been

used very successfully throughout these fields for studying
the dependence of structural and electronic properties on
composition [2–5]. Many properties computed with the
VCA were found to be in general agreement with experi-
mental results. However, some VC calculations in the litera-
ture have shown large discrepancies from experiment and
superlattice calculations [6,7]. The researchers attributed the
breakdown of the VCA to the inability of the VCA to
capture differences in ionicity and chemical bonding.

The goal of this paper is to examine the effectiveness of
VCA to model ferroelectric solid solutions. Recent experi-
mental evidence [8] suggests that doped ferroelectric mate-
rials are good candidates for modeling using the VCA. The
goal of this paper is to examine the effectiveness of VCA to
model ferroelectric solid solutions. This paper reports the
first density functional calculations involving ferroelectric
materials using the VCA. Because of the significant
problems with current implementations of VCA, we have
developed new methods for more accurately portraying the
electronic behavior of a VC atom. Instead of simply aver-
aging component pseudo-potentials after construction, we
incorporate the averaging within the pseudo-potential
construction. We show that these methods, which insure
the proper electronic properties at the atomic level, also
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provide the most accurate structural results. Future applica-
tions of the presented VC methods to other disordered
systems are planned, including metal alloys, semi-conduct-
ing and magnetoresistive materials.

The paper is organized as follows. In Section 2, we
describe four methods for constructing the VC atoms (two
standard approaches and two new construction procedures).
We present and discuss the results of solid-state calculations
using the four VC atoms to determine structural and ener-
getic properties of Pb(Zr1/2Ti1/2)O3 (PZT) under uniaxial
stress in Section 3. We conclude the paper in Section 4.

2. Methodology

Before discussing our implementations of the VCA, we
describe the generation of an atomic pseudo-potential. First,
an electronic reference state is chosen, and an all-electron
calculation is performed. From this calculation we obtain
the all-electron potential�V̂AE�; the total energy�EAE

tot �; the
all-electron wave functions�fAE

nl �~r�� and their eigenvalues
�eAE

nl �. Then a pseudo-potential,V̂PS; and pseudo-wave func-
tions are chosen to satisfy

�T̂ 1 V̂H�r�1 V̂XC�r�1 V̂PS�ufPS
nl l � eAE

nl ufPS
nl l �1�

where T̂ is the single-particle kinetic energy operator and
V̂H�r� and V̂XC�r� are the self-consistent Hartree and
exchange-correlation energy operators, respectively. The
latter two operators are explicit functionals of the total
charge density,r�~r�; where r�~r� � P

nl fnluf
PS
nl �~r�u2. We

require

1. V̂PS�~r� � V̂AE�~r� for r $ rc

2. fPS
nl �~r� � fAE

nl �~r� for r $ rc

whererc is the core radius.
Typically, V̂PS may be expressed as a sum of a local

potential andl-dependent correction terms:

V̂PS� V̂loc 1
X

l

DV̂l �2�

where V̂loc is a local operator, diagonal in the real-space

basis. For a fully separable nonlocal pseudo-potential [9],
DV̂l is formed according to

DV̂NL
l ;

DV̂SL
l ufPS

nl lkfPS
nl uDV̂SL

l

kfPS
nl uDV̂SL

l ufPS
nl l

�3�

whereDV̂SL
l are short-ranged correction terms to the local

potential. We have recently formulated a new method for
improving the transferability of nonlocal pseudo-potentials
by altering the form of the local potential and subsequently
the correction terms. A detailed discussion of the designed
nonlocal (DNL) pseudo-potential method has been
presented elsewhere [10]. We have used this approach in
both new VC procedures.

Since our pseudo-potentials will ultimately be used in
plane-wave basis solid-state calculations, we require the
computation ofV�~q; ~q0� where ~q and ~q0 are reciprocal-
space vectors. Using the notation from above, a local poten-
tial can be expressed as

V̂loc �
X
~q

X
~q0

u~q0lVloc�u~q 2 ~q0u�k~qu �4�

Similarly, the nonlocal correction terms may be expressed
as

DV̂NL
l ;

X
~q

X
~q0

u~q0lk~q0uDV̂SL
l ufPS

nl lkfPS
nl uDV̂SL

l u~qlk~qu
kfPS

nl uDV̂SL
l ufPS

nl l
�5�

Based on these forms, the local and nonlocal Fourier-space
matrix elements may be tabulated ask~q0uV̂locu~ql and
k~q0uDV̂SL

l ufPS
nl l. In addition, the denominator of Eq. (5),

kfPS
nl uDV̂SL

l ufPS
nl l must be stored.

