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In this paper, we develop a rigorous formulation of the local stress field. This approach can be used in con-
junction with any first-principles method to study stress fields in complex bonded systems. In particular we
investigate the induced stress fields resulting from the homogeneous deformations of tetragonal PbTiO3 and
rhombohedral PbZrO3. As an extension of these findings we also compute the induced stress fields resulting
from homogeneous deformation of the (100) and (111) orderings of Pb(Zr0.5Ti0.5)O3. The stress-field responses
in these four materials are compared and their piezoelectric responses are discussed.
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I. INTRODUCTION

When mechanical stress is applied to a piezoelectric ma-
terial, microscopic atomic rearrangements occur which give
rise to a change in the macroscopic electric polarization of the
material. Conversely, application of a voltage across a piezo-
electric material produces an internal strain within it. In either
case, it is the material’s internal structural behavior (and there-
fore spontaneous polarization) under applied or induced stress
that underlies the piezoelectric response.

The ability of piezoelectric materials to interconvert elec-
trical and mechanical energy lies at the foundation of many
electro-optic and electro-acoustic devices. The use of piezo-
electric materials in these devices stems from the need to mon-
itor the magnitude of induced or applied electrical response
through the device. One of the clearest examples of such an
application is seen in the constant tunneling voltage mode of
the scanning-tunneling microscope (STM).1 Piezoelectric ma-
terials also play a vital role in electro-acoustic transducers. In
these devices the piezoelectric material acts as an interpreter
for the incoming (or outgoing) sound wave and the outgoing
(or incoming) electric signal. These types of devices have uses
in underwater and medical ultrasonic imaging.

In this paper, we present a first-principles investigation of
the distorted perovskite materials PbTiO3 and PbZrO3 at zero
temperature and study the spatial variation of their stress-field
responses to an externally applied uniform strain. In addi-
tion, stress-field studies of the (100) and (111) orderings of
the solid solution Pb(Zr0.5Ti0.5)O3 (PZT) are also reported.
Our selection of PZT is motivated by the wealth of experimen-
tal studies characterizing the strong piezoelectric response in
various composite PZT ceramics.2 In Section II we briefly de-
scribe the formalism for construction of the local stress fields.
In Section III we present results for the computation of lo-
cal stress fields induced by a uniform uniaxial deformation.
A discussion of the local stress fields produced in the simple
perovskite crystals and the more complex PZT superlattices is
provided in Section IV and we conclude the paper in Section
V.

II. STRESS-FIELD FORMALISM

It is central to the study of any piezoelectric crystal to un-
derstand the material’s internal response to an externally ap-
plied strain. Experimentally, a particular crystal’s structural
response to an applied strain can be measured using various
diffraction techniques3 or direct measurement of the changes
in the dimension of the sample by electrical capacitance or
optical interference.4 In order to ascertain the effect strain has
upon piezoelectric response, these techniques are paired with
high-field measurement of strain hysteresis and polarization
change. More recently, field-induced strain has been mea-
sured using a displacement magnification technique.5 How-
ever because the formation and testing of many of these
strained materials is complicated and possibly destructive,6

it is advantageous to have a concise theoretical method from
which information concerning the microscopic response of a
system to an external strain can be extracted.

We consider the response of a system to a homogeneous
long wavelength deformation (scaling transformations de-
scribing pure dilation, strain or shear). For an interacting sys-
tem of atoms, the introduction of any of these uniform defor-
mations can induce a force distribution on all the structural
degrees of freedom of the unit cell. Within a harmonic the-
ory, the induced atomic force distribution, ~F , contains all the
relevant information about the redistribution of the external
stress within the cell. Therefore, the starting point for the
computation of the local stress fields is the calculation of the
induced force distribution. This can be accomplished using lo-
cal density functional theory. These theoretical methods have
proven to be very successful for studying structural phenom-
ena in a broad class of condensed phases. Below we outline
our method to compute the stress field given the local force
density. Once the stress field has been constructed, correla-
tions between the elastic response and the structural features
of the system can be made. A more detailed explanation of
the method will be presented elsewhere.7

We begin with the principle of virtual work in the presence
of an induced force distribution ~Fm. Any set of displacements
of the nuclear coordinates ~u for a particular interacting system
produces a variation of the energy, U , according to
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δU =

