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A Theoretical Analysis and Proofs

A.1 Optimal Time Consistent Planner’s Problem

We explain here the analytical formulation of the Markov perfect equilibrium and show that the
recursive social planner’s problem under discretion is given by (12). To do this, we first provide a
complete formulation of the planner’s problem and then establish that solving a “relaxed” planner’s
problem that includes only a subset of the constraints of the time consistent planner’s problemas
in (12) yields equivalent outcomes.

As described in Section 2.3, we consider a social planner that chooses bt+1 on behalf of the rep-
resentative firm-household while this agent still chooses consumption, labor supply, intermediate
inputs, land holdings taking as given asset prices, and future government transfers. To derive the
planner’s implementability constraints, we analyze the problem of the households, which consist
of choosing {ct, ht, kt+1} taking as given {qt, Tt} so as to solve the following problem::

max
{ct,ht,kt+1}t≥0

E0

∞∑
t=0

βtu(ct −G(ht)

s.t. ct + qtkt+1 = ktqt + ztF (kt, ht, vt)− pvvt + Tt

bt+1

R
− θpvvt ≥ −κtqtkt

The first-order conditions are

ztFh(kt, ht, vt) = G′(ht) (A.1)

ztFv(kt, ht, vt) = pv(1 + θµt/u
′(t)) (A.2)

qtu
′(t) = βEt {u′(t+ 1) (zt+1Fk(kt+1, ht+1, vt+1) + qt+1) + κqt+1µt+1} (A.3)

which correspond to conditions (4),(5),(7). These three conditions together with complementary
slackness conditions µ ≥ 0 and µ

(
b′

R
− θpvv + κq

)
= 0 constitute the implementability constraints

in the complete planner’s problem, as described below. Notice that combining the household bud-
get constraint with the government budget constraint Tt = bt− bt+1

Rt
yields the resource constraint

ct +
bt+1

Rt

= bt + ztF (1, ht, v)− pvv. (A.4)

The planner’s problem consists of maximizing expected lifetime utility (1) subject to (A.1)-(A.4),
and complementary slackness conditions, taking as given future planner’s policies
{B(b, s), C(b, s),H(b, s),µ(b, s),Q(b, s)} .
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Problem 1 The complete recursive time consistent planner’s problem is:

V(b, s) = max
c,b′,q,µ,h,v

u(c−G(h)) + βEs′|sV(b′, s′) (SP)

c+
b′

R
= b+ zF (1, h, v)− pvv (SP1)

b′

R
− θpvv ≥ −κq (SP2)

qu′(c−G(h)) = βEs′|su′(C(b′, s′)−G(H(b′, s′)))(Q(b′, s′) + z′Fk(1,H(b′, s′),v(b′, s′)))

+ κ′µ(b′, s′)Q(b′, s′) (SP3)

zFh(1, h, v) = G′(h) (SP4)

zFv(1, h, v) = pv
(

1 +
θµ

u′(c−G(h))

)
(SP5)

µ ≥ 0 (SP6)

µ

(
b′

R
− θpvv + κq

)
= 0 (SP7)

Proposition II (Relaxed Planner Problem) Constraints (SP4)-(SP7) of the complete planner’s

problem do not bind, and thus a relaxed planner’s problem that is not subject to these constraints

yields equivalent solutions.

Proof: The proof proceeds by analyzing a relaxed planner’s problemin which the planner is not
subject to (SP4)-(SP7) and then showing that those conditions are still satisfied.

Consider the following relaxed problem (i.e., Problem 12 in the text):

V(b, s) = max
c,b′,q,µ,h,v

u(c−G(h)) + βEs′|sV(b′, s′) (RP)

c+
b′

R
= b+ zF (1, h, v)− pvv (RP1)

b′

R
− θpvv ≥ −κq (RP2)

qu′(c−G(h)) = βEs′|su′(C(b′, s′)−G(H(b′, s′)))(Q(b′, s′) + z′Fk(1,H(b′, s′), v(b′, s′)))

+ κ′µ(b′, s′)Q(b′, s′) (RP3)

Let λ ≥ 0 be the multiplier on the resource constraint, µ∗ ≥ 0 be the multiplier on the collateral
constraint, ξ ≥ 0 be the multiplier on the asset pricing implementability constraint.
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Applying the envelope theorem to the first-order conditions of the RP problem yields the
following conditions:

c :: λ = u′(c−G(h))− ξu′′(c−G(h))q (RP4)

b′ :: λ = βREs′|s[Vb(b′, s′) + ξΩ̂] + µ∗ (RP5)

q :: µ∗κ = ξu′(c−G(h)) (RP6)

h :: λzFh(1, h, v) = u′(c−G(h))G′(h)− ξqu′′(c−G(h))G′(h) (RP7)

v :: zFv(1, h, v) = pv
(

1 +
µ∗

λ
θ

)
(RP8)

KT :: µ∗
(
b′

R
− θpvv + κq

)
= 0 (RP8)

EC :: Vb(b, s) = λ (RP9)

where Ω′ = u′′(C(b′, s′)−G(H(b′, s′))){Q(b′, s′) + z′Fk(1,H(b′, s′),v(b′, s′))}...
...{Cb(b′, s′)−G′(H(b′, s′))Hb(b′, s′)}+u′(C(b′, s′)−G′(H(b′, s′))){Qb(b′, s′)+z′[Fkh(1,H(b′, s′),v(b′, s′))Hb(b′, s′)+

Fkv(1,H(b′, s′),v(b′, s′))vb(b
′, s′)]}+ κ′[µb(b

′, s′)Q(b′, s′) + µ(b′, s′)Qb(b′, s′)].

Set µ = u′(c−G(h))
θ

(
zFv(1,h,v)

pv
− 1
)

.30 Rearranging (RP8), we have µ∗ = λ
θ

(
zFv(1,h,v)

pv
− 1
)

and

combining this with the expression for µ, we have µt =
µ∗t
λt
u′(ct − G(ht)). Since u′(.) > 0, the KT

conditions of the relaxed problem µ∗ ≥ 0 and (RP8) imply (SP6) and (SP7), the KT conditions

of the original problem. By definition of µ, we have that (SP5) is satisfied. Finally, substituting

(RP4) into (RP7) yields the original optimality condition with respect to employment (SP4).

This completes the proof that (SP4)-(SP7) do not bind. This proves Proposition II.

A.2 Proof of Proposition 1

Proposition 1 [Decentralization with Debt Taxes] The constrained-efficient equilibrium can be

decentralized with a state-contingent tax on debt with tax revenue rebated as a lump-sum transfer

and the tax rate set to satisfy:

1 + τt =
1

Etu′(t+ 1)
Et [u′(t+ 1)− ξt+1u

′′(t+ 1)Qt+1 + ξtΩt+1] +
1

βRtEtu′(t+ 1)
[ξtu

′′(t)qt]

where the arguments of the functions have been shorthanded as dates to keep the expression simple.

