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A pseudopotential generation method is presented which significantly improves transferability. The method
exploits flexibility contained in the separable Kleinman-Bylander form of the nonlocal pseudopdifhtjal
Rev. Lett.48, 1425(1982]. By adjusting the functional form of the local potential, we are able to improve the
agreement with all-electron calculations. Results are presented for the H, Si, Ca, Zr, and Pb atomic pseudo-
potentials. Configuration testing, logarithmic derivatives, chemical hardness, and structural tests all confirm the
accuracy of these pseudopotenti80163-18209)14715-3

I. INTRODUCTION electronic reference stateHowever, the corresponding
single-particle differential equation for a pseudopotential
The pseudopotential approximation, or the separation ofonstructed with this method is more complicated because of
electrons into core and valence based on their level of pathe angular momentum projection. Expressing the semilocal
ticipation in chemical bonding, is central to most modernpseudopotentials within a plane-wave basis requires the com-
electronic structure calculations. The original atomic pseudoputation ofV(G,G’) instead of jusi/(G—G’), whereG is a
potential formalism grew out of the orthogonalized plane- reciprocal-lattice vector. This results in a huge memory ex-
wave approach.The pseudopotential replaces the nuclearpense.
Coulomb potential plus core electrons, thus simplifying the  The fully separable nonlocal Kleinman-Bylander pseudo-
original system of differential equations. Adopting the potential forn? dramatically reduces the memory cost of the
pseudopotential approximation may introduce some unphyssemilocal pseudopotentials. These pseudopotentials are con-
cal results if the pseudopotentials are not constructed judistructed from a local potential and angular-momentum-
ciously. The accuracy of the pseudopotential, or its transferdependent nonlocal projectors. In Fourier space, the projec-
ability, may be gauged by its ability to reproduce the resultsor can be expressed &%(G)-W(G') replacingV(G,G’).
of all-electron calculations in a variety of atomic environ- This reduces the pseudopotential memory scaling fkgnto
ments. N. With the inclusion of the nonlocal projectors, the resulting
The earliest pseudopotentials generated for use in densitgingle-particle Kohn-Sham equation becomes an integrodif-
functional theory calculations replaced the strongly attractiveerential equation. The solutions to an integrodifferential
Coulombic potential near the origin with a weaker local po-equation may violate the Wronskian theorem and possess
tential, and core electrons were eliminated from thenoded eigenstates lower in energy than the nodeless
calculations’ In this approach, approximate agreement be-solution® A simple diagnostic procedufellows for detec-
tween pseudopotential and all-electron eigenvalues as well agn of these lower-energy or ghost states. The separable
logarithmic derivatives was achieved for many elementsform of these potentials also permits efficient evaluation in
However, first-row nonmetals and first-row transition metalssolid-state calculations witiN?> or N2log,N CPU time
could not be accurately described by these pseudopotentiaksealing® for the nonlocal energy contribution and its gradi-
To improve pseudopotential transferability, more compli-ents. These potentials have proven very effective for the
cated (and more flexiblg semilocal pseudopotentials were study of computationally intensive large-scale systéMs.
designeiwith a different spherically symmetric potential for  To improve the transferability of the Kleinman-Bylander
each angular momentum. This added flexibility permits thepseudopotentials, multiple-projector separable nonlocal
enforcement of the norm-conservation condition at the referpseudopotentials have been developed. In these ap-
ence energys;, for R greater than the core radius, proaches, the Kleinman-Bylander nonlocal projector form is
AE P considered the first term of a series expansion of projectors.
i(d Ing; (r)) _d dIng; S(f)) ) These projectors provide agreement of the pseudoatom scat-
de dr r. de dr tering properties over a broader energy range.

o While characterization of the scattering properties is an
where#/*5(r) and #7Xr) are the all-electron and pseudopo- important tool in ascertaining the transferability of a pseudo-
tential Kohn-Sham eigenstates for the staténcluding this  potential, there are some properties that cannot be sampled
criterion into pseudopotential generation greatly improveausing this diagnostic. These remaining properties involve ef-
transferability. fects of electrostatic screening and nonlinearity of the

