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Designed nonlocal pseudopotentials for enhanced transferability
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A pseudopotential generation method is presented which significantly improves transferability. The method
exploits flexibility contained in the separable Kleinman-Bylander form of the nonlocal pseudopotential@Phys.
Rev. Lett.48, 1425~1982!#. By adjusting the functional form of the local potential, we are able to improve the
agreement with all-electron calculations. Results are presented for the H, Si, Ca, Zr, and Pb atomic pseudo-
potentials. Configuration testing, logarithmic derivatives, chemical hardness, and structural tests all confirm the
accuracy of these pseudopotentials.@S0163-1829~99!14715-5#
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I. INTRODUCTION

The pseudopotential approximation, or the separation
electrons into core and valence based on their level of
ticipation in chemical bonding, is central to most mode
electronic structure calculations. The original atomic pseu
potential formalism1 grew out of the orthogonalized plane
wave approach.2 The pseudopotential replaces the nucle
Coulomb potential plus core electrons, thus simplifying t
original system of differential equations. Adopting th
pseudopotential approximation may introduce some unph
cal results if the pseudopotentials are not constructed j
ciously. The accuracy of the pseudopotential, or its trans
ability, may be gauged by its ability to reproduce the resu
of all-electron calculations in a variety of atomic enviro
ments.

The earliest pseudopotentials generated for use in den
functional theory calculations replaced the strongly attrac
Coulombic potential near the origin with a weaker local p
tential, and core electrons were eliminated from t
calculations.3 In this approach, approximate agreement b
tween pseudopotential and all-electron eigenvalues as we
logarithmic derivatives was achieved for many elemen
However, first-row nonmetals and first-row transition met
could not be accurately described by these pseudopoten

To improve pseudopotential transferability, more comp
cated ~and more flexible! semilocal pseudopotentials we
designed4 with a different spherically symmetric potential fo
each angular momentum. This added flexibility permits
enforcement of the norm-conservation condition at the re
ence energy,« i , for R greater than the core radius,r c

d

d« S d lnf i
AE~r !

dr DU
R,« i

5
d

d« S d lnf i
PS~r !

dr DU
R,« i

, ~1!

wheref i
AE(r ) andf i

PS(r ) are the all-electron and pseudop
tential Kohn-Sham eigenstates for the statei . Including this
criterion into pseudopotential generation greatly improv
transferability.

Incorporating norm conservation makes it possible
have exact agreement between the all-electron and pse
potential eigenvalues and wave functions outsider c for one
PRB 590163-1829/99/59~19!/12471~8!/$15.00
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electronic reference state.4 However, the corresponding
single-particle differential equation for a pseudopoten
constructed with this method is more complicated becaus
the angular momentum projection. Expressing the semilo
pseudopotentials within a plane-wave basis requires the c
putation ofV(G,G8) instead of justV(G2G8), whereG is a
reciprocal-lattice vector. This results in a huge memory
pense.

The fully separable nonlocal Kleinman-Bylander pseud
potential form5 dramatically reduces the memory cost of t
semilocal pseudopotentials. These pseudopotentials are
structed from a local potential and angular-momentu
dependent nonlocal projectors. In Fourier space, the pro
tor can be expressed asW(G)•W(G8) replacingV(G,G8).
This reduces the pseudopotential memory scaling fromN2 to
N. With the inclusion of the nonlocal projectors, the resulti
single-particle Kohn-Sham equation becomes an integro
ferential equation. The solutions to an integrodifferent
equation may violate the Wronskian theorem and poss
noded eigenstates lower in energy than the node
solution.6 A simple diagnostic procedure7 allows for detec-
tion of these lower-energy or ghost states. The separ
form of these potentials also permits efficient evaluation
solid-state calculations withN2 or N2 log2 N CPU time
scaling8,9 for the nonlocal energy contribution and its grad
ents. These potentials have proven very effective for
study of computationally intensive large-scale systems.10

To improve the transferability of the Kleinman-Byland
pseudopotentials, multiple-projector separable nonlo
pseudopotentials have been developed.11,12 In these ap-
proaches, the Kleinman-Bylander nonlocal projector form
considered the first term of a series expansion of project
These projectors provide agreement of the pseudoatom
tering properties over a broader energy range.