Na
∑

m=1

~Fm · ~um (1)

where m represents the m-th ion of the interacting system. It
is useful to convert the displacements and forces to continuous
fields:

δU =
1

Ω

∫

cell

d3r ~F (~r ) · ~u (~r )

=
∑

~G

~F
(

−~G
)

· ~u
(

~G
)

(2)

In the last line we have used lattice translational symmetry to
transform the force and displacement distributions to a recip-
rocal space representation. The principle of virtual work can
be recast in terms of the internal strains in the structure

δU =

∫

cell

d3r
⇒
σ (~r ) ·

⇒
ε (~r )

= Ω
∑

~G

⇒
σ

(

−~G
)

·
⇒
ε

(
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)

(3)

where
⇒
σ is the 6-component stress field tensor and

⇒
ε is the

6-component strain tensor. (Since only the contraction of two
rank-2 tensors is required in equation (3), the tensors are rep-
resented as length-6 vectors for simplicity.)

The direct space components of the strain tensor can be di-
rectly related to the displacement field,

εn (~r ) = ~∇ · Γn · ~u (~r ) (4)

where εn is the n-th component of the strain tensor (n =
1, . . . , 6) and Γn is the 3×3 matrix determining the symmetry
of εn. Transforming this relationship into Fourier space gives
the particularly convenient result

εn

(

~G
)

= ~G · Γn · ~u
(

~G
)

(5)

Combining equation (5) for all 6 components of the strain
tensor gives

⇒
ε

(
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)
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(
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)

(6)

or

P
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(
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)

(7)

Inserting this relationship into the last line of equation (2)
and equating lines (2) and (3) yields
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(9)

Equating the arguments of the summations in equations (8)
and (9) yields all 6 components of the local stress field in re-
ciprocal space:

⇒
σ

(

−~G
)

= ~F
(

−~G
)

· P
−1 (10)

By transforming according to

⇒
σ (~r ) =

∑

~G

⇒
σ

(

~G
)

ei ~G·~r (11)

we can construct the stress distribution in direct space, and this
result can be used to generate a map of the spatial distribution
of the n-th stress field of the system.

Vanderbilt8 has correctly pointed out that this formal-
ism only enables computation of the stress-field com-
ponents which possess the periodicity of the unit cell.
In addition the ~G=0 stress tensor can be computed by
the approach of Nielsen and Martin.9,10 Development of
a method for the computation of the stress-field com-
ponents which are uniform in one or two dimensions
and of finite wavelength in the others is in progress.

III. RESULTS

The first-principles calculations presented in this paper are
performed within density functional theory,11 and the local
density approximation (LDA) is used to describe the electron-
electron interactions. For the solid-state calculations, the sin-
gle electron wave functions are expanded in a plane-wave ba-
sis using a cutoff energy of 50 Ry.

To describe
the electron-nuclear interaction, optimized pseudopotentials12

in fully separable nonlocal form13 are used. An additional
feature of our nonlocal pseudopotentials14 is their improved
transferability over a wide range of electronic configurations.
We have been able to exploit the flexibility contained in the
separation of the local and non-local parts of the pseudopo-
tential. By designing the form of the local potential so that the
pseudo-eigenvalues and all-electron eigenvalues agree at an
additional charge state, it is possible to improve the transfer-
ability of the potential across the charge states lying between
the original reference state and this second charge state.

Due to the need for high accuracy when examining ferro-
electric phenomena, semi-core shells are included in the gen-
eration of the pseudopotentials. We include as valence states
the 3s and 3p for Ti and the 4s and 4p for Zr. The 5d shell is
included for Pb. Furthermore, scalar relativistic effects are in-
cluded in the generation of the Pb pseudopotential.15 For each
metal, a pseudopotential is constructed using a designed local
potential with the addition of a square well within the core
region. By doing so, we are able to achieve excellent trans-
ferability of the pseudopotential over a variety of charge and
excited states. For each of the metals, excellent agreement of
the pseudo-eigenvalues and total energy differences with the
all-electron results is achieved for charge states of +4 to neu-
tral. The oxygen pseudopotential is constructed using the s

angular momentum channel as the local potential.
Brillouin zone integrations for PbTiO3 and PbZrO3 were

done using a 4 × 4 × 4 Monkhorst-Pack k-point mesh.16 It
should be noted that to compute the nonuniform force dis-
tribution resulting from the application of a uniform external
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TABLE I. Computed and experimental equilibrium lattice con-
stants and atomic positions for tetragonal PbTiO3 and rhombohedral
PbZrO3.