Incorporating norm conservation makes it possible toexchange-correlation energy. Recently, chemical hardness
have exact agreement between the all-electron and pseudosnservation has been used as an effective measure of how
potential eigenvalues and wave functions outsigéor one  these self-consistent terms vary with electronic configuration
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and as an indication of accurate pseudopotentiations (4A5(r)) and their eigenvaluesfF). Then a pseudo-

generatiort> The chemical hardness is defined as the mat”)i)otential VUps and pseudo-wave-functios?® are chosen

hich sati
1 PEfp(r)] 1 dey which satisfy

2 gt oty 2 af

: 2

nl,n’l’=

(T+Vlpl+ ¥l pl+ Veg | dFD =enldlD, (3

where E,o{ p(r)] is the total energy of the atom and is a where T is the single-particle kinetic-energy operator, and

functional of the total electronic charge densitfr), fo is  V,[p] and Vyc[p] are the self-consistent Hartree and
the occupation number of thelth state, and:, is the self-  exchange-correlation energy operators, respectively. The lat-
consistentnith eigenvalue. In the second equality, we haveter two operators are functionals of the total charge density
used the fact that, = dEf p(r)]/df . p(r), where p(r)=3,f.|6"Xr)|2. We require that the

One of the other major objectives in pseudopotential genpseydo-wave-functions obey the following criteria:
eration, besides transferability, is rapid convergence in a

plane-wave basis. It has been shown that the residual kineti ) P = 5 () d¢5|s(f):d¢ﬁ|E(f)
energy of the reference state pseudo-wave-functions Iyingi nl n dr dr '
beyond the plane-wave cutoff energy is an excellent predic-  d2¢~r)  d?¢AF(r)
tor of the basis set convergence error of the pseudopotential darZ  ~ ar? forr=re.
in a solid or moleculé? The optimized pseudopotential con- (2) eP3=¢gAE.
struction is designed to minimize this residual kinetic energy. nteen

The ultrasoft pseudopotential constructibmvas formu- 3) d <d|n¢rﬁ’|5(r))

lated to generate highly transferable multiple-projector de dr

pseudopotentials with rapid convergence in a plane-wave ba-

sis. In order to improve pseudo-wave-function smoothness,

the norm-conservation constraint on the wave function is re4) ("3 phS=(pAF| pAE) =1.

laxed. To reintroduce norm conservation, a compensating va-

lence charge density is added. If Vpsis notl dependent, the resulting pseudopotential is
In this paper, we present a method for nonlocal pseudoealled local(radially and angularly local More generally,

potential construction .accordmg to the Klelnman-By!ander(,PS can be separated into a local potential and a sum of

separable form whlph improves accuracy Whl|.e retaining the,short-ranged corrections:

convenience of a single-projector representation. We exploit

the inherent arbitrariness in the separation of the local and . N -

nonlocal components of the potential. The present work VPS=V|OC+§|: Avy, (4)

should be placed in context with other recent studies that

have focused on this same flexibility. One such study inwhere

volved constructing the local potentials from various linear

combinations of the semilocal potentiafsChemical hard-

ness testing showed that the accuracy of these pseudopoten-

tials approached the accuracy of a semilocal pseudopotential .

from the same set dfdependent potentials, but did not ex- For a semilocal pseudopotential, the correctidig™ are

ceed it. In another study, the form of the local potential isprojection operators in the angular coordinates and local in

expressed as a sum of Gaussians for the first two rows of tH&e radial coordinate. To construct a fully separable nonlocal

Periodic Tablé® These dual-space multiple-projector pseudopotentiak;\?I is formed according to

pseudopotentials have more recently been extended to in-

“de dr

g(d |n¢;\,E(r>)

R,eq R,eq)

\A/'OCEI d3r|ryV'os(r(r|. (5)

clude the scalar relativistic effe&.Using this approach, a L AV g (pRTAVR
high level of transferability can be obtained for elements up = PSSl P . (6)
to Rn. <¢nﬂAVI |¢nls>

The paper is organized as follows. We give a brief reviewW
of the Kleinman-Bylander nonlocal pseudopotential formal-
ism in Sec. Il. We also illustrate our approach for improving ~ PS. /oG, AVYSLy| (P
transferability. In Sec. Ill, we present atomic and solid-state Ves ¢”'S>_(V AV )|¢”'S>' @)
testing results for potentials constructed with our form of theTherefore, for the reference configuration we are guaranteed
nonlocal components for the H, Si, Ca, Zr, and Pb atomsexact agreement between the eigenvalues and wave functions

henVpg operates ongh, we obtain

Conclusions are presented in Sec. IV. of the semilocal and nonlocal atoms.
However, for any statézﬂs,ﬁ) other than the reference
II. DESIGNED NONLOCAL PSEUDOPOTENTIAL state,
FORMALISM
Y PS (/loc /SLy|,.PS
. . ’ + ! 1
To construct a pseudopotential, an electronic reference Ved ) # (VO+ AV |, 8

state is chosen, and an all-electron calculation is performegyheren’ is not required to equal. The inequality in Eq(8)