30Notice the distinction between µ, which is the shadow value of relaxing the collateral constraint for individual
agents, and is choice variable for the planner, and µ∗, which is the shadow value of relaxing the collateral constraint
from the planner’s perspective.
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Define the tax as:

1+τt =
βREt {u′(C(bt+1, zt+1))− ξt+1u

′′(C(bt+1, zt+1))Q(bt+1, zt+1) + ξtΩt+1}+ ξtu
′′(ct)qt

βREtu′(C(bt+1, zt+1))
(A.5)

We prove the proposition by showing that the decentralized equilibrium with the tax yields the

same optimality conditions as the planner’s constrained-efficient equilibrium. The constrained

efficient equilibrium can be characterized by sequences {ct, kt+1, ht, vt, bt+1, qt, λt, µ
∗
t}∞t=0 that satisfy

(3), (4), (5), (13), (14), (15), (RP1), kt = 1 together with complementary slackness conditions. The

regulated decentralized equilibrium is characterized by sequences {ct, kt+1, bt+1, ht, vt, qt, λt, µt}∞t=0

that satisfy (2), (3), (4), (5), (7), (16), (RP4), kt = 1 together with complementary slackness

conditions. Substituting the expression for the tax (A.5) and (16), yields condition (14) and

identical conditions characterizing the two equilibria.

u′(t) = βREt
[
u′(t+ 1)− ξt+1u

′′(t+ 1)Qt+1 + ξtΩ̂t+1

]
+ ξtu

′′(t)qt + µ∗t

When the collateral constraint is not binding, we obtain the following macro-prudential debt tax:

τt = Et
−ξt+1u

′′(t+ 1)Qt+1

Etu′(t+ 1)
≥ 0 (A.6)

A.3 Optimal Tax on Debt Problem: Equivalence Result with a Reg-

ulator’s Problem Choosing Taxes

Consider the following government’s problem without commitment choosing an optimal tax on

debt, given that future taxes T (B, s) are chosen by future governments, associated with policies

{B(b, s), C(b, s),H(b, s),µ(b, s),Q(b, s)}. The government chooses the tax on debt to maximize

utility considering the optimal response of households. That is, the government chooses a tax on
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debt subject to all competitive equilibrium conditions including u′(c) = βR(1+τ)E [u′(C(b′, z′))]+µ

V(b, s) = max
c,b′,q,µ,h,v,τ

u(c−G(h)) + βEs′|sV(b′, s′) (A.7)

c+
b′

R
= b+ zF (1, h, v)− pvv

b′

R
− θpvv ≥ −κq

qu′(c−G(h)) = βEs′|su′(C(b′, s′)−G(H(b′, s′)))(Q(b′, s′) + z′Fk(1,H(b′, s′),v(b′, s′)))

+ κ′µ(b′, s′)Q(b′, s′)

zFh(1, h, v) = G′(h)

zFv(1, h, v) = pv
(

1 +
θµ

u′(c−G(h))

)
µ ≥ 0

µ

(
b′

R
− θpvv + κq

)
= 0

u′(c−G(h)) = βR(1 + τ)E [u′(C(b′, z′)−G(H(b′, z′)))] + µ (A.8)

Relative to problem (SP), problem (A.7) contains one additional restriction (A.8) and one ad-

ditional policy instrument τ . Let the optimal tax that solves (A.7), and note that the MPE

stationarity condition requires that τ(B, s) = T (B, s)

Proposition III A sequence of allocations and prices constitutes a constrained efficient equilib-

rium that solves the planner’s problem (12) if and only if they are the outcome of a markov perfect

equilibrium where the government chooses sequentially a tax on debt.

Proof

Consider solving the relaxed problem of maximizing the objective function dropping constraint

(A.8). Notice that the resulting problem is the same as (12), after applying Proposition II. Hence,

allocations and prices satisfy (12) if and only if they satisfy the optimal tax problem. In addition,

notice that τ only appears in (A.8). Hence, setting 1 + τ = u′(c)
βRE[u′(C(b′,z′))]+µ implies that condition

(A.8) is satisfied.
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A.4 Non-Negative Tax on Debt

We solve for the optimal tax on debt, as in problem (A.7) but now impose the additional restriction

that taxes on debt that cannot be negative. This is natural because subsidies on debt require lump

sum taxes. So we rule out lump-sum taxes but not lump-sum transfers. As we showed in Section

2.4, the optimal tax is non-negative when the constraint is not binding, but is possibly negative

when the constraint binds (i.e. only the macroprudential component of the debt tax is non-

negative, the full tax could be negative). Hence, it is possible that the non-negativity constraint

on τ would be binding.

The problem of this planner is the same as in (A.7) but with an additional implementability

constraint given by:

1 + τt =
u′(ct −G(ht))− µt

βRtE [u′(ct+1 −G(ht+1))]
≥ 1

The relaxed regulator’s problem can be written as:

V(b, s) = max
c,b′,q,µ,h,v

u(c−G(h)) + βEs′|sV(b′, s′) (A.9)

c+
b′

R
= b+ zF (1, h, v)− pvv

b′

R
− θpvv ≥ −κq

qu′(c−G(h)) = βEs′|su′(C(b′, s′)−G(H(b′, s′)))(Q(b′, s′) + z′Fk(1,H(b′, s′),v(b′, s′)))

+ κ′µ(b′, s′)Q(b′, s′)

u′(c−G(h))

βRtE [u′(C(b′, s′)−G(H(b′, s′)))]
≥ 1

Let γp ≥ 0 denote the lagrange multiplier on the last constraint. Following the same steps as in

the derivation of the optimal tax in in Proposition (A.2) yields that the optimal tax is now given

by:

1 + τ tax≥0
t =

1

βREtu′(C(bt+1, zt+1)−G(H(b′, s′)))
βREt

[
u′(C(bt+1, zt+1)−G(H(bt+1, zt+1)))

ξpt+1Q(bt+1, zt+1)u′′(C(bt+1, zt+1)) + γpt+1

(
u′′(C(bt+1, zt+1)−G(H(bt+1, zt+1)))

βREt[u′(C(bt+1, zt+1)−G(H(bt+1, zt+1))]

)
+ ξpt Ω

p
t+1 + γpt φ

p
t+1

]
− µt(ϕpt + 1) + µpt

+ ξpt qtu
′′(ct)− γpt

(
u′′(ct −G(ht)

βREt[u′(C(bt+1, zt+1)−G(H(bt+1, zt+1))]

)
(A.10)
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Now suppose that both the non-negative tax constraint and the collateral constraint are slack

today but might bind tomorrow with positive probability, i.e. γpt = 0 and µ∗t = 0. In this case,

(A.10) becomes:

1 + τ tax≥0
t =

1

βREtu′(C(bt+1, zt+1))

[
βREt

[
u′(C(bt+1, zt+1))− ξpt+1Q(bt+1, zt+1)u′′(C(bt+1, zt+1))

+ γpt+1

(
u′′(C(bt+1, zt+1))

βREt[u′(C(C(bt+1, zt+1)))]

)]]
(A.11)

where φpt+1 ≡ µt−u′(ct)
β2Rt

Et
[
u′′(C(bt+1,zt+1))Cb(bt+1,zt+1)

(u′(C(bt+1,zt+1)))2

]
Notice that the tax has the same form as in Proposition (A.2) but now it has an additional

term given by the possibly binding non-negativity constraint on future tax rates.