Present Theory Experiment

PbTiO3

a( Å ) 3.870 3.862a 3.905b

c/a 1.063 1.054 1.063
z (Ti ) 0.531 0.537 0.540
z (O1,O2 ) 0.604 0.611 0.612
z (O3 ) 0.098 0.100 0.112

PbZrO3

c( Å ) 4.143 4.12c

z (Zr ) 0.540 0.545
x, y (O1 ) 0.583 0.590
z (O1 ) 0.057 0.061

aReference[21].
bReference[22].
cReference[23].

stress, additional k-points were needed due to the broken sym-
metries in the distorted structure.

The calculations involving the rhombohedral PbZrO3 and
(111)-PZT deserve closer consideration. Crystallographically,
the zero-temperature form of PbZrO3 is orthorhombic with 40
atoms per unit cell.17–19 In order to simplify our comparisons
of the local stress fields, the structure of PbZrO3 was fully re-
laxed within the rhombohedral symmetry of zero-temperature
ferroelectric phase of PbZrO3 with small Ti doping.2 Rhom-
bohedral strains of the unit cell shape away from cubic were
neglected since they have been shown to be quite small (∼
0.1◦).20 In the case of (111)-PZT, rhombohedral strains were
also neglected to simplify analysis of the induced local stress
fields.

As part of the local stress-field calculations, complete struc-
tural relaxations of both internal coordinates and crystal lattice
constants were completed for the PbTiO3 and PbZrO3 dis-
torted perovskite structures. We report our atomic positions
and lattice constants for tetragonal PbTiO3 and rhombohedral
PbZrO3 in Table I and compare these results with previous
theoretical and experimental values where possible. The ab-
sence of experimental values for the rhombohedral PbZrO3

is explained by our simplification of the PbZrO3 structure as
described above. In the case of PbTiO3, our agreement with
previously reported theoretical21 and experimental results22

is quite good and is within the error expected from density
functional solid-state calculations done within LDA. For the
rhombohedral PbZrO3, our results agree quite well with the
theoretical results of Singh.23 (In Singh’s work, the lattice
constant of rhombohedral PbZrO3 was not relaxed. The the-
oretically determined lattice constant of the high temperature
cubic perovskite was used instead.)

TABLE II. Computed equilibrium lattice constants and atomic
positions for tetragonal (100)-PZT and rhombohedral (111)-PZT.
Experimental lattice constants are given for randomly ordered PZT
ceramics close to the 50-50 batch composition. See text for descrip-
tion.

Present Experiment

(100)-Pb(Zr0.5Ti0.5)O3

c( Å ) 8.313 8.279a

c/a 2.083 2.053
z (Pb2 ) 0.468
z (Ti ) 0.211
z (Zr ) 0.714
z (O1 ) -0.049
z (O2,O3 ) 0.185
z (O4 ) 0.424
z (O5,O6 ) 0.660

(111)-Pb(Zr0.5Ti0.5)O3

c( Å ) 8.043 8.164∗

z (Pb2 ) 0.498
z (Ti ) 0.237
z (Zr ) 0.737
x (O1 ) 0.221
z (O1 ) -0.014
x (O4 ) 0.721
z (O4 ) 0.470

aReference[2].

Atomic and lattice relaxations were also performed for the
PZT superlattices. The experimental lattice constants as well
as theoretical lattice constants and relaxed atomic positions
are contained in Table II. Experimental values for the (100)-
PZT ceramic are taken for the tetragonal 50-50 batch compo-
sition PZT ceramic according to Jaffe et al. (ceramic 3 using
the notation from reference [2]). The experimental values for
the (111)-PZT ceramic are taken for a rhombohedral PZT ce-
ramic close to the 50-50 batch composition (ceramic 5 using
the notation from reference [2]).