From this calculation we obtain the all-electron potentialjjjystrates the difficulties involved in assessing and improv-

(Vag), the total energy ELE), the all-electron wave func- ing the transferability of nonlocal pseudopotentials: the
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> . 12¢ TABLE Il. Parameters for the augmentation operafh)r {or the
% 2 1 _ designed nonlocal pseudopotentials. Step widths are in atomic units,
a5 g'g 3 and step heights are in Ry.
[ . =y
O E
EE gg E Step Step
© ‘o E . Atom width height
0 8
H 0.70 2.00
Distance (a.u.) Si 1.35 70.00
FIG. 1. Radial charge-density distribution for the'Gapseudo- €2 0.93 6.76
atom (323p®4s°3d°). Results are given for S(dotted ling, 3p  Zr 1.72 0.66
(dashed ling 4s (solid line), and 3 states(dot-dashed ling Pb 1.90 1.60
transferability of a nonlocal pseudopotential can be dramati-
cally different from the corresponding semilocal pseudopoWhere
tential.
L . . /SL_ A\ 4P P /SL_ A
For simplicity, we have focused on the single-projector A\"/DNL_(AV| —A)[ g (#nil(AVPE-A) 10
nonlocal pseudopotential construction in the current ap- . <¢Eﬂ(A\7ISL_A)|¢EIS>

proach. We begin by constructing an optimized semilocal

pseudopotential. Since Ef) is simply an addition of local -
and nonlocal terms. we mav alt&f°¢ arbitrarily without When the augmentedys operates on the reference state, the
' Y y result reduces to Eq7). In doing so we are not only guar-

losing the exact agreement between the all-electron and non- .
. ; anteed the exact agreement of the nonlocal pseudopotential
local eigenvalues and pseudo-wave-functions at the reference . . .
. . . éigenvalues with the semilocal eigenvalues due to the

state, provided we adjust the nonlocal corrections accord-

inalv. However. we change the eigenvalue aareement at anKIeinman-ByIander construction but we also insure agree-
gly. . . 9 9 9 Ment with the all-electron eigenvalues due to the semilocal
other configuration by doing so.

: ”» . ' . construction. However for any state other than the reference
Operationally, additional electronic configurations or de-

. . ; . state, the second term in E) will contribute differently.
sign configurations are chosen. A local augmentation opera- ST ) ]
By adjustingA, it is possible to obtain almost exact agree-

tor (A) is added to the local potential forming a designed b he all-el d desianed local ei
nonlocal pseudopotential. The augmentation operator is su ment between the all-electron and designed nonlocal eigen-
' values for the manifold of design configurations. With the

tracted from the nonlocal correctionsV, in the following  hroper selection of the reference electronic configuration and
way. pseudopotential construction parameters, excellent transfer-
ability can be obtained for a variety of ionized and excited
\”/PS:(\”/|oc+A)+E A\A/PNL, (9) configurations. i
' The position ofA deserves particular attention. We begin
by examining the transferability error of a standard
TABLE I. Construction parameters for the H, Si, Ca, Zr, and PbKleinman-Bylander nonlocal pseudopotential constructed in
pseudopotentials. HSC potentials were generated with the methathe absence of an augmentation operator. Based on these
described in Ref. 4. OPT potentials were generated with methOdFesults we can determine optimal placement&oifn the ra-
described in Ref. 14. Core radii{) are in atomic unitsg. are in dial grid. We have identified two different cases for the po-
Ry*2, and plane-wave cutoffs(,,) are in Ry. A
sitioning of the operator.

(1) The valence orbitals may have different charge-

Reference Hsc OPT density profiles which lead to spatial separation among the

Atom configuration  r, Ecut re Je Ecut states. This situation allows placement of the augmentation

o5 operator in a region that will preferentially affect certain

H 1s 035 70 072 707 50 giates while leaving other states nearly unchanged.