A.5 Derivation of Collateral Constraint

We provide a derivation of the collateral constraint (3) as an incentive compatibility constraint

resulting from a limited enforcement problem. Debt contracts are signed with creditors in a

competitive environment. Financial contracts are not exclusive, i.e., agents can always switch to

another creditor at any point in time. Households borrow at the beginning of the period, before

the asset market opens. Within period, households can divert future revenues and avoid any

costs from defaulting next period when debt becomes due. At the end of the period, there are no

more opportunities for households to divert revenues and repayment of previous bonds is enforced.

Financial intermediaries can costlessly monitor diversion activities at time t. If creditors detect the

diversion scheme, they can seize a fraction κt of the household assets. After defaulting, a household

regains access to credit markets instantaneously and repurchases the assets that investors sell in

open markets. Given this environment, a household that borrows d̃t+1 and engages in diversion

activities gains d̃t+1 and loses κtqtkt.

Formally, let V R and V d be the value of repayment and default respectively, and V be the

continuation value. If a household raises d̃ resources by borrowing b′

R
at the beginning of the

period, and defaults, it gets

V d(d̃, b, k,X) = max
b′,k′,c,v

u(c−G(h)) + βEs′|sV (b′, k′, B′, s′) (A.12)

s.t. q(B, s)k′ + c+
b′

R
= d̃+ q(B, s)k(1− κ) + b+ zF (k, h, ν)− pνν

− b
′

R
+ θpνν ≤ κq(B, s)k

where the budget constraint reflects the fact that the household regains access to credit markets

and can borrow b′ and the collateral constraint reflects that agents buy back the assets from
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investors. If the household does not default, it gets the utility from current consumption plus the

continuation value of starting next period with debt b′ as stated in (10).

V r(b, k,X) = max
b′,k′,c,h

u(c−G(n)) + βEs′|sV (b′, k′, B′, s′) (A.13)

s.t. q(B, s)k′ + c+
b′

R
= q(B, s)k + b+ zF (k, h, ν)− pνν

− b
′

R
+ θpνν ≤ κq(B, s)k

A simple inspection at the budget constraints implies that households repay if and only if d̃t+1

≤ κtqtkt

Notice that for the constrained-efficient equilibrium, the derivation of the feasible credit posi-

tions is analogous to the case in the decentralized equilibrium. If the planner engages in diversion,

creditors can seize a fraction κt of assets in the economy. Moreover, households can buy back

the assets at the market price qt. This implies that the same collateral constraint applies in the

constrained-efficient equilibrium in this environment.
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B Computational Algorithm

B.1 Numerical Solution Method for Decentralized Equilibrium

Following Bianchi (2011), we use Coleman (1990)’s time iteration algorithm, modified to address

the occasionally binding endogenous constraint, that operates directly on the first-order conditions.

Formally, the computation of the competitive equilibrium requires solving for functions

{B(b, s),Q(b, s), C(b, s), ν(b, s),H(b, s), µ(b, s)} such that:

C(b, s) +
B(b, s)

R
= zF (1,H(b, s), ν(b, s)) + b− pvν(b, s) (B.1)

− B(b, s)

R
+ θpνν(b, s) ≤ κQ(b, s) (B.2)

u′(C(b, s)−G′(H(b, s))) = βREs′|s [u′(C(B(b, s), s′)−G′(H(B(b, s), s))] + µ(b, s) (B.3)

zFn(1,H(b, s), ν(b, s)) = G′(H(b, s)) (B.4)

zFν(1,H(b, s), ν(b, s)) = pν(1 + θµ(b, s)/u′(C(b, s))) (B.5)

qu′(c−G(h)) = βEs′|s {u′(C(b′, s′)−G′(H(b, s)))(Q(b′, s′) + z′Fk(1,H(b′, s′), ν(b′, s′)))

+κ′µ(b′, s′)Q(b′, s′)} (B.6)

The algorithm follow these steps:

1. Generate a discrete grid for the economy’s bond position Gb = {b1,b2, ...bM} and the shock

state space Gs = {s1,s2, ...sN} and choose an interpolation scheme for evaluating the func-

tions outside the grid of bonds. For the grid for bonds, we choose a uniformly spaced grid

and interpolate the functions using a piecewise linear approximation.

2. Conjecture Bk(b, s),Qk(b, s), Ck(b, s),Hk(b, s), νk(b, s), µk(b, s) at time K, ∀b ∈ Gb and ∀s ∈
Gs

3. Set j = 1

4. Solve for the values of Bk−j(b, s),Qk−j(b, s), Ck−j(b, s), (b, s), µk−j(b, s) at time k − j using

(B.1)-(B.6) and Bk−j+1(b, s),Qk−j+1(b, s), Ck−j+1(b, s)

Hk−j+1(b, s), µk−j+1(b, s)∀ b ∈ Gb and ∀ s ∈ Gs:

(a) Assume collateral constraint ( B.2) is not binding. Set µk−j(b, s) = 0 and solve for
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Hk−j(b, s) and ν using (B.4) and (B.5). Solve for Bk−j(b, s) and Ck−j(b, s) using (B.1)

and(B.3) and a root finding algorithm.

(b) Check whether −Bk−j(b,s)
R

+ θpννk−j(b, s) ≤ κQk−j+1(b, s) holds. Notice that this step

uses the asset price from the previous iteration to determine whether the collateral con-

straint is binding. Of course, once policies and prices converge, this becomes innocuous.

The advantage from this formulation is that it avoids solving through iterations for an

additional market clearing price, which may or may not be unique. We conducted sev-

eral robustness checks in this dimension like starting from a different initial guess for

the equilibrium. Moreover, it would be straightforward to alter our method by solving

for possibly multiple Q that satisfy −Bk−j(b,s)
R

+ θpννk−j(b, s) = κQk−j+1 with a cer-

tain equilibrium selection, e.g. the one that maximizes the utility of the representative

agent.

(c) If constraint is satisfied, move to next grid point.