While characterization of the scattering properties is
important tool in ascertaining the transferability of a pseud
potential, there are some properties that cannot be sam
using this diagnostic. These remaining properties involve
fects of electrostatic screening and nonlinearity of t
exchange-correlation energy. Recently, chemical hardn
conservation has been used as an effective measure of
these self-consistent terms vary with electronic configurat
12 471 ©1999 The American Physical Society
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and as an indication of accurate pseudopoten
generation.13 The chemical hardness is defined as the ma

Hnl,n8 l 85
1

2

]2Etot@r~r !#

] f nl] f n8 l 8

5
1

2

]«nl

] f n8 l 8

, ~2!

where Etot@r(r )# is the total energy of the atom and is
functional of the total electronic charge densityr(r ), f nl is
the occupation number of thenlth state, and«nl is the self-
consistentnlth eigenvalue. In the second equality, we ha
used the fact that«nl5]Etot@r(r )#/] f nl .

One of the other major objectives in pseudopotential g
eration, besides transferability, is rapid convergence i
plane-wave basis. It has been shown that the residual kin
energy of the reference state pseudo-wave-functions ly
beyond the plane-wave cutoff energy is an excellent pre
tor of the basis set convergence error of the pseudopote
in a solid or molecule.14 The optimized pseudopotential con
struction is designed to minimize this residual kinetic ener

The ultrasoft pseudopotential construction12 was formu-
lated to generate highly transferable multiple-projec
pseudopotentials with rapid convergence in a plane-wave
sis. In order to improve pseudo-wave-function smoothne
the norm-conservation constraint on the wave function is
laxed. To reintroduce norm conservation, a compensating
lence charge density is added.

In this paper, we present a method for nonlocal pseu
potential construction according to the Kleinman-Byland
separable form which improves accuracy while retaining
convenience of a single-projector representation. We exp
the inherent arbitrariness in the separation of the local
nonlocal components of the potential. The present w
should be placed in context with other recent studies
have focused on this same flexibility. One such study
volved constructing the local potentials from various line
combinations of the semilocal potentials.15 Chemical hard-
ness testing showed that the accuracy of these pseudop
tials approached the accuracy of a semilocal pseudopote
from the same set ofl-dependent potentials, but did not e
ceed it. In another study, the form of the local potential
expressed as a sum of Gaussians for the first two rows o
Periodic Table.16 These dual-space multiple-project
pseudopotentials have more recently been extended to
clude the scalar relativistic effect.17 Using this approach, a
high level of transferability can be obtained for elements
to Rn.

The paper is organized as follows. We give a brief revi
of the Kleinman-Bylander nonlocal pseudopotential form
ism in Sec. II. We also illustrate our approach for improvi
transferability. In Sec. III, we present atomic and solid-st
testing results for potentials constructed with our form of
nonlocal components for the H, Si, Ca, Zr, and Pb ato
Conclusions are presented in Sec. IV.

II. DESIGNED NONLOCAL PSEUDOPOTENTIAL
FORMALISM

To construct a pseudopotential, an electronic refere
state is chosen, and an all-electron calculation is perform
From this calculation we obtain the all-electron potent
(V̂AE), the total energy (Etot

AE), the all-electron wave func
l
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tions „fnl
AE(r )… and their eigenvalues («nl

AE). Then a pseudo-

potential V̂PS and pseudo-wave-functionsufnl
PS& are chosen

which satisfy

~ T̂1V̂H@r#1V̂XC@r#1V̂PS!ufnl
PS&5«nlufnl

PS&, ~3!

where T̂ is the single-particle kinetic-energy operator, a
V̂H@r# and V̂XC@r# are the self-consistent Hartree an
exchange-correlation energy operators, respectively. The
ter two operators are functionals of the total charge den
r(r ), where r(r )5(nl f nlufnl

PS(r )u2. We require that the
pseudo-wave-functions obey the following criteria:

~1! fnl
PS(r )5fnl

AE(r ),
dfnl

PS(r )

dr
5

dfnl
AE(r )

dr
,

d2fnl
PS(r )

dr2 5
d2fnl

AE(r )

dr2 for r>r c .

~2! «nl
PS5«nl

AE .

~3! d

d«Sd lnfnl
PS~r !

dr DU
R,«nl

5
d

d«S d lnfnl
AE~r !

dr DU
R,«nl

.
~4! ^fnl

PSufnl
PS&5^fnl

AEufnl
AE&51.