Si 3s? 1.21 16 190 360 13 (2) Due to electrostatics, as an atom becomes more posi-
3p%s 1.18 190 3.60 tively charged its charge density will move inward toward
3d%° 1.31 220 3.60 the nucleus of the atom. Positioning of the operator can

Ca 32 0.74 83 129  7.07 50 therr—_zfor_e be made acgording to desired adjustments of vari-
3p° 1.15 160 707 ous ionized configurations.
3d° 0.70 127 707 As an example, we have found that for the Ca nonlocal

pseudopotential, the magnitudes of the transferability errors

Zr 4s® 092 92 180 707 50  of the 35, 3p, and 3 orbitals increase as the pseudo-atom
4p°® 0.81 151 7.07 becomes less ionize@ee Table Il). However, the magni-
4d° 115 190 7.07 tude of the error in the g orbital decreases over this same

Pb 6s° 1.10 72 1.70 6.05 50 range of ionization. Therefore, the augmentation is required
6p° 1.20 200 552 to adjust then= 3 orbitals preferentially. Figure 1 shows the
5d10 1.10 1.75 7.07 charge density distribution of the Ca pseudo-atom in-tf2e

configuration. We find that there is a spatial separation be-
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TABLE lIl. Configuration testing for the H, Si, and Ca atoms. Eigenvalues/Rg; are given for an all-electron atofAE). Absolute
errors are given for a nonlocal pseudopotential generated with the method described itH&E) 4an optimized nonlocal pseudopotential
generated with the method described in Ref(Q®T), and a designed nonlocal pseudopotential generated with the presented (P#thod
The design configurations used to construct the DNL potentials are identified with a d&dgéidl energies are in Ry.

AE HSC OPT DNL AE HSC OPT DNL
State energy error error error State energy error error error
H
1s° —1.0000 0.0000 —0.0001 —0.0001 ! —0.4673 0.0000 0.0000 0.0000
TAE 0.5504 0.0000 0.0000 0.0000 TAE, —0.3413 0.0000 0.0000 0.0000
1s%5 —0.9067 0.0000 0.0000 0.0000 s1° —-0.1133 0.0000 0.0000 0.0000
AE o 0.0000 0.0000 0.0000 0.0000 TAE, —0.4819 0.0000 0.0000 0.0000
Si
3s? —1.4870 0.0000 0.0000 0.0000 s3 —1.4007 —0.0012 —0.0010 —0.0007
3p%s —0.9406 0.0000 0.0000 0.0000 p3 —0.8647 —0.0009 —0.0008 —0.0006
3d%S —0.3270 0.0000 0.0000 0.0000 d% —0.2689 0.0001 0.0000 0.0000
AE o 0.0000 0.0000 0.0000 0.0000 TAE, —0.3015 —0.0002 —0.0002 —0.0001
3st —2.1516 0.0051 0.0050 0.0040 s3 —1.2890 0.0000 0.0000 0.0000
3pt —1.5641 0.0038 0.0040 0.0032 p%° —0.7492 0.0000 0.0000 0.0000
3d° —0.8310 0.0019 0.0030 0.0025 d&%° —0.1756 0.0000 0.0000 0.0000
TAE 1.4690 —0.0015 —0.0016 —0.0012 TAE —0.1240 0.0000 0.0000 0.0000
3s? —0.7966 —0.0017 —0.0018 —0.0008 3! —0.8514 —0.0010 —0.0011 —0.0005
3p? —0.3071 —0.0009 —0.0011 —0.0005 K —0.3491 —0.0007 —0.0008 —0.0003
TAE —0.8778 —0.0013 —0.0013 —0.0001 TAE —0.3817 —0.0007 —0.0008 —0.0005
Ca
3s? —4.5277 0.0000 0.0000 0.0000 s3 —3.2284 0.0039 0.0021 0.0005
3p® —3.1688 0.0000 0.0000 0.0000 p3 —1.8875 0.0007 0.0023 0.0007
4s° —1.0537 —0.0087 —0.0099 0.0000 g —0.2469 —0.0022 —0.0022 0.0001
3d° —1.1933 0.0000 0.0000 0.0000 ds —0.0648 0.0012 0.0012 0.0000
TAE 0.0000 0.0000 0.0000 0.0000 AEq —1.1903 —-0.0119 —0.0036 —0.0001
3s? —3.9220 0.0061 0.0059 0.0000 s3 —4.4495 0.0189 0.0199 0.0003
3p® —2.5681 0.0050 0.0057 0.0000 p3 —3.0670 0.0258 0.0192 0.0007
4st —0.6716 —0.0033 —0.0039 0.0000 & —0.8070 —0.0040 —0.0045 0.0000
3d° —0.6401 0.0043 0.0044 0.0000 d% —1.0294 0.0142 0.0156 0.0006
AE o —0.8746 —0.0079 —0.0062 0.0000  AE. 1.2031 —0.0097 —-0.0223 —0.0003
3s? —3.4115 0.0095 0.0093 0.0000 s3 —5.0789 0.0129 0.0139 0.0004
3p® —2.0601 0.0078 0.0089 0.0000 p3 —3.6924 0.0212 0.0135 0.0009
4s? —0.2833 —0.0010 —0.0011 0.0000 g —1.2845 —0.0085 —0.0095 0.0001
3d° —0.1659 0.0061 0.0064 0.0000 d% —1.6335 0.0098 0.0111 0.0009
TAE —1.3478 —0.0112 —0.0086 0.0000 AE 2.2464 —0.0014 —0.0155 —0.0003