(d) Otherwise, solve for µ(b, s), νk−j(b, s),Hk−j(b, s),Bk−j(b, s) using (B.2, (B.3) and(B.4)

with equality.

(e) Solve for Qk−j(b, s) using (B.6)

5. Evaluate convergence. If supB,s‖xk−j(b, s)− xk−j+1(b, s)‖ < ε for x = B, C,Q, µ,H we have

found the competitive equilibrium. Otherwise, set xk−j(b, s) = xk−j+1(b, s) and j  j + 1

and go to step 4.
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B.2 Numerical Solution Method for Constrained-Efficient Equilib-

rium

From a methodological standpoint, the solution method we developed is related to the literature

using Markov perfect equilibria to solve for optimal time-consistent policy. In particular, we

extended the methods proposed in Klein et al. (2008) and Klein et al. (2007) to models with an

occasionally binding collateral constraint. The algorithm we propose uses a nested fixed point

algorithm. Given future policies, we solve for policy functions and value functions using value

function iteration as an inner loop. In the outer loop, we update future policies given the solution

to the Bellman equation. The algorithm follows these steps:

1. Generate a discrete grid for the economy’s bond position Gb = {b1,b2, ...bM} and the shock

state space Gs = {s1,s2, ...sN} and choose an interpolation scheme for evaluating the func-

tions outside the grid of bonds. We use the same grid as DE and interpolate the functions

using a piecewise linear approximation.

2. Guess policy functions B,Q, C, ν, µ at time K ∀ b ∈ Gb and ∀ z ∈ Gz. We use as initial

policies the policies of the decentralized equilibrium, and we check that we obtain the same

equilibrium when starting from alternative policies.

3. For given C,Q,H, ν, µ solve for the value function and policy functions :

V (b′, s′) = max
c,b′,µ,h,ν

u(c−G(h)) + βEs′|sV (b′, s′) (B.7)

c+
b′

R
= b+ zF (k, h, ν)− pνν (B.8)

zFh(k, h, ν) = G′(h) (B.9)

zFν(k, h, ν) = pν

(
1 +

θµ

u′(c−G(h))

)
(B.10)

µ

(
b′

R
− θpνν + κq

)
= 0 (B.11)

b′

R
− θpνν ≥ −κq (B.12)

qu′(c−G(h)) = βEs′|s {u′(C(b′, s′)−G′(H(b, s)))(Q(b′, s′) + z′Fk(1,H(b′, s′), ν(b′, s′))

+κ′µ(b′, s′)Q(b′, s′)} (B.13)

This recursive problem is solved using value function iteration. The value functions and

policy functions are approximated using linear interpolation whenever the bond position is

not in the grid. To solve the optimal choices in each state, we first assume the collateral

constraint is not binding and use a Newton type algorithm to solve the optimization problem.
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If the collateral constraint is binding, we solve for every b′, the combinations of c, h, ν, q, µ

that satisfy these 6 conditions (B.8)-(B.13), with (B.13) holding with equality.

4. Denote by σi, i = c, q, h, ν, µ the policy functions that solve the recursive problem in step (3)

Compute the sup distance between B,Q, C, ν, µ and σi, i = c, q, h, ν, µ. If the sup distance is

higher than 1.0e-6, update B,Q, C, ν, µ and solve again the recursive problem.
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C Model with Separate Households and Firms

We describe here a setup in which households and firms are modeled separately and is isomorphic

to the model studied in the paper with the representative firm-household as a single agent.

C.1 Household Problem

Households choose consumption, holdings of stocks, bond holdings and labor supply to maximize

max
{ct,ht,bHt+1,st+1}

E
∞∑
t=0

βtu(ct −G(ht) + φtk
H)

subject to

st+1pt + ct +
bHt+1

Rt

≤ st(dt + pt) + bHt + wtht (C.1)

bHt+1 ≥ −κtqtkH (C.2)

where φ captures preference for housing, st represents the holdings of firm shares and pt represents

the price of firm shares. We assume that the stock of housing owned by households is constant.

The first-order conditions are:

ptu
′(t) = βEtu′(t+ 1)(dt+1 + pt+1) (C.3)

G′(ht) = wt (C.4)

u′(t) = βRtEtu′(t+ 1) +RµHt , (C.5)

µHt (bHt+1 + κtqtk
H) = 0 (C.6)

µHt ≥ 0 (C.7)

where µH is the non-negative Lagrange multiplier on the household borrowing constraint.
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C.2 Firms

The problem of the firm is to choose capital, labor, intermediate inputs, dividends and bond

holdings to maximize equity value, which can be expressed as:

max
{dt,bFt+1,k

F
t+1,nt,vt}

∞∑
t=0

u′(ct −G(ht))dt

dt + qtk
F
t+1 +

bFt+1

Rt

≤ kFt qt + F (zt, k
F
t , nt, vt)− wtnt − pvt vt + bFt (C.8)

bFt+1 − θpvt vt ≥ −κtqtkFt (C.9)

First order conditions are:

u′(t)qt = Etu′(t+ 1)(Fk(t+ 1) + qt+1) + βEtµFt+1qt+1 (C.10)

Fn(t) = wt (C.11)

Fv(t) = pv
(

1 + θ
µFt
u′(t)

)
(C.12)

u′(t) = βRtEtu′(t+ 1)) +RµFt , (C.13)

µFt (bFt+1 + θpvt vt + κtqtk
F
t ) = 0 (C.14)

µFt ≥ 0 (C.15)

where µF is the non-negative Lagrange multiplier on the firm collateral constraint.

C.3 Market Clearing and Competitive Equilibrium

Market clearing requires:

ht = nt (C.16)

st = 1 (C.17)

kFt+1 + kH = K̄ (C.18)

Notice that (C.13) and (C.5) imply that µHt = µFt .

A competitive equilibrium in this economy is given by sequences of allocations

{ct, ht, bHt+1, st+1, k
H , dt, b

F
t+1, k

F
t+1, nt, vt, µ

H
t } and prices {qt, wt} such that conditions (C.1)-(C.18)

hold.
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C.4 Firm-Household problem

max
{ct,bt+1,kt+1,nt,vt}

E
∞∑
t=0

βtu(ct −G(nt) + φtk
H)

ct + kt+1qt +
bt+1

Rt

≤ ktqt + F (zt, kt, nt, vt) + bt (C.19)

bt+1 − θpvv ≥ −κqt(kH + kt) (C.20)

The first-order conditions are:

u′(t)qt = βEtu′(t+ 1)(Fk(t+ 1) + qt+1) + βEtµt+1qt+1 (C.21)

Fn(t) = G′(nt) (C.22)

u′(t) = βRtEtu′(t+ 1) +Rtµt, (C.23)

µt(bt+1 − θpvv + κtqt(k
H + kt)) = 0 (C.24)

µt ≥ 0 (C.25)

where µt denotes the Lagrange multiplier on the consolidated collateral constraint.