If V̂PS is not l dependent, the resulting pseudopotentia
called local~radially and angularly local!. More generally,
V̂PS can be separated into a local potential and a sum
short-ranged corrections:

V̂PS5V̂loc1(
l

DV̂l , ~4!

where

V̂loc[E d3r ur &Vloc~r !^r u. ~5!

For a semilocal pseudopotential, the correctionsDV̂l
SL are

projection operators in the angular coordinates and loca
the radial coordinate. To construct a fully separable nonlo
pseudopotential,DV̂l is formed according to

DV̂l
NL[

DV̂l
SLufnl

PS&^fnl
PSuDV̂l

SL

^fnl
PSuDV̂l

SLufnl
PS&

. ~6!

When V̂PS operates onufnl
PS&, we obtain

V̂PSufnl
PS&5~V̂loc1DV̂l

SL!ufnl
PS&. ~7!

Therefore, for the reference configuration we are guarant
exact agreement between the eigenvalues and wave func
of the semilocal and nonlocal atoms.

However, for any stateucn8 l
PS& other than the referenc

state,

V̂PSucn8 l
PS&Þ~V̂loc1DV̂l

SL!ucn8 l
PS&, ~8!

wheren8 is not required to equaln. The inequality in Eq.~8!
illustrates the difficulties involved in assessing and impro
ing the transferability of nonlocal pseudopotentials: t
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transferability of a nonlocal pseudopotential can be dram
cally different from the corresponding semilocal pseudo
tential.

For simplicity, we have focused on the single-projec
nonlocal pseudopotential construction in the current
proach. We begin by constructing an optimized semilo
pseudopotential. Since Eq.~4! is simply an addition of local
and nonlocal terms, we may alterV̂loc arbitrarily without
losing the exact agreement between the all-electron and
local eigenvalues and pseudo-wave-functions at the refer
state,provided we adjust the nonlocal corrections accor
ingly. However, we change the eigenvalue agreement at
other configuration by doing so.

Operationally, additional electronic configurations or d
sign configurations are chosen. A local augmentation op
tor (Â) is added to the local potential forming a design
nonlocal pseudopotential. The augmentation operator is
tracted from the nonlocal correctionsDV̂l in the following
way:

V̂PS5~V̂loc1Â!1(
l

DV̂l
DNL , ~9!

TABLE I. Construction parameters for the H, Si, Ca, Zr, and
pseudopotentials. HSC potentials were generated with the me
described in Ref. 4. OPT potentials were generated with meth
described in Ref. 14. Core radii (r c) are in atomic units,qc are in
Ry1/2, and plane-wave cutoffs (Ecut) are in Ry.

Atom
Reference

configuration

HSC OPT

r c Ecut r c qc Ecut

H 1s0.5 0.35 70 0.72 7.07 50

Si 3s2 1.21 16 1.90 3.60 13
3p0.5 1.18 1.90 3.60
3d0.5 1.31 2.20 3.60

Ca 3s2 0.74 83 1.29 7.07 50
3p6 1.15 1.60 7.07
3d0 0.70 1.27 7.07

Zr 4s2 0.92 92 1.80 7.07 50
4p6 0.81 1.51 7.07
4d0 1.15 1.90 7.07

Pb 6s0 1.10 72 1.70 6.05 50
6p0 1.20 2.00 5.52
5d10 1.10 1.75 7.07

FIG. 1. Radial charge-density distribution for the Ca12 pseudo-
atom (3s23p64s03d0). Results are given for 3s ~dotted line!, 3p
~dashed line!, 4s ~solid line!, and 3d states~dot-dashed line!.
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where

DV̂l
DNL5

~DV̂l
SL2Â!ufnl

PS&^fnl
PSu~DV̂l

SL2Â!

^fnl
PSu~DV̂l

SL2Â!ufnl
PS&

. ~10!

When the augmentedV̂PS operates on the reference state, t
result reduces to Eq.~7!. In doing so we are not only guar
anteed the exact agreement of the nonlocal pseudopote
eigenvalues with the semilocal eigenvalues due to
Kleinman-Bylander construction but we also insure agr
ment with the all-electron eigenvalues due to the semilo
construction. However for any state other than the refere
state, the second term in Eq.~9! will contribute differently.

By adjustingÂ, it is possible to obtain almost exact agre
ment between the all-electron and designed nonlocal eig
values for the manifold of design configurations. With t
proper selection of the reference electronic configuration
pseudopotential construction parameters, excellent trans
ability can be obtained for a variety of ionized and excit
configurations.

