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Abstract 

Infant-directed speech (IDS) is characterized by exaggerated 
intonation patterns and short, simple phrases.  Because these 
exaggerated intonation patterns frequently convey a small, 
stereotyped range of emotional signals, we might expect 
particular words, like good or no, to be realized with 
consistent pitch contours.  This consistency in a word’s pitch 
realization might facilitate word recognition, but in an 
intonation language like English, it could falsely suggest 
lexical tones, i.e., pitch variation signaling lexical contrast.  
The present work examines the speech input to the English-
learning child to identify the amount, nature, and sources of 
pitch variation across about 3,300 tokens of 8 highly frequent 
words. We find two basic results.  First, although intonation 
in IDS is prototypically exaggerated, about half the instances 
of frequently occurring, utterance-final words were flat in 
contour.  Second, although each frequent word varied 
substantially in its intonation contours (e.g., rises versus rise-
falls), there were large differences among words that seem to 
reflect the pragmatic categories typical of each word’s use.  
For instance, no was generally flat or falling, and consistently 
low in pitch, reflecting its occurrence in prohibitive 
utterances; while good occurred more often with a rise-fall 
contour, reflecting its approbational meaning.  Even the word 
good, however, still had more flat contours than rise-fall 
contours.  This within-word variability in pitch realization 
could help the child rule out lexical tone as contrastive in 
English. 
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Introduction 
Pitch is exploited in social interactions across the animal 
kingdom.  Because larger organisms tend to produce lower 
sounds, many species use low or steeply falling pitch as an 
expression of dominance, and higher pitch for 
submissiveness or uncertainty (Ohala, 1994).  Ohala (1984) 
argues that languages often capitalize on this link to express 
certainty (e.g., statements) through falling or low intonation, 
and uncertainty (e.g., questions) through high or rising 
intonation.  

Pitch also plays an important role in early human 
development.  The distinctive pitch characteristics of infant-
directed speech (IDS) complement the infant’s developing 

auditory system; the higher fundamental frequency (F0) 
mean and wider F0 range make the speech more interesting 
and easier for the developing auditory system to tune in to 
(Fernald, 1992). Infants prefer listening to IDS over adult-
directed speech (ADS; Fernald, 1985), a preference driven 
primarily by IDS’s pitch characteristics (Fernald & Kuhl, 
1987; Katz, Cohn, & Moore, 1996).  Pragmatic functions of 
speech are expressed more clearly in IDS than in ADS.  
Fernald (1989) elicited utterances from mothers, intended to 
(1) get their infant’s attention, (2) show approval, (3) 
comfort the infant, or (4) prohibit the infant from touching 
an object.  Comforting utterances and prohibitions were 
both low in pitch and falling, but prohibitions fell more 
sharply and were shorter and higher in amplitude.  
Attention-getting and approving utterances both had high 
mean F0 and a large F0 range, but attention-getting 
utterances were higher in amplitude. Considering the clarity 
of intonational meaning in IDS, it’s not surprising that 
infants respond to the emotional information conveyed by 
pitch variation before they know many words (Moore, 
Spence, & Katz, 1997).  

In spite of the early importance of intonation for capturing 
infants’ attention and conveying emotions and intentions, 
infants learning English must disregard lexical pitch in order 
to successfully learn and recognize words.  By 9 months, 
English learners fail to discriminate a Thai lexical tone 
contrast (Mattock et al., 2007).  And by 30 months, English 
learners know that pitch cannot distinguish words in English 
(Quam & Swingley, 2007). But figuring this out could be 
difficult if the intonational and syntactic simplicity of IDS 
leads highly frequent words to be realized with one 
consistent pitch contour.  Is this the case for English?  

To answer this question, we examine the pitch contours of 
highly frequent words in mothers’ speech to their preverbal 
infants.  By measuring the F0 characteristics of these words 
across tokens, we attempt to determine how the pitch 
structure of English conveys the lack of lexical tones.  We 
might expect the pitch patterns across tokens of words to be 
more variable in English than in a lexical-tone language, 
where the pitch contour is specified in the word 
representation. The amount of variability across tokens 
could thus tell the infant which type of language she is 
learning.  Knowing whether the pitch realizations of words 



like good and no in English IDS display variability or 
consistency requires distributional analysis of the input to 
children. 