The VC construction methods are described for the
combination of two atoms (A and B) according to AaBb

wherea 1 b � 1. In addition, we restrict our description
to homovalent atoms. These methods can be easily general-
ized to the averaging of more than two atoms and hetero-
valency. A more detailed explanation of these methods and
their atomic and solid-state testing will be presented else-
where [11].
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Table 1
Construction parameters for the Ti, Zr and VC designed nonlocal pseudo-potentials (the Ti and Zr potentials were generated with the methods
described in Refs. [10,13]; the VC potentials were generated using the methods described in text; core radii (rc) are in atomic units,qc are in
Ry1/2, step widths are in atomic units and step heights are in Ry)

Atom Reference configuration rc qc Step range Step height

Ti 3s23p63d0 1.32, 1.20, 1.40 7.07, 7.07, 7.07 0.00–1.15 5.49
Zr 4s24p64d0 1.51, 1.51, 1.90 7.07, 7.07, 7.07 0.00–1.51 0.77
VC2 s2p6d0 0.00–1.15 3.13

1.15–1.51 0.39
VC3 s2p6d0 0.00–0.83 8.17

0.83–0.32 5.59
VC4 s2p6d0 1.38, 1.51, 1.40 7.07, 7.07, 7.07 0.00–0.56 1.18

0.56–0.79 1.34



2.1. VC Method 1: Fourier averaging

This method relies on the Fourier-space representation of
the pseudo-potentials as described above. Once the compo-
nent potentials are expressed numerically as shown above,
the matrix elements of the pseudo-potentials for atoms A
and B are averaged.

2.2. VC Method 2: simple descreened pseudo-potential
averaging

In this method, the descreened pseudo-potentials�V̂PS�
for the component pseudo-atoms are averaged. Two inde-
pendent component atomic pseudo-potentials�V̂A

PS andV̂B
PS�

are constructed. These potentials are then averaged accord-
ing to

V̂VC2
PS � aV̂A

PS 1 bV̂B
PS �6�

The semilocal potential alone is not sufficient for construct-
ing a Kleinman–Bylander nonlocal pseudo-potential; the
semilocal pseudo-wavefunctions must also be known (see
Eq. (3)). Therefore, we solve for the reference-state pseudo-
wavefunctions ofV̂VC2

PS and use these to construct the non-
local potential.

2.3. VC Method 3: tuned descreened pseudo-potential
averaging

The previous two constructions do not guarantee accurate

representation of the electronic properties of a true hybrid
atom. In order to improve the electronic behavior of the VC
potential, we impose a new criterion in our VC construction.
We introduce an averaged eigenvalue

eAVG
nl � aeA

nl 1 beB
nl �7�

whereeA
nl andeB

nl are the all-electron eigenvalues for thenlth
state of atoms A and B, respectively. We construct a VC
potential which guarantees thateVC3

nl � eAVG
nl for the refer-

ence state by adjusting the parameters used to average the
semilocal potentials. This may be expressed as

V̂VC3
PS � a 0V̂A

PS 1 b 0V̂B
PS �8�

wherea 0 andb 0, in general, will not equala andb . Subse-
quently, we repeat the process described in Method 2 to
obtain the necessary pseudo-wavefunctions and construct
a nonlocal potential. We then construct a DNL potential to
improve eigenvalue agreement at other electronic configura-
tions.

2.4. VC Method 4: all-electron potential averaging

In all the previous constructions, we average together two
pseudo-potentials at various points in their construction. In
this method, we average all-electron results, thereby enfor-
cing reference-state eigenvalue agreement throughout the
entire pseudo-potential construction. First, the bare nuclear
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Table 2
Configuration testing for the Ti, Zr and VC atoms generated with Methods 2–4 described in text (averaged eigenvalues are given for the Ti and
Zr all-electron (AE) and component pseudo-potentials (PS); absolute errors are computed as a difference from the averaged component pseudo-
potential results; all energies are in Ry)