A competitive equilibrium in this economy is given by a sequence of allocations {ct, nt, bt+1, k
F
t+1, µt}

and prices {qt, wt} such that conditions (C.19)-(C.25) hold.

C.5 Equivalence

Proposition IV If {ct, ht, bHt+1, st, k
H , dt, b

F
t+1, k

F
t+1, nt, vt, wt, qt, µ

H
t } is a competitive equilibrium

allocation in the economy with separate households and firms, then {ct, nt, bt+1, k
F
t+1, vt, wt, qt, µt}

is a competitive equilibrium in an economy with a representative firm-household with bt+1 = bHt+1 +

bFt+1, kt+1 = kFt+1.

Conversely, if {ct, nt, bt+1, k
F
t+1, vt, wt, qt, µt} is a competitive equilibrium allocation in an econ-

omy with a representative firm-household, then there exists prices {wt, qt, µHt } such that

{ct, ht, bHt+1, st, k
H , dt, b

F
t+1}, {kFt+1, nt, vt} is a competitive equilibrium allocation in the economy

with separate households and firms, with bt+1 = bHt+1 + bFt+1, kt+1 = kFt+1.

Proof: ” →” Suppose {ct, ht, bHt+1, st+1, k
H , dt, b

F
t+1, k

F
t+1, nt, vt} is a competitive equilibrium for

an economy with separate households and firms. Then we have to show that conditions (C.1)-

(C.15) imply that (C.19)-(C.25) also hold. This follows from simple inspection: Budget constraint

of the household firm (C.19) follows by combining (C.1),(C.17) and (C.8). The firm-household

collateral constraint (C.20) follows from combining (C.2),(C.9) and bt+1 = bHt+1 + bFt+1. Labor
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market condition (C.22) follows from (C.4) and (C.11). Euler equations and complementary

slackness conditions (C.23)-(C.25) follow from (C.5)-(C.7).

Proof: ”←” Suppose {ct, nt, bt+1, k
F
t+1} is a competitive equilibrium allocation in an economy with

a representative firm-household. Then, we have to show that (C.19)-(C.25) imply that equations

(C.1)-(C.15) also hold. This follows from simple inspection after constructing prices as follows

w = G′(h), qt so that ptu
′(t) = βEtu′(t+ 1)(dt+1 + pt+1), u′(t)qt = βEtu′(t+ 1)(Fk(t+ 1) + qt+1) +

βEtµt+1qt+1 Set bHt+1, b
F
t+1 such that bHt+1 ≤ κqtk

H , bFt+1 − θpvt vt ≥ −κtqtkFt and bFt+1 = bt+1 − bHt+1.

Set st+1 = 1 and dt = F (zt, k
F , nt, vt)− wtnt − pvt vt + bFt −

bFt+1

Rt
. Market clearing in labor market

(C.16) and optimality of labor demand (C.11) follows from w = G′(h). and (C.22). Euler equation

and complementary slackness condition (C.5)-(C.7) follow from (C.23)-(C.25).
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D Investment

This section shows that the qualitative insights of the model with capital in fixed supply extend to

a model with investment and capital adjustment cost. In order to have kt+1 units of capital ready

for production in period t+ 1, an agent with kot units of used capital needs to employ φ(kt+1, k
o
t )

units of the consumption good at date t.

There is a competitive market for used capital, where agents can buy and sell capital at the price

qot , after production has taken place. To simplify the exposition, we assume no intermediate inputs

and a borrowing constraint bt+1

Rt
≥ −κtqtK̄ where K̄ is the aggregate capital stock at steady state

and q is the price of newly installed capital readily available to produce in the following period.

The budget constraint is as follows

ct +
bt+1

Rt

+ qot k
o
t + φ(kt+1, k

o
t ) + qk̃t+1 ≤ bt + ztF (kt, ht) + qot kt + qkt+1

According to this, households sell old capital kt and newly installed capital kt+1, and use bonds

and production to buy newly installed capital k̃t+1, old capital kot , consume and issue new bonds.

This allows for the possibility of kot 6= kt and kt+1 6= k̃t+1. However, market clearing in the used

capital market requires kot = kt, kt+1 = k̃t+1.

Recursive representation— Let X = (B,K, s) denote the aggregate state of the economy. The

recursive optimization problem of agents is given by:

V (b, k,X) = max
c,ko,k̃′,b′,h,kt+1

u(c−G(h)) + βEs′|sV (b′, k′, X ′) (D.1)

c+
b′

Rt

+ φ(k′, ko) + qo(X)ko + q(X)k̃′ = b+ zF (k, h) + qo(X)k + q(X)k′(D.2)

b′

Rt

≥ −κq(X)K̄ (D.3)

Optimality conditions are:

u′(ct −G(ht)) = βREt[u′(ct+1 −G(ht+1))] + µ (D.4)

G′(h) = Fh(k, h) (D.5)

qo(X) = φ2(k̃′o) (D.6)

qt = φ1(kt+1, k
o
t ) (D.7)

u′(ct −G(ht))qt = βEt[u′(ct+1 −G(ht+1)){qot+1 + zt+1Fk(kt+1, ht+1)}] (D.8)
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Market clearing implies that the resource constraint is

c+
b′

R
+ φ(k′, ko) = b+ zF (k, h) (D.9)

D.1 Optimal Time Consistent Planner’s Problem

As in the planner’s problem of the paper, the planner chooses directly borrowing on behalf of the

households, and lets all markets clear competitively. That is, the planner chooses allocations and

prices subject to a set of implementability constraints given by (D.5)-(D.9).

Under discretion, the planner takes future policies for capital K, consumpion C, bonds B as

given and solves the following problem:

V(b, k, s) = max
c,k′,b′,h

u(c−G(h)) + βEs′|sV(b′, k′, s′)

c+
b′

R
+ φ(k′, ko) = b+ zF (k, h)

b′

R
≥ −κφ1(k′, k)kt

G′(h) = Fh(k, h)

u′(c−G(h))φ1(k′, k) = βEs′|s[u′(C(b′, k′, X ′)−G(H(b′, k′, X ′))){φ2(K(b′, k′, X ′), k′))

+z′Fk(k
′,H(b′, k′, X ′))}]

Using first-order conditions and envelope condition, the Euler equation for bonds is:

u′(ct −G(ht)) = βREt
[
u′(C(bt+1, kt+1)−G(H(bt+1, kt+1))

−ξt+1φ1(K(bt+1, kt+1, X), kt+1)u′′(C(bt+1, kt+1, X)−G(H(bt+1, kt+1, X))) + ξtΩt

]
+ξtφ1(kt+1, kt)u

′′(ct −G(ht)) + µ∗t

where Ω ≡ Es′|s[u′′(C(b′, k′, X ′)−G(H(b′, k′, X ′))){φ2(K(b′, k′, X ′), k′))+z′Fk(K̄,H(b′, k′, s′))}(Cb(b′, k′, s′)
−G′(H(b′, k′, s′))Hb(b

′, k′, s′)) + u′(C(b′, k′, s′)−G(H(b′, k′, s′)))(φ21(K(b′, k′, s′), k′)Kb(b′, k′, s′)
+z′{Fkk(K̄,H(b′, k′, s′))Kb(b′, k′, s′)) + Fkh(K̄,H(b′, k′, s′))Hb(b

′, k′, s′))}].