tween then=3 and 4 charge densities. In order to maxi- foundation for the local potential, and a square step in the
mize the effectiveness @, it should be positioned between radial coordinate as our augmentation operat@ihese
r=0 andr=1 a.u. choices are made for simplicity. Choosing other angular mo-
mentum channels for the local potential or using a multiple-
step augmentation operator can lead to enhanced transfer-
ability or efficiency) The height and width of the step have
We have applied the designed nonlocal pseudopotentidleen adjusted to reproduce the all-electron eigenvalues for
approach to the H, Si, Ca, Zr, and Pb atoms. All atomicthe design configuration.
energy calculations were done within the local-density ap- Our selection of reference configurations deserves addi-
proximation (LDA) and optimized pseudopotential genera-tional mention. Semicore orbitals were included as valence
tion methods were used. For the Zr and Pb atoms, we havia the Ca (3 and 3), Zr (4s and 4p), and Pb (%) pseudo-
included the scalar relativistic effett.The parameters used potentials. The inclusion of these states allowed for the re-
in the pseudopotential construction are presented in Table moval of ghost levels, greater local potential design flexibil-
We have chosen theangular momentum channel to be the ity, and better overall transferability of the pseudopotential.

Ill. RESULTS AND DISCUSSION
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TABLE IV. Configuration testing for the Zr and Pb atoms. Eigenvalues &R, are given for an all-electron atofAE). Absolute
errors are given for a nonlocal pseudopotential generated with the method described ittH&E) 4an optimized nonlocal pseudopotential
generated with the method described in Ref(Q®T) and a designed nonlocal pseudopotential generated with the presented (Bathod
The design configurations used to construct the DNL potentials are identified with a d&ggéidl energies are in Ry.

AE HSC OPT DNL AE HSC OPT DNL
State energy error error error State energy error error error
zZr
452 —7.0190 0.0000 0.0000 0.0000 s4 —3.7412 —-0.0077 —0.0079 —-0.0011
4p® —5.3582 0.0000 0.0000 0.0000 p% —2.1484 —0.0043 —0.0048 0.0000
550 —2.4422 —0.0553 —0.0552 —0.0007 50 —0.2693 —0.0083 —0.0088 0.0010
4d° —2.9835 0.0000 0.0000 0.0000 d4 —-0.1251 —0.0001 —0.0004 0.0007
TAE 0.0000 0.0000 0.0000 0.0000 AE, —5.4996 -0.0123 —0.0106 0.0019
4s? —5.3220 0.0104 0.0106 0.0008 s4 —5.4808 0.0089 0.0111 -0.0017
4p® —3.6964 0.0102 0.0104 0.0007 p2 —3.8375 0.0105 0.0118 —0.0004
5st —1.3047 -0.0211 —0.0215 0.0019 § —1.3385 —0.0252 —0.0253 0.0011
4dt —-1.4711 0.0075 0.0082 0.0000 d4 —1.5623 0.0101 0.0108 0.0010
AE —4.0782 —0.0309 —0.0303 0.0013  AE, —1.8274 —0.0325 —0.0320 0.0016
4s? —3.9956 0.0119 0.0118 0.0000 s4 —3.8446 —0.0003 —0.0005 —0.0005
4pb —2.3881 0.0125 0.0124 0.0002 p% —2.2458 0.0019 0.0015 0.0002
5s? -0.3371 —0.0062 —0.0065 0.0011 § —0.2957 —0.0075 —0.0079 0.0012
4d? —0.2760 0.0097 0.0100 0.0000 d% —0.1835 0.0032 0.0032 0.0006
TAE o —5.7174 —0.0348 —0.0340 0.0030  AEy —5.6291 —-0.0217 —0.0203 0.0023
Pb