The position ofÂ deserves particular attention. We beg
by examining the transferability error of a standa
Kleinman-Bylander nonlocal pseudopotential constructed
the absence of an augmentation operator. Based on t
results we can determine optimal placement ofÂ in the ra-
dial grid. We have identified two different cases for the p
sitioning of the operator.

~1! The valence orbitals may have different charg
density profiles which lead to spatial separation among
states. This situation allows placement of the augmenta
operator in a region that will preferentially affect certa
states while leaving other states nearly unchanged.

~2! Due to electrostatics, as an atom becomes more p
tively charged its charge density will move inward towa
the nucleus of the atom. Positioning of the operator c
therefore be made according to desired adjustments of v
ous ionized configurations.

As an example, we have found that for the Ca nonlo
pseudopotential, the magnitudes of the transferability err
of the 3s, 3p, and 3d orbitals increase as the pseudo-ato
becomes less ionized~see Table III!. However, the magni-
tude of the error in the 4s orbital decreases over this sam
range of ionization. Therefore, the augmentation is requi
to adjust then53 orbitals preferentially. Figure 1 shows th
charge density distribution of the Ca pseudo-atom in the12
configuration. We find that there is a spatial separation

od
ds

TABLE II. Parameters for the augmentation operator (Â) for the
designed nonlocal pseudopotentials. Step widths are in atomic u
and step heights are in Ry.

Step Step
Atom width height

H 0.70 2.00
Si 1.35 70.00
Ca 0.93 6.76
Zr 1.72 0.66
Pb 1.90 1.60
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TABLE III. Configuration testing for the H, Si, and Ca atoms. Eigenvalues andDEtot are given for an all-electron atom~AE!. Absolute
errors are given for a nonlocal pseudopotential generated with the method described in Ref. 4~HSC!, an optimized nonlocal pseudopotenti
generated with the method described in Ref. 14~OPT!, and a designed nonlocal pseudopotential generated with the presented method~DNL!.
The design configurations used to construct the DNL potentials are identified with a dagger(†). All energies are in Ry.

AE HSC OPT DNL AE HSC OPT DNL
State energy error error error State energy error error error

H
1s0 21.0000 0.0000 20.0001 20.0001 1s1 20.4673 0.0000 0.0000 0.0000
†DEtot 0.5504 0.0000 0.0000 0.0000 †DEtot 20.3413 0.0000 0.0000 0.0000

1s0.5 20.9067 0.0000 0.0000 0.0000 1s1.5 20.1133 0.0000 0.0000 0.0000
DEtot 0.0000 0.0000 0.0000 0.0000 †DEtot 20.4819 0.0000 0.0000 0.0000

Si
3s2 21.4870 0.0000 0.0000 0.0000 3s2 21.4007 20.0012 20.0010 20.0007
3p0.5 20.9406 0.0000 0.0000 0.0000 3p1 20.8647 20.0009 20.0008 20.0006
3d0.5 20.3270 0.0000 0.0000 0.0000 3d0 20.2689 0.0001 0.0000 0.0000
DEtot 0.0000 0.0000 0.0000 0.0000 †DEtot 20.3015 20.0002 20.0002 20.0001

3s1 22.1516 0.0051 0.0050 0.0040 3s2 21.2890 0.0000 0.0000 0.0000
3p1 21.5641 0.0038 0.0040 0.0032 3p0.5 20.7492 0.0000 0.0000 0.0000
3d0 20.8310 0.0019 0.0030 0.0025 3d1.0 20.1756 0.0000 0.0000 0.0000
†DEtot 1.4690 20.0015 20.0016 20.0012 †DEtot 20.1240 0.0000 0.0000 0.0000

3s2 20.7966 20.0017 20.0018 20.0008 3s1 20.8514 20.0010 20.0011 20.0005
3p2 20.3071 20.0009 20.0011 20.0005 3p3 20.3491 20.0007 20.0008 20.0003
†DEtot 20.8778 20.0013 20.0013 20.0001 †DEtot 20.3817 20.0007 20.0008 20.0005