We studied the induced local stress fields by calculating
the internal force distribution induced by a uniform external
strain. The force distribution is obtained from first-principles
density functional theory within the LDA using the Hellmann-
Feynman theorem.24,25 Since our stress-field formalism relies
on the fact that any deformation must not take the system be-
yond lowest order in gradients of the total energy, attention
must be paid to the magnitude of the deformations. We have
found that ±0.2% deformations in lattice lengths and ±0.5◦

in lattice angles are within the harmonic limit of the potential
energy. Extension of this work beyond harmonic order is a
promising direction for the study of recently discovered piezo-
electric single crystals which exhibit large reversible strains.26

There are 6 homogeneous deformations which can be made
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to any crystal: dilation having the symmetry of x2 + y2 + z2,
uniaxial strains—tetragonal with symmetry 2x2−y2−z2 and
orthorhombic with y2 − z2 symmetry, and elementary shear
operations (xy, xz, and yz). Based on crystal symmetry con-
siderations, certain homogeneous deformations are degener-
ate and can easily be constructed from the other deformations.
For a crystal subjected to any of the 6 homogeneous defor-
mations one finds a local internal stress field in all 6 stress
components. It is important to note that for a given defor-
mation, the induced stress fields corresponding to the 5 other
deformations must each integrate to zero over the entire unit
cell.

For brevity, we only report the local stress fields induced by
an applied tetragonal uniaxial stress. In particular we focus
our discussion on the internal tetragonal and dilation stress-
field responses induced by a tetragonal compression. We have
omitted the dilation response stress fields for the PbTiO3,
PbZrO3 and (100)-PZT because they are quite similar to their
respective tetragonal responses.

To simplify the visualization of the stress fields, we have
chosen to show only the regions of highest induced local
stress. For a tetragonal response to a tetragonal compressive
deformation, light blue regions correspond to prolate response
(expansive along the axial direction but compressive along the
equatorial directions) and pink regions correspond to oblate
response (compressive along the axial direction but expansive
along the equatorial directions). For a dilation response to a
uniaxial compressive deformation, light blue isosurfaces cor-
respond to regions in the unit cell undergoing compression in
all directions and pink isosurfaces correspond to expansion in
all directions.

A. Tetragonal PbTiO3

Figure 1 shows the tetragonal local stress field produced
in response to a uniaxial tetragonal deformation of the zero-
temperature equilibrium structure of tetragonal PbTiO3. The
(100) lattice direction contains the Pb atoms at the lower left
forward corner and upper left forward corners of the unit cell.
We find the region of highest induced stress does not involve
the Pb atoms but instead straddles the Ti atom and is oriented
along the (100) direction. In the upper half of the TiO6 oc-
tahedron lying along the (100) direction, there is an oblate
response which would shift the Ti along the (100) direction
toward the upper half of the octahedron. In addition to the
oblate response, there is a prolate response in the lower half of
the TiO6 octahedron. The effect of these volume deformations
would be to elongate the lower half of the oxygen octahedron
while shortening the upper half. Finally, there is no significant
stress-field response involving the oxygens lying equatorial to
the Ti atom.

B. Rhombohedral PbZrO3

Figure 2 shows the tetragonal local stress field produced
in response to a uniaxial tetragonal deformation of the zero-
temperature equilibrium structure of rhombohedral PbZrO3.
The (111) atomic distortion direction contains the Pb atoms at
the lower left forward and upper right rear corners of the unit
cell. In this stress field, as in the tetragonal field for PbTiO3,
there is pairing of oblate and prolate regions surrounding the

central metal atom. However, there is a clear difference be-
tween the responses for the two crystals. The regions in the
response for the PbZrO3 lie along a composite of the (111)
ferroelectric distortion direction and (100) uniaxial strain di-
rection. The corresponding motion of the Zr is toward the
upper half of the ZrO6 octahedron, along this composite di-
rection. In addition to the motion of the Zr atom, the O atoms
lying axial to the Zr atom are moving in a direction opposing
the Zr atom motion.