6s? —3.5516 0.0000 0.0000 0.0000 s6 —2.8615 —0.0014 —0.0019 —0.0013
6p° —2.6398 0.0000 0.0000 0.0000 pb —2.0243 —0.0002 —0.0007 —0.0006
5d1° —4.5497 0.0000 0.0000 0.0000 a¥ —3.7642 —0.0048 —0.0060 —0.0045

AE 0.0000 0.0000 0.0000 0.0000 TAE, —2.3331 —0.0007 —0.0005 —0.0004
6st —2.1243 —0.0022 —0.0031 —0.0016 &! —1.5149 —0.0017 —0.0025 —0.0010
6pt —1.3651 —0.0007 —0.0013 —0.0011 ®2 —-0.8161 0.0009 0.0003 0.0003
5d1° —2.9194 —0.0044 —0.0056 —0.0010 510 —2.2559 —0.0068 —0.0084 —0.0036
TAE —4.8228 —0.0031 —0.0031 —0.0019 TAE —5.9090 —0.0033 —0.0037 —0.0024
6s? —0.8961 —0.0002 —0.0010 —0.0009 &2 —1.4323 —0.0024 —0.0034 —0.0013
6p? -0.2777 0.0030 0.0027 0.0026 pb —0.7556 —0.0001 —0.0008 —0.0006
5¢1° —1.5607 —0.0039 —0.0054 0.0015 g0 —2.1339 —0.0039 —0.0053 0.0018
TAE o —7.1077 —0.0049 —0.0057 —0.0027 TAE —6.5967 —0.0061 —0.0064 —0.0035

It is also important to note that although we have included In the case of the H atom, we have found that a high level
multiple s-channel states, we daot treat these states with of transferability was achieved without adding an augmenta-
different projection operators. The pseudopotentials are gertion operator, although addition of an augmentation operator
erated using only one nonlocal projector for each anguladid produce a slight improvement. For all other atoms we
momentum channel. have found that a square potential step as the augmentation

TABLE V. Chemical hardness testing for the Ca atom. Absolute hardness values are compared for an
all-electron atom(AE), a nonlocal pseudopotential generated with the method described in B¢8G}, an
optimized nonlocal pseudopotential generated with the method described in refere@@T4and a de-
signed nonlocal pseudopotential generated with the presented m@&ntd. Hardness values were deter-
mined for two different electronic configurations. Each element of the symmetric hardness Matx, ,
is the change in thelth eigenvalugin Ry) for a change of tha&’l’th occupation number.

351.953p5.94sl3d0.l 3523p64523d0'01
nl n'l’ AE HSC OPT DNL AE HSC OPT DNL
3s 3s 0.5655 0.5670 0.5620 0.5657 0.4945 0.4946 0.4897 0.4946

3p 0.5474 0.5453 0.5441 0.5475 0.4767 0.4735 0.4722 0.4767
4s 0.2830 0.2853 0.2853 0.2830 0.2257 0.2269 0.2269 0.2257
3d 0.4614 0.4612 0.4586 0.4614 0.3677 0.3654 0.3634 0.3677
3p 3p 0.5310 0.5250 0.5279 0.5309 0.4607 0.4540 0.4565 0.4606
4s 0.2813 0.2832 0.2835 0.2813 0.2250 0.2260 0.2262 0.2250
3d 0.4506 0.4491 0.4482 0.4507 0.3593 0.3562 0.3554 0.3594
4s 4s 0.2079 0.2095 0.2097 0.2079 0.1790 0.1799 0.1800 0.1790
3d 0.2639 0.2654 0.2655 0.2639 0.2101 0.2105 0.2106 0.2101
3d 3d 0.3941 0.3928 0.3915 0.3936 0.2989 0.2959 0.2951 0.2986
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operator gives improved transferability. The parameters for TABLE VI. Density-functional results for various diatomic and
A are contained in Table Il. Table Ill contains configura- bulk systems. Structural parameters are compared for a nonlocal

tional testing results for the H, Si, and Ca atoms. Table IVpseudopotential generated with the method described in Ref. 4