Distributional analyses of both partially scripted  (Kuhl & 
Andruski, 1997; Werker et al., 2007) and synthetic (Maye, 
Werker, & Gerken, 2002) speech have shed light on the 
acquisition of vowels and consonants.  Similarly, examining 
the input can tell us what cues children might use to learn 
the pitch structure of their language.  Gauthier, Shi, and Xu 
(2007), for example, showed that an unsupervised learning 
algorithm acquired the lexical-tone categories of Mandarin 
using either the F0 contours or velocity profiles (first 
derivative of F0) of syllables.  The biggest limitation of 
most existing distributional analyses is their reliance on 
small, laboratory-produced corpora that may exhibit limited 
variation relative to children’s ordinary experience.  Here, in 
contrast, we use an automatic method of locating word 
boundaries to investigate a large, naturalistically produced 
corpus of mothers’ speech to their infants (Brent & Siskind, 
2001). 

Methods 
The Brent corpus (Brent & Siskind, 2001) from the 
CHILDES database (MacWhinney, 2000) is an unusually 
large and rich dataset for analyzing the pitch patterns of 
highly frequent words in IDS.  The corpus contains about 
100 hours of speech produced, in a naturalistic setting, by 16 
mothers to their young infants, aged 9 to 15 months.  There 
is a word transcription for each utterance, including the 
utterance start and end times.  To evaluate the pitch patterns 
of individual words, we located word boundaries by forced 
alignment using HTK1 and the CMU pronunciation 
dictionary.2  We downsampled the sound files to 22,000 Hz, 
because the files had used two different sampling rates: 
24,000 and 22,050 Hz.  Then we trained Gaussian Mixture 
Model–based, monophone Hidden Markov models (HMMs) 
on 39 Mel Frequency Cepstral Coefficients (MFCCs) 
extracted from the sound files.  The HMMs were adapted to 
each speaker using only that speaker’s data.  We excluded 
utterances from the training and our analysis when they 
either contained an infrequent word not in the dictionary 
(although frequent out-of-dictionary words were added to 
the dictionary by hand), or had been transcribed as noisy, 
sung, or whispered.  This excluded roughly 6,000 of the 
over 126,000 utterances.   

Once the HTK word boundaries were sufficiently 
accurate, we extracted the F0 samples for each word using 
Praat (Boersma, 2001), and converted each sample to the 
Mel scale,3 which approximates human pitch perception.  
Each token’s pitch samples were z-normalized using the 

                                                 
1 http://htk.eng.cam.ac.uk/, version 3.3. 
2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
3 Mel = 1127 loge(1 + f(Hz)/700); Stevens & Volkmann, 1940  

speaker’s overall mean and standard deviation4 to control 
for effects of the particular speaker’s pitch characteristics.  
Outlying pitch samples in each token’s pitch track (i.e., 
measurement error) were excluded.5 Then, for all words in 
the corpus, we calculated the F0 mean, F0 range, and  the 
location of the F0 maximum and minimum.  Further 
analysis focused on word tokens, from a subset of word 
types, in utterance-final position in statements. 

Results 
We first consider the F0 patterns of 23 highly frequent 
content words.  Even in lexical-tone languages, the 
realization of a word’s pitch is distorted by context (Xu, 
1994).  To reduce this distortion, we restricted our analysis 
to words occurring in final position in statements. 
(Statements are defined here as utterances transcribed with a 
period, versus a question mark or exclamation point.)  The 
number of remaining tokens for each word type ranged from 
150 to 1650.  Figure 1 illustrates the large variation across 
the 23 words in their mean F0 ranges (plotted in Hertz for 
interpretability).  For example, good has a mean F0 range of 
135 Hz, while now has a much lower mean range, 66 Hz. 

To investigate the nature and sources of the F0 variation 
across words, we examined 8 of the 23 words in more detail.  
These 8 words—good, no, up, down, ball, book, right, and 
okay—have meanings and lexical/pragmatic contexts that 
lead to interesting predictions about their F0 realizations. 
(See Appendix for detail on lexical contexts.)  Good usually 
expresses approval (of the child’s behavior, a taste or smell, 
etc.), while no usually chastises or warns the child.  
Accordingly, we expect good to occur with higher mean F0 
and more rise-fall contours, while no should be low and flat 
or falling.  The different meanings of up and down might 
influence their F0 patterns.  In a manner analogous to tone 
or word painting in music (where composers fit the melody 
to the words of a song, for instance, jumping to a high note 
on the word up), up might be uttered with a higher mean F0 
than down.  Ball and book, both concrete nouns, occur in 
similar lexical contexts that might suggest a predominance 
of rise-fall contours.  Right should behave similarly to good, 
since the mother is usually expressing excitement or praise.  
Finally, okay usually appears in comforting utterances, e.g., 
“You’re okay” or “It’s okay,” so we expect its F0 realization 
to be low and gently falling.  