C. Tetragonal (100)-Pb(Zr0.5Ti0.5)O3

Figure 3 shows the tetragonal local stress field produced
in response to a uniaxial tetragonal deformation of the
zero-temperature equilibrium structure of tetragonal (100)-
Pb(Zr0.5Ti0.5)O3. The (100) lattice direction contains the Pb
atoms at the lower left forward corner and upper left forward
corners of the unit cell. For this super-cell, an alternating pat-
tern of oblate and prolate responses is found lying along the
4-fold rotation axis. As a result of our imposition of tetrago-
nal symmetry, we find response in the (100)-PZT superlattice
lying exclusively along the (100) direction indicating atomic
motions purely in the (100) direction, similar to the tetragonal
response for PbTiO3. This combination of responses leads to
Ti and Zr motions toward the lower halves of the octahedra.
The axial O atoms show opposing motion to the Ti and Zr
atoms.

D. Rhombohedral (111)-Pb(Zr0.5Ti0.5)O3

Figures 4 and 5 show the dilation and tetragonal local stress
fields produced in response to a uniaxial tetragonal deforma-
tion of the zero-temperature equilibrium structure of rhombo-
hedral (111)-Pb(Zr0.5Ti0.5)O3. The (111) atomic distortion
direction contains the Pb atoms at the lower left forward and
upper right rear corners of the unit cell. The (100) lattice di-
rection contains the Pb atom at the lower left forward and up-
per left forward corners of the unit cell. There are two crystal-
lographically unique Pb atoms lying along the (111) direction
in addition to the Ti and Zr atoms.

Dilation Response: Each individual region of highest in-
duced stress field in the response is oriented perpendicular to
the (111) atomic distortion direction. Unlike the responses for
the previously mentioned crystals, we find the Ti and Zr atoms
of (111)-PZT have negligible involvement. Instead we report
alternating expansion and compression regions consisting of
entire Pb2O4 octahedra. These octahedra are comprised of
two adjacent Pb atoms lying along the (100) lattice direction
and 4 equatorial O atoms. The overall pattern of the expan-
sions and compressions shows the (111) stacking of the entire
superlattice. Focusing on the Pb at the lower left forward cor-
ner, we find expansion of the Pb2O4 octahedron above this
atom and contraction of the Pb2O4 octahedron below, result-
ing in largely downward motion of this Pb atom. Analogous
reasoning shows that the dilation stress field causes upward
motion of the central Pb atom. The expansion and contraction
of the Pb2O4 octahedra also gives rise to equatorial oxygen
motion in the (100) plane. The O atoms not involved in the
Pb2O4 octahedra also exhibit atomic motion. Due to the el-
lipsoidal shape of the stress-field regions, the O atoms lying
beneath the Ti atoms are moving primarily upward along the
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(100) while the O atoms lying beneath the Zr atoms are mov-
ing mostly downward.

Tetragonal Response: In this response we report a fea-
ture of the stress field not found in any of the other responses
for the other materials. Namely, we find oblate regions in the
titanate sub-units alternating with prolate regions in the zir-
conate sub-units. In particular, the responsive regions encom-
pass the entire B metal/oxygen octahedra of their respective
sub-units.

IV. DISCUSSIONS

As a general guideline for analysis, it is important to un-
derstand the relationship between the ferroelectric distortion
direction for a particular material and the direction of uniax-
ial stress. It is the combination of these effects that will either
enhance, diminish or change the nature of the ferroelectric dis-
tortion as the stress is applied. We have therefore divided our
discussion of the four materials according to this guideline.
For all of the above reported responses the direction of uniax-
ial stress is (100).

In both tetragonal PbTiO3 and the (100)-PZT crystals, the
direction of applied stress is parallel to the direction of ferro-
electric distortion. Because of this orientation, we have found
stress field responses that indicate B metal and oxygen mo-
tions along the direction of the uniaxial stress. Application of
positive stress moves the atoms from their tetragonal positions
towards the paraelectric cubic phase. Since the cubic structure
is not ferroelectric, positive stress clearly reduces the ferro-
electric distortion; in the way, the local stress field depicts the
piezoelectric response of these materials.