. . HSC timized local dopotential ted with th
contains testing results for Zr and Pb atoms. In both tableéhethg)’dazeosir'?g:de innoge(;cal gs% (;F:%eg '362%?]6;3 ior\nl\llécal ©

the design configurations have been identified. For Ca and Z{seqopotential generated with the presented metBdiL). Ex-
atoms, for which semicore states were included, the referﬁerimemm and previous theoretical results using dual-spa&s

ence configuration is also a design configuration due to thgseydopotentials and linearized-augmented plane-wad@W)
presence of the secorgistate. We present results from an methods are also provided for comparison.
all-electron atom, a nonlocal pseudopotential generated ae

cording to the Hamann-Schkr-Chiang construction, an op- Expt. DS LAPW HSC OPT DNL
timized pseudopotential generated with an unaugmented lo=

cal potential consisting of only the angular momentum H,

channel potential, and a designed nonlocal pseudopotentibd (A) 0.741* 0.766° 0.773° 0.767 0.766 0.767
which includes the square step. The potentials were tested ipe (cM ) 4395 4040 4169 4178 4165
both ionized and excited electronic configurations. In addi- Si(s)

tion to eigenvalue information, the table also compares totala (&) 5.43¢ 5.41° 5363 5361 b5.412
energy differences from the reference state. It is important t® (GP3 98.8 98 96.2 981 96.0
note that the most substantial improvements occur in atoms SiH,

in which highly spatially separated semicore stdéa and r, (A) 1.479" 1.486 1.485 1.482 1.491
Zr) were included in the pseudopotential construction. They, (cm™?) 2187 2140 2145 2182
inclusion of these states provides charge-density separation Ca(s)

and therefore the placement of the augmentation operator ig (A) 5.584 533° 5332 5.332 5.338
those regions of separation provides dramatic improvemerg (Gpa 15.2 19 191 192 194
[case(1) abovd. The eigenvalue and total-energy errors for CaH

the Ca and Zr designed nonlocal pseudopotentials are one fo (4 20022 1.961 1954 1950 1.954
twq orders of mggnltude smaller than the Hgmann—SehJu we (cm™l) 1299 1290 1275 1285
Chiang and optimized results. For atoms in which charge Zr(s)

separation is not as complef8i and Ph, the improvements a (&) 3,230 31459 3122 3.120 3.161
are less dramatic. c (A) 5.147 5116 5.047 5043 5122

Logarithmic derivative determination has been exten-

. . . . B (GPa 83.3 98.6 1029 105.0 934
sively used as a testing procedure to investigate the transfer- Ph(s
ability of a pseudopotential. For brevity we present only the A 4.95¢ ©) 4866 4859 4.868
results for the Ca pseudopotential. Figure 2 shows the Iogaq( ) : : ‘ '
rithmic derivative differences between the all-electron poten—B (GP3 43.0 550 552 550
tial and the three pseudopotential generation methods for the PbH
1.839% 1.817 1.852 1.850 1.853

s, p, andd potentials of the Ca atom. For tlseandp chan- re (A) B
nels, we find excellent agreement over a large energy rangge (cm °) 1564 1536 1579 1530
between the pseudopotentials generated with the designegg
- eference 20.
nonlocal method and the all-electron potentials. The energy,
. - - Reference 16.
errors in thes andp states for the Hamann-Schkéwn-Chiang
o . - Reference 23.
and optimized pseudopotentials presented in Table Il arg
. . : o . Reference 21.
directly related to the logarithmic derivative differences. In-,
; . . Reference 24.
terestingly, we find that the designed nonlocal pseudopotenheference 29
tial d state logarithmic derivative differs from the all-electron s . . _
C o Reference 25 using Hedin-Lundgvist exchange-correlation poten-
results more than the other methods. This finding is in ap-i-is
parent contradiction to the configuration testing presented in"
Table Ill. The origin of the discrepancy lies in the nature of
the logarithmic derivative test. This test only probes the betentials for each electronic configuration. With errors below
havior an electron of a given energy scattered off a stati©®.5 mRy, the designed nonlocal pseudopotential is one to
potential. Self-consistent effects are therefore not includedwo orders of magnitude more accurate than the Hamann-
This phenomenon has been identified previod$We find  Schiiter-Chiang and optimized pseudopotentials. All matrix
that chemical hardness testing tracks more closely with corelements involving the @ state show a higher level of trans-
figuration testing than logarithmic derivative testing does. Inferability for the designed nonlocal pseudopotential than the
logarithmic derivative testing at other electronic configura-other pseudopotentials.