 

                                                 
4 Z-score = (M – F0) / SD.  Mean F0s for the 16 mothers ranged 
from 207 to 280 Hz (mean: 250 Hz), and standard deviations 
ranged from 72 to 99 Hz (mean: 89 Hz). 
5 We excluded any pitch values falling outside the whiskers.  
Whiskers were calculated for each token using the following 
equations:  Whisker 1 = Q1 – 1.5 * (Q3 – Q1); Whisker 2 = Q3 – 
1.5 * (Q3 – Q1).  Q1 and Q3 are the first and third quartiles (which 
define the interquartile range, the middle 50% of values). 



 
 

Figure 1:  Pitch range for each word, plotted in Hertz for interpretability (though our analysis used the Mel scale).         
Means (bar heights), with their 95 % confidence intervals (vertical lines), and medians (circles) are plotted. 
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Figure 2: F0 plots (speaker-normalized Mels) for 8 highly 
frequent words.  These tokens are all 0.3-0.4 seconds long, 
so they fall roughly in the middle 20%.  

                

  
 
 
 
Figure 3: The standard deviation threshold.  Varying the 
threshold affects the proportion of flat tokens for each word, 
but the differences between the words are evident within a 
large range of thresholds.  We used the threshold 0.275, 
indicated by the vertical line. 
 

The easiest way to get a first impression of a word’s 
distribution of F0 realizations is to look at each word 
token’s F0 samples plotted over time.  Figure 2 shows pitch 
plots for a subset of the tokens that we analyzed (but similar 
results obtain for longer and shorter durations).  For plotting 
purposes, each token’s duration was normalized by taking 
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11 evenly spaced samples from the original pitch track. The 
F0 plots generally support our predictions.  Good has more 
tokens with rise-fall contours, large F0 ranges, and high F0 
means, while the no tokens are almost all low and flat.    The 
up tokens have higher, more variable means than the down 
tokens. Surprisingly, ball appears to have slightly more rise-
fall contours than book. Finally, right seems to have more 
rise-fall contours than okay, while okay has more falling 
tokens. 
  To quantify the differences between the 8 words, we first 
divided tokens into the categories flat versus contoured.  We 
used the standard deviation (SD) of each token’s F0 
samples: if it fell above 0.275, the token was categorized as 
contoured; otherwise, it was characterized as flat.  Figure 3 
demonstrates that the particular SD threshold mainly affects 
the proportions of flat versus contoured tokens rather than 
the distributions of different contour types.  At any 
particular SD threshold within a reasonable range, the same 
differences between words like good and no emerge.  We 
then further categorized contoured tokens as falls, rises, 
rise-falls, fall-rises, or complex. We first normalized each 
token’s list of pitch samples by its length, then divided the 
normalized duration into three regions: the start (t ≤ 3); the 
middle (3 < t ≤ 7), and the end (t > 7). If the F0 maximum 
occurred in the first region (near the start of the word) and 
the F0 minimum occurred in the third region (near the end), 
the token was categorized as falling.  Conversely, rises had 
minima at the beginning and maxima at the end.  Rise-falls 
had maxima in the middle and minima on either end, while 
fall-rises were the opposite: minima in the middle and 
maxima on either end.  Finally, tokens that fell into none of 
these categories were deemed complex. Figure 4 illustrates 
the three regions and example contours of each type. 

By describing each token as falling, rising, etc., we can 
compare the 8 words’ distributions of contour types. Table 1 
displays, for each word, the proportion of tokens categorized 
in each contour type, and the average mean F0 (converted to 
Mels, and z-normalized to control for each mother’s pitch 
characteristics). The first thing to notice is the prevalence of 
flat tokens across all the word types, which is surprising 
considering that we excluded utterance-initial and utterance-
medial tokens (which we would expect to be flatter than 
utterance-final tokens). 

The contour-type distributions and F0 means in Table 1 
mostly reflect the patterns observed in the F0 plots from 
Figure 2.  No has more flat tokens, while good has more 
rise-falls and a higher mean F0; up has a higher mean F0 
and more rises, while down has more falls; and ball has 
more rise-falls, while book has more flat tokens.  Right 
looks strikingly similar to good, while okay has the most 
falling tokens of any word.   

Unexpectedly, up has slightly more flat tokens than no.  
Since no occurs in prohibitive utterances, it should have 
more flat contours than the other words.  In addition to a flat 
shape, however, we also expect no to have low mean F0s.  
The F0 plots in Figure 2, and the average F0 mean for each 
word (see Table 1), suggest the flat tokens of up have 
higher, more variable F0 means than the flat tokens of no.  

Figure 5 confirms this, comparing the distribution of F0 
means for the flat tokens of up versus no.  As predicted, no’s 
F0 means are more tightly clustered around lower values.  
Though up resembles no in its proportion of flat contours, 
no is unique in the consistency of its low mean F0. 
 