Ca
3s2 24.5277 0.0000 0.0000 0.0000 3s2 23.2284 0.0039 0.0021 0.0005
3p6 23.1688 0.0000 0.0000 0.0000 3p6 21.8875 0.0007 0.0023 0.0007
4s0 21.0537 20.0087 20.0099 0.0000 4s1 20.2469 20.0022 20.0022 0.0001
3d0 21.1933 0.0000 0.0000 0.0000 3d1 20.0648 0.0012 0.0012 0.0000
†DEtot 0.0000 0.0000 0.0000 0.0000 DEtot 21.1903 20.0119 20.0036 20.0001

3s2 23.9220 0.0061 0.0059 0.0000 3s2 24.4495 0.0189 0.0199 0.0003
3p6 22.5681 0.0050 0.0057 0.0000 3p5 23.0670 0.0258 0.0192 0.0007
4s1 20.6716 20.0033 20.0039 0.0000 4s2 20.8070 20.0040 20.0045 0.0000
3d0 20.6401 0.0043 0.0044 0.0000 3d0 21.0294 0.0142 0.0156 0.0006
DEtot 20.8746 20.0079 20.0062 0.0000 DEtot 1.2031 20.0097 20.0223 20.0003

3s2 23.4115 0.0095 0.0093 0.0000 3s2 25.0789 0.0129 0.0139 0.0004
3p6 22.0601 0.0078 0.0089 0.0000 3p5 23.6924 0.0212 0.0135 0.0009
4s2 20.2833 20.0010 20.0011 0.0000 4s1 21.2845 20.0085 20.0095 0.0001
3d0 20.1659 0.0061 0.0064 0.0000 3d0 21.6335 0.0098 0.0111 0.0009
†DEtot 21.3478 20.0112 20.0086 0.0000 DEtot 2.2464 20.0014 20.0155 20.0003
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tween then53 and 4s charge densities. In order to max
mize the effectiveness ofÂ, it should be positioned betwee
r 50 andr 51 a.u.

III. RESULTS AND DISCUSSION

We have applied the designed nonlocal pseudopote
approach to the H, Si, Ca, Zr, and Pb atoms. All atom
energy calculations were done within the local-density
proximation ~LDA ! and optimized pseudopotential gener
tion methods were used. For the Zr and Pb atoms, we h
included the scalar relativistic effect.18 The parameters use
in the pseudopotential construction are presented in Tab
We have chosen thes angular momentum channel to be th
ial
c
-

-
ve

I.

foundation for the local potential, and a square step in
radial coordinate as our augmentation operator.~These
choices are made for simplicity. Choosing other angular m
mentum channels for the local potential or using a multip
step augmentation operator can lead to enhanced tran
ability or efficiency.! The height and width of the step hav
been adjusted to reproduce the all-electron eigenvalues
the design configuration.

Our selection of reference configurations deserves a
tional mention. Semicore orbitals were included as vale
in the Ca (3s and 3p), Zr (4s and 4p), and Pb (5d) pseudo-
potentials. The inclusion of these states allowed for the
moval of ghost levels, greater local potential design flexib
ity, and better overall transferability of the pseudopotent
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TABLE IV. Configuration testing for the Zr and Pb atoms. Eigenvalues andDEtot are given for an all-electron atom~AE!. Absolute
errors are given for a nonlocal pseudopotential generated with the method described in Ref. 4~HSC!, an optimized nonlocal pseudopotenti
generated with the method described in Ref. 14~OPT! and a designed nonlocal pseudopotential generated with the presented method~DNL!.
The design configurations used to construct the DNL potentials are identified with a dagger(†). All energies are in Ry.

AE HSC OPT DNL AE HSC OPT DNL
State energy error error error State energy error error error

Zr
4s2 27.0190 0.0000 0.0000 0.0000 4s2 23.7412 20.0077 20.0079 20.0011
4p6 25.3582 0.0000 0.0000 0.0000 4p6 22.1484 20.0043 20.0048 0.0000
5s0 22.4422 20.0553 20.0552 20.0007 5s0 20.2693 20.0083 20.0088 0.0010
4d0 22.9835 0.0000 0.0000 0.0000 4d4 20.1251 20.0001 20.0004 0.0007
†DEtot 0.0000 0.0000 0.0000 0.0000 DEtot 25.4996 20.0123 20.0106 0.0019

4s2 25.3220 0.0104 0.0106 0.0008 4s2 25.4808 0.0089 0.0111 20.0017
4p6 23.6964 0.0102 0.0104 0.0007 4p5 23.8375 0.0105 0.0118 20.0004
5s1 21.3047 20.0211 20.0215 0.0019 5s1 21.3385 20.0252 20.0253 0.0011
4d1 21.4711 0.0075 0.0082 0.0000 4d2 21.5623 0.0101 0.0108 0.0010
DEtot 24.0782 20.0309 20.0303 0.0013 DEtot 21.8274 20.0325 20.0320 0.0016