State AE 1
2 �Ti 1 Zr� energy PS1

2 �Ti 1 Zr� energy VC2 error VC3 error VC4 error

s2 27.5701 27.5701 0.2108 0.0000 0.0000
p6 25.9530 25.9530 0.1554 0.0000 0.0000
s0 22.5554 22.5581 0.0437 0.0003 20.0038
d0 23.4488 23.4488 0.2607 0.0000 0.0000

s2 26.7832 26.7808 0.1942 20.0017 0.0016
p6 25.1737 25.1720 0.1398 20.0005 0.0015
s1 22.0292 22.0304 0.0335 20.0020 20.0009
d0 22.7037 22.7034 0.2362 0.0044 0.0041

s2 26.3611 26.3652 0.1434 0.0128 20.0031
p6 24.7701 24.7744 0.0923 0.0143 20.0049
s0 21.8390 21.8399 0.0147 0.0020 0.0000
d1 22.3479 22.3571 0.1782 0.0163 20.0033

s2 25.6569 25.6586 0.1266 0.0100 20.0029
p6 24.0711 24.0734 0.0764 0.0123 20.0047
s1 21.3449 21.3453 0.0119 0.0004 0.0011
d1 21.6814 21.6889 0.1549 0.0169 20.0018

s2 24.1762 24.1730 0.0398 0.0053 20.0077
p6 22.6089 22.6064 20.0059 0.0086 20.0106
s2 20.3301 20.3293 20.0097 20.0002 0.0018
d2 20.3205 20.3239 0.0586 0.0129 20.0072



Coulombic potentials of the component atoms are averaged:

VVC4
AE �~r� � aVA

AE�~r�1 bVB
AE�~r� � 22�aZA

AE 1 bZB
AE�

r
�9�

In addition, we determine a core charge density that is the
average of the core charge densities of the all-electron
component atoms,

rVC4
core � arA

core 1 brB
core �10�

Using this nuclear potential and frozen-core charge
density, we find new all-electron wavefunctions for valence
states. We accomplish this by completing a self-consistent
inward solve [12] for the valence wavefunctions according
to

1. eAVG
nl � eVC4

nl

2. fVC4
nl �r� ! 0 asr ! ∞

3.
R∞

rc
ufVC4

nl �r�u2r2 dr � a
R∞

rc
ufA

nl�r�u2r2 dr 1
b
R∞

rc
ufB

nl�r�u2r2 dr

Operationally, we complete an inward solve well belowrc,
insuring accurate first and second derivative determination
for all values of r greater thanrc. These derivatives are
required for the optimized pseudo-potential construction.

Since the form of these all-electron VC wavefunctions
will be modified within the core region when the wavefunc-
tions are pseudized [13], the Kohn–Sham equations need
not be solved betweenr � 0 andr � rc: We construct the
remainder of the wavefunction as a smooth analytic form
insuring norm-conservation and agreement with the inward

solution. A new valence charge density is constructed, and the
process is iterated to self-consistency. These wavefunctions
are self-consistent solutions to the Kohn–Sham equation
outside rc, with eigenvalues and total norm outsiderc

which are exactly the average of the component atoms.
With this set of wavefunctions and eigenvalues we construct
a single optimized semilocal pseudo-potential. From this
potential, a DNL pseudo-potential is then constructed.

3. Results and discussion

We have applied the four averaging methods to the Ti and
Zr atoms. All atomic energy calculations were done within
the local density approximation, and the optimized pseudo-
potential [13] and DNL [10] methods were used. The
generation parameters for these component potentials and
the VC potentials are included in Table 1. For all atoms,
semi-core states were included as valence. It is important to
note that although we have included multiples-channel
states, only one nonlocal projector is included. For all
atoms we have used thes-potential as the local potential
onto which we add one or two square-step augmentation
operators. The transferability data for the VC atoms gener-
ated with Methods 2–4 are presented in Table 2. For
completeness, we have included the transferability data for
the DNL component pseudo-potentials as well as the all-
electron averaged eigenvalues. (We do not include the trans-
ferability data for Method 1 since the Fourier averaging
procedure makes real-space atomic testing inconvenient.)
All errors are computed as the difference from the averaged
DNL pseudo-potential results. From the table, it is clear that
Method 4 provides the most transferable potentials.

In order to test the accuracy of these potentials in solid-
state calculations, we have completed first-principles calcu-
lations using density functional theory (DFT) and the local
density approximation. The electron wavefunctions are
expanded in a plane-wave basis using a cutoff energy of
50 Ry. In addition to the semi-core states mentioned
above, the 5d shell is included in the Pb potential. Scalar
relativistic effects are included in the generation of the Pb
pseudo-potential [14]. Brillouin zone integrations are
approximated accurately as sums on a 4× 4 × 4
Monkhorst–Packk-point mesh [15].

We have applied uniaxial stress along the (100) direction
to two structurally distinct phases of PZT. For each of the
four VC methods, we have completed full electronic and
structural relaxations for 5-atom unit cells with various
fixed cell heights. We have neglected the shear response
to the uniaxial stress in the present study.