For the rhombohedral crystals, the direction of uniaxial
stress is not parallel to the direction of ferroelectric distor-
tion. The simplest depiction of this is shown in rhombohedral
PbZrO3. It is evident from the tetragonal local stress field
that the directions of uniaxial strain and atomic distortion are
competitive influences on the B metal and oxygen displace-
ments. Thus, the local stress field depicts two mechanisms
for the piezoelectric response: the rotation of the ferroelectric
distortion direction from the (100) toward (111) as well as the
change in the magnitude of the ferroelectric distortion due to
different cation and anion responses.

In the case of (111)-PZT, this competition of influences is
more difficult to characterize. Upon uniaxial compression
we find no significant motion of the B metal atoms. In-
stead we find complex Pb and O motions. The origin of
O motion deserves particular attention. The motion along
(100) and (100) of the oxygen atoms that lie directly above
and below the B metal atoms can be predicted from either
the dilation or tetragonal responses. However, the complex
motion of the other oxygen atoms can only be ascertained
from a simultaneous analysis of both responses. As an illus-
tration, we examine the motion of the O atom located near
( 1

4
,0, 1

4
). Because of its position relative to the expansion re-

gion depicted in the dilation response, it has a component of
atomic motion along the (001) direction. However, according
to the tetragonal response, the same atom also moves along
the (010) direction due to the pairing of an oblate response
centered in the TiO6 octahedron and a prolate response cen-

tered in the adjacent ZrO6 octahedron. This same type of
analysis can be done for all the oxygen atoms lying equato-
rial to the B metal atoms and can be used to predict their
atomic motions due to uniaxial compression. Based upon
these atomic motions, it is possible to characterize the piezo-
electric response in (111)-PZT. The piezoelectric response can
be summarized as complex motions of the Pb and O sub-
lattices against the almost stationary B metal atomic posi-
tions, and not a simple move toward a higher symmetry struc-
ture, as seen in the previously described tetragonal crystals.

V. CONCLUSIONS

In this density-functional study, we have examined the
induced local stress fields resulting from an externally ap-
plied homogeneous uniaxial deformation of two distorted per-
ovskite structures, PbTiO3 and PbZrO3 and the (100) and
(111)-PZT superlattices. We have found in the case of ma-
terials in which the ferroelectric distortion direction is paral-
lel to the direction of uniaxial stress (tetragonal PbTiO3 and
(100)-PZT), the existence of a piezoelectric response involv-
ing atomic motions of the B metal and axial O atoms. How-
ever, application of stress along a direction not parallel to the
ferroelectric distortion directions gives rise to a complicated
stress-field pattern (rhombohedral PbZrO3 and (111)-PZT). In
particular, we report a piezoelectric response in the rhombohe-
dral PbZrO3 due to B metal and oxygen atomic motions along
a composite direction comprised of the (111) atomic distortion
and (100) uniaxial strain directions. In the (111)-PZT crystal,
we find complex Pb and O motions against a fixed B metal
atom sub-lattice upon application of tetragonal stress.

This study demonstrates the utility of stress fields and their
applicability to ferroelectric phenomena. The construction of
the local stress field is computationally tractable and provides
an intuitive way to visualize and understand the response of a
crystal to applied stress. Stress-field analyses done in con-
junction with spontaneous polarization studies will further
broaden the understanding of piezoelectric materials.
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FIG. 1. Tetragonal stress-field response to a uniaxial tetragonal deformation of tetragonal PbTiO3. (blue=lead, red=titanium, green=oxygen).
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FIG. 2. Tetragonal stress-field response to a uniaxial tetragonal deformation of rhombohedral PbZrO3. (blue=lead, yellow=zirconium,
green=oxygen).
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FIG. 3. Tetragonal stress-field response to a uniaxial tetragonal deformation of tetragonal (100)-Pb(Zr0.5Ti0.5)O3. (blue=lead, yel-
low=zirconium, red=titanium, green=oxygen).
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FIG. 4. Dilation stress-field response to a uniaxial tetragonal deformation of rhombohedral (111)-Pb(Zr0.5Ti0.5)O3. (blue=lead, yel-
low=zirconium, red=titanium, green=oxygen).
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FIG. 5. Tetragonal stress-field response to a uniaxial tetragonal deformation of rhombohedral (111)-Pb(Zr0.5Ti0.5)O3.
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