4s2 23.9956 0.0119 0.0118 0.0000 4s2 23.8446 20.0003 20.0005 20.0005
4p6 22.3881 0.0125 0.0124 0.0002 4p6 22.2458 0.0019 0.0015 0.0002
5s2 20.3371 20.0062 20.0065 0.0011 5s1 20.2957 20.0075 20.0079 0.0012
4d2 20.2760 0.0097 0.0100 0.0000 4d3 20.1835 0.0032 0.0032 0.0006
†DEtot 25.7174 20.0348 20.0340 0.0030 DEtot 25.6291 20.0217 20.0203 0.0023

Pb
6s0 23.5516 0.0000 0.0000 0.0000 6s0 22.8615 20.0014 20.0019 20.0013
6p0 22.6398 0.0000 0.0000 0.0000 6p1 22.0243 20.0002 20.0007 20.0006
5d10 24.5497 0.0000 0.0000 0.0000 5d10 23.7642 20.0048 20.0060 20.0045
DEtot 0.0000 0.0000 0.0000 0.0000 †DEtot 22.3331 20.0007 20.0005 20.0004

6s1 22.1243 20.0022 20.0031 20.0016 6s1 21.5149 20.0017 20.0025 20.0010
6p1 21.3651 20.0007 20.0013 20.0011 6p2 20.8161 0.0009 0.0003 0.0003
5d10 22.9194 20.0044 20.0056 20.0010 5d10 22.2559 20.0068 20.0084 20.0036
†DEtot 24.8228 20.0031 20.0031 20.0019 †DEtot 25.9090 20.0033 20.0037 20.0024

6s2 20.8961 20.0002 20.0010 20.0009 6s2 21.4323 20.0024 20.0034 20.0013
6p2 20.2777 0.0030 0.0027 0.0026 6p1 20.7556 20.0001 20.0008 20.0006
5d10 21.5607 20.0039 20.0054 0.0015 5d10 22.1339 20.0039 20.0053 0.0018
†DEtot 27.1077 20.0049 20.0057 20.0027 †DEtot 26.5967 20.0061 20.0064 20.0035
e
h
e
la

vel
ta-
tor

we
ation
It is also important to note that although we have includ
multiple s-channel states, we donot treat these states wit
different projection operators. The pseudopotentials are g
erated using only one nonlocal projector for each angu
momentum channel.
d

n-
r

In the case of the H atom, we have found that a high le
of transferability was achieved without adding an augmen
tion operator, although addition of an augmentation opera
did produce a slight improvement. For all other atoms
have found that a square potential step as the augment
for an

r-

46
67
57
77
06
50
94
90
01
86
TABLE V. Chemical hardness testing for the Ca atom. Absolute hardness values are compared
all-electron atom~AE!, a nonlocal pseudopotential generated with the method described in Ref. 4~HSC!, an
optimized nonlocal pseudopotential generated with the method described in reference 14~OPT! and a de-
signed nonlocal pseudopotential generated with the presented method~DNL!. Hardness values were dete
mined for two different electronic configurations. Each element of the symmetric hardness matrix,Hnl,n8 l 8 ,
is the change in thenlth eigenvalue~in Ry! for a change of then8l 8th occupation number.

3s1.953p5.94s13d0.1 3s23p64s23d0.01

nl n8l 8 AE HSC OPT DNL AE HSC OPT DNL

3s 3s 0.5655 0.5670 0.5620 0.5657 0.4945 0.4946 0.4897 0.49
3p 0.5474 0.5453 0.5441 0.5475 0.4767 0.4735 0.4722 0.47
4s 0.2830 0.2853 0.2853 0.2830 0.2257 0.2269 0.2269 0.22
3d 0.4614 0.4612 0.4586 0.4614 0.3677 0.3654 0.3634 0.36

3p 3p 0.5310 0.5250 0.5279 0.5309 0.4607 0.4540 0.4565 0.46
4s 0.2813 0.2832 0.2835 0.2813 0.2250 0.2260 0.2262 0.22
3d 0.4506 0.4491 0.4482 0.4507 0.3593 0.3562 0.3554 0.35