Experimentally, the equilibrium structure for the 50/50
composition of PZT is a tetragonal phase down to low
temperature [16]. The rhombohedral phase has been found
to lie close in energy to the tetragonal phase, and phase
transition to the rhombohedral structure can be induced
when uniaxial stress is applied to this material [17–20].
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Fig. 1. Equations of state for the tetragonal (dotted-line) and rhom-
bohedral-like (solid-line) phases of Pb(Zr1/2Ti1/2)O3 using VC
Method 1 as described in text. The intersection of the solid straight
lines indicates the position of the superlattice equilibrium cell
height and ground-state energy for the rhombohedral-like phase.
The intersection of the dotted straight lines shows the placement
of the tetragonal phase ground-state structure. The heights and ener-
gies are for a 40-atom unit cell.



An experimental lattice constant of 8.163 A˚ has been deter-
mined for the rhombohedral phase of a randomly ordered
ceramic with 50/50 batch composition [21]. A lattice
constant of 8.279 A˚ for the tetragonal phase has also been
reported.

Using a superlattice DFT approach, we have recently
computed the phase stability and critical stress for 50/50
PZT [22]. These theoretical results agree well with experi-
mental findings; for the current work, the superlattice equa-
tions of state provide a benchmark by which to judge the
accuracy of the VCA calculations. For each VC method, we
have plotted the equations of state (total energy as a function
of unit cell height) for the two phases of PZT in Fig. 1–4.

The intersection of the solid straight lines in each plot
represents the ground-state energy and equilibrium
lattice constant for a 40-atom rhombohedral structure of a
superlattice of PZT. The dotted straight lines show the
analogous values for the tetragonal phase of the same super-
lattice. For clarity, Fig. 5 contains the equations of state for
the superlattice of PZT. Details of these superlattice calcu-
lations have been presented elsewhere [22].

For VC Methods 1 and 2, we find that the ground-state
phase for this composite of PZT is rhombohedral, in direct
opposition to the superlattice calculations and experimental
observations. However, for Methods 3 and 4, we find the
correct energetic ordering, with the tetragonal phase lower
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Fig. 2. Equations of state for the tetragonal (dotted-line) and rhom-
bohedral-like (solid-line) phases of Pb(Zr1/2Ti1/2)O3 using VC
Method 2 as described in text.

Fig. 3. Equations of state for the tetragonal (dotted-line) and rhom-
bohedral-like (solid-line) phases of Pb(Zr1/2Ti1/2)O3 using VC
Method 3 as described in text.

Fig. 4. Equations of state for the tetragonal (dotted-line) and rhom-
bohedral-like (solid-line) phases of Pb(Zr1/2Ti1/2)O3 using VC
Method 4 as described in text.

Fig. 5. Equations of state for the tetragonal (dotted-line) and rhom-
bohedral-like (solid-line) phases of Pb(Zr1/2Ti1/2)O3 using a super-
lattice.



in energy than the rhombohedral. For Method 3, we find that
the predicted equilibrium unit cell heights are nearly identical
and therefore do not show two distinct metastable phases.
For Method 4, we find well-separated equations of state, in
excellent agreement with the superlattice results. These
lattice parameters are also in good agreement with the
experimental findings (,1% lower as expected with the
local density approximation). From the equations of state
we also determine the critical stress required to induce phase
transition. This can be computed using a Gibb’s construc-
tion. From our superlattice calculations, we have found that
a stress of 669 MPa is necessary to cause the transition from
the rhombohedral-like phase to the tetragonal phase. For VC
Method 4, we compute a stress of 830 MPa for this same
phase transition.

4. Conclusions

In this paper we have developed new methods for
constructing VC pseudo-potentials and applied the VC
approximation to the Ti and Zr atoms. We have described
four methods for averaging the component atoms and have
determined the electronic properties of a 1:1 ratio of these
atoms. As a means for comparison, we have completed
density functional calculations for two competing phases
of Pb(Zr1/2Ti1/2)O3. Comparison of the results to those of
superlattice calculations shows that methods which include
accurate averaging of the electronic properties (Methods 3
and 4) yield the proper energetic ordering of the two phases.
Method 4, in particular, provides excellent agreement with
superlattice calculations and experimental results. We have
shown the applicability of the VC approach to studying
compositional disorder in perovskite solid solutions. This
approach permits more complicated structures to be studied
while maintaining computational tractability. Studies
involving heterovalent atoms as well as ternary component
potentials may provide even greater utility for these
methods.
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