Suppose that the implementability constraint is slack today but binds tomorrow, i.e ξt = 0 but

ξt+1 ≥ 0. This yields

u′(ct −G(ht)) = βREt[u′(C(bt+1, kt+1, X)−G(H(bt+1, kt+1, X))) (D.10)

−ξt+1φ1(K(bt+1, kt+1, X), kt+1)u′′(C(bt+1, kt+1, X)] (D.11)
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Just like in the condition (14) of the paper, there is a positive wedge between the marginal cost of

borrowing from the planner and households when the constraint is not binding at t but is expected

to bind at t+ 1.
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E Commitment

This section provides more details about the analysis under commitment. There are two sections.

Section E.1 derives some theoretical results and E.2 provides a numerical analysis.

E.1 Theoretical Results

Under commitment, the planner chooses at time 0 once and for all {ct, bt+1, qt, ht, vt, µt+1}t≥0 to

solve the following problem:

max
{ct,bt+1,qt,ht,vt,µt}t≥0

Et
∞∑
t=0

βtu(ct −G(ht))

ct +
bt+1

R
≤ bt + ztF (1, ht, vt)− pvt vt (E.1)

ztFh(1, ht, vt) = G′(ht) (E.2)

ztFv(1, ht, vt) = pvt

(
1 +

θµt
u′(ct −G(ht))

)
(E.3)

bt+1

R
− θpvt vt ≥ −κtqt (E.4)

u′(ct −G(ht))qt = βEt
[
u′(ct+1 −G(ht+1))(qt+1 + zt+1Fk(1, ht+1, vt+1))

+κt+1µt+1qt+1

]
(E.5)

µt

(
bt+1

R
− θpvt vt + κtqt

)
= 0 (E.6)

µt ≥ 0 (E.7)

Let λt, ζ
h
t , ζvt , µ∗t , ξt, νt and χt denote the lagrange multipliers on constraints (E.1)-(E.7)

respectively. First-order conditions with respect to ct, bt+1, qt, ht, vt, and µt are:

ct :: λt = u′(t)− ξtu′′(t)qt + ξt−1u
′′(t)(qt + ztFk(t) + κtµtqt) (E.8)

bt+1 :: λt = βRtEtλt+1 + µ∗t + µtνt (E.9)

qt :: ξt = ξt−1(1 + κtµt) +
κt(µtνt + µ∗t )

u′(t)
(E.10)
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ht :: ztFh(t) = G′(ht) +
1

λt

[
ζht [ztFhh(t)−G′′(h)] + ζvt ztFvh(t)− ξt−1u

′(t)ztFkh(t)
]

(E.11)

vt :: ztFv(t) =
1

λt

[
pvt [λt + θµ∗t + θµtνt] + ζht ztFhv(t) + ζvt ztFvv(t)− ξt−1u

′(t)ztFkv(t)
]

(E.12)

µt :: ξt−1κtqtu
′(t) + χt + ζvt p

vθ = −νt
(
bt+1

R
− θpvt νt + κtqt

)
(E.13)

Notice that conditions (E.8)-(E.10) correspond to conditions (19)-(21 in Section 2.6.

Complementary slackness conditions is:

µ∗t

(
bt+1

R
− θpvt vt + κtqt

)
= 0 (E.14)

χtµt = 0 (E.15)

The Euler equation for bonds is:

u′(t) = βREt[u′(t+ 1)− ξt+1u
′′(t+ 1)qt+1 + ξtu

′′(t+ 1)(qt+1(1 + κt+1µt+1) + zt+1Fk(t+ 1)) ]

+ξtu
′′(t)qt − ξt−1u

′′(t)(qt(1 + κtµt) + ztFk(t))−
ζνt p

v
t θµtu

′′(t)

u′(t)2
+ µ∗t + νtµt (E.16)

Following the same steps as in A.2 and assuming for illustration purposes that the implementability

constraints (E.11), (E.12 ), and (E.13) are not binding, the macro-prudential tax on debt under

commitment τMP,C
t is given by:

τMP,C
t =

−Et κµt+1

u′(ct+1)
u′′(ct+1)qt+1 + ξt−1(Etu′′(ct+1)zt+1 − ztu′′(ct))

Etu′(ct+1)
(E.17)

Compared to the tax in the markov perfect equilibrium (17), the tax under commitment features

another term that relates to previous commitments as given by the second term on the right hand

side of (E.17).

E.2 Numerical Results

A numerical solution of the model under commitment requires to find appropriate state variables

to keep track of previous promises. Notice that ξ follows an increasing sequence over time and

hence is not an appropriate state variable for a numerical solution.

Building on Kydland and Prescott (1980), one can transform the planner’s problem to express

it recursively expanding the states to include consumption and asset prices. For simplicity, we

consider here a production function of the form F (k) = zk, a collateral constraint that depends
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on the market value of aggregate assets and only productivity shocks. The recursive problem for

t > 0 can be expressed as follows

V (b, q, c, z) = max
b′,q(z′),c(z′)

u(c) + βEz′V (b′, q(z′), c(z′), z′)) (E.18)

c + b′/R ≤ b+ z

b′ ≥ −κ(s)q

qu′(c) ≥ βEc(z′)(z′ + q(z′))

with states (b, q, c, z) ∈ A where A is the largest feasible set for (b, q, c, z), i.e., the largest set such

that one can find a sequence bt+1, ct, qt satisfying all the constraints.

At t = 0, the planner is not bound by past promises of consumption and asset prices. The

time 0 problem consists of choosing q(b, s), c(b, s) that maximize V (b, q, c, s)

max
c,q

V (b, q, c, s) (E.19)

To solve the model, we construct a grid for the three endogenous state variables b, q, c of dimension

NB, NQ and NC respectively and a grid of dimension NS for the exogenous state variables.

Notice that since the planner is choosing asset prices and consumption for each possible value of

the shock tomorrow, the dimension of the control space for each combination of state variables is

NS ×NB ×NQ×NC + 1. To keep the numerical solution manageable, we use relatively coarse

grids of NS = 2, NB = 20, NQ = 10, NC = 20.