tions, the designed nonlocal pseudopoterdistate scatter- As a final set of tests, we have completed density-
ing properties are significantly more accurate than the othefiunctional calculations within the LDA for various hydride
pseudopotentials. molecules involving the presented atoms as well as bulk Si,

Table V contains chemical hardness testing results for C&a, Zr, and Pb. The results of these tests are contained in
all-electron and pseudoatoms, for two electronic configuraTable VI. We also provide experimental reséflt¥?and the-
tions. In both cases, we find excellent agreement in chemicalretical studies where availabi&?*-2>The cited linearized-
hardness between the all-electron and designed nonlocal paugmented plane-wave. APW) calculation$®=2° treat all
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0.001 due to the considerable transferability enhancement which
& 0.0005 & / the designed nonlocal approach providsge Table V.
= 0 Since Zr is a transition metal, its and d orbitals are very
—0.0005 _ %""‘\\ i similar in energy; this makes the structural parameters of Zr
—0001 E o more sensitive to the pseudopotential transferability than the
SN BT B B N R B other elements tested.
- It is important to note that the calculation of these struc-
—_ 0.001 £ tural parameters is very robust and is therefore not a particu-
g 0.0005 F larly sensitive test of transferability. Instead, studies involv-
e 0 p= ing electronic properties of systems such as electron-phonon
-0.0005 £ interactions may be more fruitful in ascertaining the effects
X T S T T of improved transferability.
0.002 ;
. 0.0015 _ E IV. CONCLUSIONS
= 0001F f In this paper, we have developed and implemented a fully
0.0005 £ t nonlocal pseudopotential approach using the separable form
oE —— T TN of Kleinman and Bylander. In our approach, we have ex-
ST I R I P ploited the implicit flexibility contained within the separation
-10 -8 -6 -4 -2 0 2 of the pseudopotential into local and nonlocal parts by in-

cluding an augmentation operator into the local and nonlocal
parts of the potential. By adjusting the augmentation opera-
tor, we have been able to achieve almost exact agreement
pseudopotential and the all-electron calculation for shop), p with.all—elgctron result.s_ for a varigty of _ionized_and excited
(middle), and d (bottom) states at the reference configuration configurations. Ir_‘ ad(,j't'on t,O cpnflguratlon teSt!ng' we have
(3523p%45°3d°). Results are given for a nonlocal pseudopotentialPresented logarithmic derivatives and chemical hardness
(dotted ling generated with the method described in Ref. 4, antests. All the tests demonstrate significant improvement of
optimized nonlocal pseudopotentiédashed ling generated with ~ the designed pseudopotentials over Hamann-3ehidhiang

the method described in Ref. 14, and a designed nonlocal pseud@nd standard nonlocal potentials. The designed nonlocal
potential generated with the presented mettemdid line). pseudopotential approach is able to achieve these improve-
ments in transferability without compromising the level of
onvergence error obtained using the optimized pseudopo-

calculationd® treat the valence electrons explicitly; for Ca, a ential construction. Furthermore, we have shown that for
shell of semicore states is also included. T P icaI)I/’ struct’uraﬁlectronic configurations that contain multiple states with the

. - lypically, ame angular momentum, it is possible to construct a
parameters computed using LDA underestimate the expeE

Energy (Ry)

FIG. 2. Differences in logarithmic derivatives between the Ca

the electrons explicitly. The dual-space pseudopotenti

mental values by 1-2 %. For the hydride calculations, result; ;?g%%?;tgggjrla\tlgtresauI:[o‘slngle nonlocal projector that wil
differ from the expected underestimation due to the cor '

overlap with the H pseudopotential. All the pseudopotentials
show very similar results for the Kl SiH,, and CaH. In the
case of PbH, our deviation from the previous theoretical re- The authors are thankful for helpful discussions with S. P.
sults using highly transferable dual-space pseudopotentialsewis during the preparation of this manuscript. This work
can be explained by the omission of the Semicore state in was supported by the Laboratory for Research on the Struc-
the dual-space construction. For the bulk materials, we findure of Matter and the Research Foundation at the University
good agreement with the LAPW method results which rep-of Pennsylvania as well as NSF Grant No. DMR 97-02514
resent the LDA computational limit of these structural prop-and the Petroleum Research Fund of the American Chemical
erties. In the case of bulk Zr, we find that the use of theSociety (Grant No. 32007-Gb Computational support was
designed nonlocal potential has a significant effect on th@rovided by the San Diego Supercomputer Center and the
calculation of structural parameters. This improvement isNational Center for Supercomputing Applications.
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