4s 4s 0.2079 0.2095 0.2097 0.2079 0.1790 0.1799 0.1800 0.17
3d 0.2639 0.2654 0.2655 0.2639 0.2101 0.2105 0.2106 0.21

3d 3d 0.3941 0.3928 0.3915 0.3936 0.2989 0.2959 0.2951 0.29
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operator gives improved transferability. The parameters

Â are contained in Table II. Table III contains configur
tional testing results for the H, Si, and Ca atoms. Table
contains testing results for Zr and Pb atoms. In both tab
the design configurations have been identified. For Ca an
atoms, for which semicore states were included, the re
ence configuration is also a design configuration due to
presence of the seconds state. We present results from a
all-electron atom, a nonlocal pseudopotential generated
cording to the Hamann-Schlu¨ter-Chiang construction, an op
timized pseudopotential generated with an unaugmented
cal potential consisting of only thes angular momentum
channel potential, and a designed nonlocal pseudopote
which includes the square step. The potentials were teste
both ionized and excited electronic configurations. In ad
tion to eigenvalue information, the table also compares to
energy differences from the reference state. It is importan
note that the most substantial improvements occur in at
in which highly spatially separated semicore states~Ca and
Zr! were included in the pseudopotential construction. T
inclusion of these states provides charge-density separa
and therefore the placement of the augmentation operato
those regions of separation provides dramatic improvem
@case~1! above#. The eigenvalue and total-energy errors f
the Ca and Zr designed nonlocal pseudopotentials are on
two orders of magnitude smaller than the Hamann-Schlu¨ter-
Chiang and optimized results. For atoms in which cha
separation is not as complete~Si and Pb!, the improvements
are less dramatic.

Logarithmic derivative determination has been exte
sively used as a testing procedure to investigate the tran
ability of a pseudopotential. For brevity we present only t
results for the Ca pseudopotential. Figure 2 shows the lo
rithmic derivative differences between the all-electron pot
tial and the three pseudopotential generation methods fo
s, p, andd potentials of the Ca atom. For thes andp chan-
nels, we find excellent agreement over a large energy ra
between the pseudopotentials generated with the desi
nonlocal method and the all-electron potentials. The ene
errors in thes andp states for the Hamann-Schlu¨ter-Chiang
and optimized pseudopotentials presented in Table III
directly related to the logarithmic derivative differences. I
terestingly, we find that the designed nonlocal pseudopo
tial d state logarithmic derivative differs from the all-electro
results more than the other methods. This finding is in
parent contradiction to the configuration testing presente
Table III. The origin of the discrepancy lies in the nature
the logarithmic derivative test. This test only probes the
havior an electron of a given energy scattered off a st
potential. Self-consistent effects are therefore not includ
This phenomenon has been identified previously.19 We find
that chemical hardness testing tracks more closely with c
figuration testing than logarithmic derivative testing does.
logarithmic derivative testing at other electronic configu
tions, the designed nonlocal pseudopotentiald state scatter-
ing properties are significantly more accurate than the o
pseudopotentials.

Table V contains chemical hardness testing results for
all-electron and pseudoatoms, for two electronic configu
tions. In both cases, we find excellent agreement in chem
hardness between the all-electron and designed nonloca
r
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tentials for each electronic configuration. With errors belo
0.5 mRy, the designed nonlocal pseudopotential is one
two orders of magnitude more accurate than the Hama
Schlüter-Chiang and optimized pseudopotentials. All mat
elements involving the 3d state show a higher level of trans
ferability for the designed nonlocal pseudopotential than
other pseudopotentials.

As a final set of tests, we have completed dens
functional calculations within the LDA for various hydrid
molecules involving the presented atoms as well as bulk
Ca, Zr, and Pb. The results of these tests are containe
Table VI. We also provide experimental results20–22and the-
oretical studies where available.16,23–25The cited linearized-
augmented plane-wave~LAPW! calculations23–25 treat all

TABLE VI. Density-functional results for various diatomic an
bulk systems. Structural parameters are compared for a non
pseudopotential generated with the method described in Re
~HSC!, an optimized nonlocal pseudopotential generated with
method described in Ref. 14~OPT! and a designed nonloca
pseudopotential generated with the presented method~DNL!. Ex-
perimental and previous theoretical results using dual-space~DS!
pseudopotentials and linearized-augmented plane-wave~LAPW!
methods are also provided for comparison.