Figure 9 shows the value function, and policy functions for asset prices, consumption, and

bonds at t = 0 and compares them with the decentralized equilibrium. That is, we first solve

(E.18) and obtain the policy function b′(b, q, c, s) and value function V ′(b, q, c, s), and then find

c∗, q∗ that solve (E.19). Figure 9 plots the solution for c∗, q∗ together with the associate value

function, and the bond policy that solves (E.18) for c∗, q∗ that solve (E.19) .
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Figure 9: Policy Functions under Commitment vs Decentralized Equilibrium

Note: Dashed lines represent optimal macroprudential policy under commitment.
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F Data Appendix

F.1 Data Sources

• Net Foreign Asset Position (NFA): Flow of Funds

• Total Credit: Survey of Terms of Business Lending and Flow of Funds

• Intermediate Inputs: United Nations UNdata

• GDP: OECD National Accounts Statistics

F.2 Frequency and Duration of Financial Crises

To construct estimates of the duration and frequency of financial crises, we applied the methodol-

ogy proposed by Forbes and Warnock (2012) to identify the timing and duration of sharp changes

in financial conditions. A financial crisis is defined as an event in which the cyclical component

of the linearly-detrended current account is above two-standard deviations from its mean. Since

the current account is the overall measure of financing of the economy vis-a-vis the rest of the

world, this unusually large current accounts represent unusually large drops in foreign financing.

The starting (ending) dates of the events are set in the year within the previous (following) two

years in which the current account first rose (fell) above (below) one standard deviation. Using

the data for all OECD countries over the 1984Q1-2012Q4 period, we obtained financial crises with

a frequency of 4 percent and a mean duration of 1 year.31

Table 4 indicates the list of all crises events identified with this methodology and Figures

F.1-F.3 show the data for the current account for each country.

31The data are quarterly, and the sample length varies across countries, with shorter samples for emerging
economies . Because of this, some well-known events are not identified because they are outside the sample period
(e.g. data for Chile start in 2003, which means that the 1982 financial crisis is excluded).
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Table 4: Financial Crises Episodes.

Australia [2001Q2 - 2002Q3]
Austria [2002Q3 - 2003Q2], [2008Q1 - 2009Q1]
Belgium [2010Q2 - 2011Q2]
Canada [1996Q1 - 1997Q1]
Chile
Czech Republic [2005Q3 - 2006Q3]
Denmark [2005Q4 - 2006Q3], [2010Q3 - 2011Q2]
Estonia [2009Q3 - 2010Q4]
Finland [1995Q1 - 1996Q2]
France [1999Q1 - 2000Q1]
Germany [1989Q1 - 1990Q4]
Greece
Hungary [2001Q4 - 2002Q3], [2009Q4 - 2011Q1]
Iceland
Ireland [2003Q2 - 2004Q4]
Israel [2006Q2 - 2007Q3], [2010Q1 - 2010Q4]
Italy
Japan [2007Q2 - 2008Q2]
Korea, Republic of [2004Q1 - 2005Q1]
Luxembourg [2005Q1 - 2005Q3]
Mexico [1983Q2 - 1984Q3], [1995Q4 - 1997Q2]
Netherlands [2006Q1 - 2007Q1]
New Zealand [2009Q3 - 2010Q4]
Norway [2000Q3 - 2002Q1]
Poland
Portugal [2003Q1 - 2004Q3]
Slovak Republic [1995Q4 - 2000Q4]
Slovenia
Spain
Sweden [2006Q4 - 2008Q4]
Switzerland [2010Q1 - 2011Q1]
Turkey [1994Q4 - 1995Q2], [2001Q4 - 2002Q3], [2009Q2 - 2010Q2]
United Kingdom
United States [1991Q1 - 1992Q2], [2009Q2 - 2010Q2]
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Figure F.1: Financial Crises
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Figure F.2: Financial Crises
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Figure F.3: Financial Crises
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G Great Recession Experiment

In section 3.2, we conduct ed an event analysis designed to show how average financial crises look

in DE and conduct counterfactual experiments to show the effectiveness of macroprudential policy.

In this section, we examine instead the DE model’s predicted time-series dynamics leading up to

and including the global financial crisis event using a window spanning the 2000-2009 period. We

compare these dynamics with the observed dynamics in the United States and Europe, and with

a counterfactual of what the event would have looked like under the SP’s optimal policy.32 The

results for three of the model’s key variables (asset prices, output and the current account) are

shown in Figure 1.

To generate the simulated data for the DE and SP we need to set an initial condition for

b, and values for the realizations of TFP, R and κ for the ten years in the event window. The

initial condition for b is set equal to the private NFA-GDP ratio of the United States observed in

2000, which was −11.6 percent. The values of the interest-rate shocks are set to their observed

realizations during 2000-2009 and the values of the TFP shocks are set so as to match the observed

deviation from linear trend of the U.S. real GDP in the same period—we use interpolation over

the realizations included in the Markov approximation of the AR(1) process of TFP). The values

of κ are set to κH for 2000-2008 and κL for 2009. The DE and SP decision rules for bonds, together

with the recursive functions that map the values of bonds and the shocks into equilibrium prices

and allocations, are then used to generate the plots shown in the first column of Figure 1.

Comparing the DE model’s crisis dynamics with the U.S. and European data, Panels (a)-(c)

of the Figure 1 show that the model does quite well at tracking the dynamics of asset prices,

particularly for the United States, which is the country used to set the initial conditions and

shock realizations for the model simulations. The timing of the crash in the asset price is off

by one year, because we set the change to κL and the lowest realization of TFP in 2009, to be

consistent with the fact that the lowest deviation from trend in GDP was observed in 2009. We

could calibrate to 2008 instead and then the crash in the asset price would be in the same year as

in the data. The current account in the DE and the U.S. data share the feature that the financial

crisis is associated with a sharp current account reversal. The reversal, however, is much large

in the model than in the data, which is partly due to the fact that debt in the model is only

one-period debt, while actual U.S. net foreign assets include significant positions in long-term

instruments.33 For the same reason, the large current account reversal implies a decline in private

consumption larger than what was observed in U.S. data.

As figure G.1 shows, the policy not only prevents the asset price crash, but in addition it

32Data for Europe represents simple average of European Union—the source is Eurostat.
33The model also abstracts from government policies that were put in place to offset the credit crunch (see e.g.

Gertler and Kiyotaki (2010) and Bianchi (2012)).