 

 
 
Figure 4: Examples of the five contour types.  Each token is 
assigned a contour type using the location of its maximum 
and minimum F0 values. 
 
 
Table 1: Contour-type distribution and average F0 mean (in 
Mels and z-normalized) for each word.  For contour type, 
values greater than 0.15 are highlighted.   

 

 

 

          
 
 
Figure 5: The distribution of mean F0 values for flat tokens 
of no versus up. The x-axes show mean F0 (in z-scored 
Mels).  The y-axes show the frequency of occurrence. Flat 
tokens of no, used in prohibitions, are lower and more 
homogeneous in their F0 means. 
 



 

Discussion 
Though the 8 highly frequent words we investigated differed 
in their distributions of contour types, F0 means, and F0 
ranges, the lack of one consistent pitch pattern within each 
word may cue the child that English word representations 
are not specified for tone. 

The distributions of contour types for the words good, no, 
up, down, ball, book, right, and okay generally reflect the 
pragmatic functions of the utterances each word occurs in.  
Good and right often occur with a rise-fall contour, 
consistent with their approving function.  In contrast, no, 
used in prohibitions, has predominantly flat or falling 
contours with low mean F0s.  The opposing meanings of up 
and down are reflected in the higher proportion of rising 
contours for up and of falling contours for down, and in up’s 
higher mean F0s. Though up, surprisingly, had a slightly 
higher proportion of flat tokens than no did, the flat no 
tokens had lower and less variable F0 means. The higher 
proportion of rise-falls for ball, and of flat tokens for book, 
could reflect differences in the pragmatic contexts the words 
occur in; book may occur more frequently in calm, routine 
contexts, while ball may be uttered in more exciting, 
attention-getting contexts.  For the word okay, we expected 
a large proportion of falling contours, given its comforting 
function. Though okay had the highest proportion of falling 
contours of any word, it was probably underestimated: the 
child’s loud crying in comforting utterances often led to 
their exclusion.  

Though the 8 words differ in their pitch characteristics, 
they also exhibit large within-word variability.  Even for 
right, good, and okay, which occur in highly stereotyped 
contexts (see Appendix), the predominant contour is still 
flat, just as it is for no.  The range of contour types within 
each word could cue the child that English word 
representations do not include tone.  On the other hand, the 
consistent pitch realization of the word no—a crucial word 
to learn—probably facilitates recognition. (Changing the 
gender of the talker impairs young children’s recognition of 
words, probably in large part because of the change in 
fundamental frequency; Singh, Morgan, & White, 2004.) 

A natural next step for this research is to compare these 
results with the pitch contours of highly frequent words in 
the IDS of a lexical-tone language.  Though the large 
within-word variability we found may cue the child that 
pitch is not used lexically, we do not yet know how the 
variability in English compares with variability in tone 
languages.   Evidence for how reliably lexical tones are 
realized is unclear, with some results suggesting tones are 
not distorted by the exaggerated intonation of IDS (Liu, 
Tsao, & Kuhl, 2007; Kitamura et al., 2002), and others 
suggesting tones are distorted by IDS prosody (Papousek & 
Hwang, 1991).  Further comparative study of multiple 
languages with different linguistic descriptions will help 
define the learning problem children face. 

At present, scientific understanding of phonological 
development has proceeded almost entirely by empirically 
confirming children’s gradual adaptation to language norms, 
with those norms described in very general terms. Such 
experiments testing the development of perception and 
production in children have revealed some of the 
extraordinary capabilities of infants to interpret and learn 
from the speech signal.  But understanding the learning 
process in any detail will require moving beyond 
oversimplified, schematic descriptions of the information 
available to the learner.  If we do not characterize the 
complexity and variation of the signal provided to children, 
we risk significantly underestimating children’s ability, and 
distorting the nature of the developmental process.  The 
present work provides a first step in furnishing the sort of 
quantitative description that will be needed for a full 
account of children’s language learning. 
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Appendix:  Typical lexical contexts  
Good:  “…very good” (106 tokens); “…so good” (46); 

“…that’s good” (36); “…mmmm good” (29); “…it’s 
good” (27). 

No:  “…no no” (607); “…oh no” (133). 
Ball:  “…the ball” (98); “…your ball” (35). 
Book:  “…this book” (32); “…the book” (28); “…a book” 

(25); “…your book” (23). 
Up:  “…it up” (60); “…you up” (54); “…stand up” (15); 

“…clean(ed) up” (23). 
Down:  “…fall/fell down” (57); “…sit down” (30); 

“…upside down” (20); “…get down” (17). 
Right:  “…that’s right” (464); “you’re right” (15). 
Okay:  “…it’s okay” (147); “…you’re okay” (41); “…that’s 

okay” (32).  

 