Expt. DS LAPW HSC OPT DNL

H2

r e ~Å! 0.741a 0.766b 0.773c 0.767 0.766 0.767
ve (cm21) 4395 4040 4169 4178 4165

Si(s)
a ~Å! 5.43d 5.41e 5.363 5.361 5.412
B ~GPa! 98.8 98 96.2 98.1 96.0

SiH4

r e ~Å! 1.479f 1.486 1.485 1.482 1.491
n1 (cm21) 2187 2140 2145 2182

Ca(s)
a ~Å! 5.58d 5.33e 5.332 5.332 5.338
B ~GPa! 15.2 19 19.1 19.2 19.4

CaH
r e ~Å! 2.002a 1.961 1.954 1.950 1.954
ve (cm21) 1299 1290 1275 1285

Zr(s)
a ~Å! 3.232d 3.145g 3.122 3.120 3.161
c ~Å! 5.147 5.116 5.047 5.043 5.122
B ~GPa! 83.3 98.6 102.9 105.0 93.4

Pb(s)
a ~Å! 4.95d 4.866 4.859 4.868
B ~GPa! 43.0 55.0 55.2 55.0

PbH
r e ~Å! 1.839a 1.817 1.852 1.850 1.853
ve (cm21) 1564 1536 1579 1530

aReference 20.
bReference 16.
cReference 23.
dReference 21.
eReference 24.
fReference 22.
gReference 25 using Hedin-Lundqvist exchange-correlation po
tials.
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the electrons explicitly. The dual-space pseudopoten
calculations16 treat the valence electrons explicitly; for Ca,
shell of semicore states is also included. Typically, structu
parameters computed using LDA underestimate the exp
mental values by 1–2 %. For the hydride calculations, res
differ from the expected underestimation due to the c
overlap with the H pseudopotential. All the pseudopotent
show very similar results for the H2, SiH4, and CaH. In the
case of PbH, our deviation from the previous theoretical
sults using highly transferable dual-space pseudopoten
can be explained by the omission of the 5d semicore state in
the dual-space construction. For the bulk materials, we
good agreement with the LAPW method results which r
resent the LDA computational limit of these structural pro
erties. In the case of bulk Zr, we find that the use of
designed nonlocal potential has a significant effect on
calculation of structural parameters. This improvement

FIG. 2. Differences in logarithmic derivatives between the
pseudopotential and the all-electron calculation for thes ~top!, p
~middle!, and d ~bottom! states at the reference configuratio
(3s23p64s03d0). Results are given for a nonlocal pseudopoten
~dotted line! generated with the method described in Ref. 4,
optimized nonlocal pseudopotential~dashed line! generated with
the method described in Ref. 14, and a designed nonlocal pse
potential generated with the presented method~solid line!.
Re
al

l
ri-
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ls

-
ls

d
-
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due to the considerable transferability enhancement wh
the designed nonlocal approach provides~see Table IV!.
Since Zr is a transition metal, itss and d orbitals are very
similar in energy; this makes the structural parameters o
more sensitive to the pseudopotential transferability than
other elements tested.

It is important to note that the calculation of these stru
tural parameters is very robust and is therefore not a part
larly sensitive test of transferability. Instead, studies invo
ing electronic properties of systems such as electron-pho
interactions may be more fruitful in ascertaining the effe
of improved transferability.

IV. CONCLUSIONS

In this paper, we have developed and implemented a f
nonlocal pseudopotential approach using the separable
of Kleinman and Bylander. In our approach, we have e
ploited the implicit flexibility contained within the separatio
of the pseudopotential into local and nonlocal parts by
cluding an augmentation operator into the local and nonlo
parts of the potential. By adjusting the augmentation ope
tor, we have been able to achieve almost exact agreem
with all-electron results for a variety of ionized and excit
configurations. In addition to configuration testing, we ha
presented logarithmic derivatives and chemical hardn
tests. All the tests demonstrate significant improvement
the designed pseudopotentials over Hamann-Schlu¨ter-Chiang
and standard nonlocal potentials. The designed nonlo
pseudopotential approach is able to achieve these impr
ments in transferability without compromising the level
convergence error obtained using the optimized pseudo
tential construction. Furthermore, we have shown that
electronic configurations that contain multiple states with
same angular momentum, it is possible to construc
pseudopotential with a single nonlocal projector that w
yield very accurate results.
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