29



02 04 06 08
-40

-30

-20

-10

0

10

20
Land Prices (Model)

02 04 06 08
-50

-40

-30

-20

-10

0

10

20
Land Prices (US)

02 04 06 08
-4

-2

0

2

4

6
 Housing Prices (Euro)

02 04 06 08
-6

-4

-2

0

2

4

6

8
Output (Model)

02 04 06 08
-6

-4

-2

0

2

4

6

8
Output (US  )

02 04 06 08
-4

-2

0

2

4

6

8
Output (Euro)

02 04 06 08
-5

0

5

10

15
Current Account (Model)

02 04 06 08
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Current Account (US)

02 04 06 08
-4

-3

-2

-1

0

1

2

3
Current Account(Eur  )

-50

-40

-30

-20

-10

0

10

Decentralized Equilibrium Social Planner

Figure G.1: Comparison of Crises Dynamics

Note: In the model, Land Prices and output expressed as a percentage deviation of mean values for
decentralized equilibrium. Data values are expressed as deviation from a linear trend over the period
1984-2010.

produces lower and more stable asset prices for the entire ten-year period. The output dynamics

are identical across the two economies before the crisis, because they experience the same TFP

shocks calibrated to replicate the path of output, but when the crisis hits output falls less in the SP

because the collateral constraint is less binding, and hence implies a smaller cutback in working

capital financing. The DE shows slightly larger current account deficits than SP from 2002 to

2004, from then until the crisis hits the two are about the same, and then when the crisis hits the

SP avoids the current account reversal completely. The larger initial deficits of the DE reflect the

incentive to overborrow that private agents have because of the effect of the pecuniary externality.

The differences in current accounts are small, which means that debt positions pre-crisis are not
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Figure G.2: Macroprudential Tax and Welfare Gains

all that different, but as we show later, small differences in debt positions between the DE and

SP result in large differences in macro outcomes, because the calibrated model features a strong

financial amplification mechanism.

Figure G.2 shows the time-series dynamics of the optimal tax and the welfare gains (i.e. these

are values conditional on each year instead of the averages shown in Table 2). The tax increases

first gradually and then sharply to about 7 percent just before the crisis. The welfare gain of the

optimal policy follows a very similar pattern, and reaches a maximum of 36 basis points the year

before the crisis.
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H Early Warnings

We examine whether it is feasible to construct a parsimonious statistical framework that yields

accurate “early warnings” of financial crises by conducting an experiment similar to the one Boissay

et al. (2015) proposed. We produce a 500,000-observations time-series simulation of the DE, which

includes roughly 20,000 crisis events (since the probability of crises is 4 percent). This yields a

time-series of the one-step-ahead probability of observing a crisis at t+1 conditional on date t.

Then we select a cutoff value such that the model issues a crisis warning when the probability

exceeds the cutoff. The criterion for setting the cutoff is that the warnings be statistically accurate,

in the sense that Type-1 or Type-2 errors are in the 95 percentile.34 Type-1 errors occur when

the model does not issue a warning at t but a crisis occurs at t + 1 in the simulated data (i.e.

the model failed to predict a crisis). Type-2 errors occur when the model issues a warning at t

but a crisis does not occur at t + 1 (i.e. it wrongly predicted a crisis). At the 95 percentile for

Type-1 (Type-2) errors, there should not be more than 5 percent of errors of that type. Table 4

shows that the model produces warnings with this accuracy if the probability cutoffs are set to

1.8 percent for Type-1 errors and 8.6 percent for Type-2 errors.

The above represents the “best” early warning system attainable, in the sense that the warn-

ings are based on the true model’s crisis probabilities. Since in practice these probabilities are

unobservable, however, they cannot be used directly to build early-warning indicators, as Boissay

et al. (2015) noted. Hence, we examine whether logit regressions using the model’s fundamentals

as explanatory variables can do as well as the model in terms of the fractions of Type-1 and Type-2

errors generated when issuing crisis warnings. In these regressions, the dependent variable is a

34Boissay et al. applied the cutoff only to Type-2 errors, but in principle it can be applied to both.

32



Table 5: Type-1 and Type-2 Errors in Crises Warnings

Model Logit
Probability All Regressors Credit-Output

(i) 5 percent of Type-1 errors in the model
Type 1 5.0 4.4 3.4
Type 2 63.7 69.1 73.2
(ii) 5 percent of Type-2 errors in the model
Type 1 82.8 84.0 81.7
Type 2 5.0 7.9 9.2

Note: All values are expressed in percent. Warning probability cutoffs are 1.8 and 8.6 percent in scenarios (i) and
(ii) respectively. “All Regressors” includes credit, asset prices and all exogenous shocks as explanatory variables

binary variable set to 0 when a crisis does not occur and 1 when it occurs (which is observable),

and the independent variables enter in logs and with a one-period lag.

Table 4 shows Type-1 and Types-2 errors in crisis warnings obtained from two logit regressions

using the 1.8 and 8.6 percent cutoffs produced by the model. One uses as regressors all of the

model’s state variables (TFP, interest rates, κ, and the bond position) together with GDP and

asset prices, and the other uses only the ratio of total credit (bonds plus working capital) to GDP.

Both of these regressions are good early-warning systems, because the fractions of Type-1 and

Type-2 errors they produce are similar to the ones produced by the model, although the logit

with all the regressors does slightly better. We also estimated alternative regressions with subsets

of the regressors used in the first logit model, but they all produced larger fractions of Type-1

and Type-2 errors. This is in line with the finding of Boissay et al. (2015), showing that a logit

regression using only the debt-GDP ratio approximates well model-based errors.
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I Sensitivity

The supply side channel driven by working capital plays an important role for determining the

large gains from macroprudential policy. Reducing θ by 25% reduces the welfare gains by about

33 %, i.e. welfare gains fall from 0.3 to 0.2 percentage points of permanent consumption. Hence,

we conclude that large gains from macroprudential policy arise due to adverse effects of crises on

economic activity, besides the gains from higher consumption smoothing. This links our results

to Schmitt-Grohe and Uribe (2013) who show that capital controls achieve substantial gains by

reducing average unemployment via reductions in volatility, and hence departing from standard

Lucas welfare calculations.

In the second sensitivity experiment we modify the model to relax the assumption of a per-

fectly elastic supply of funds at an exogenous interest rate Rt. We argued that this is a natural

assumption for many of the economies to which we calibrate our model, and is also a convenient as-

sumption theoretically to abstract from redistribution effects. To see the robustness of our results

to this assumption, we introduce a real interest rate which varies with aggregate bond holdings.

In particular, we assume that the net interest rate is now given by r(B′) = rt − %(e−(B′−B̄) − 1),

where B̄ denotes the average value of bond holdings and set % = 0.05.35 With % > 0, the interest

rate increases with the debt of the economy. In principle, this could work to attenuate the Fishe-

rian deflation and the pecuniary externality, because of the endogenous self-correcting mechanism

increasing the cost of borrowing as debt increases, but we found that quantitatively this did not

result in large changes relative to the baseline.36 This is shown in the last row of Table 6 for a

value of % = 0.05. With this value of %, the real interest rate reaches a minimum of −1.5 percent

in the simulations which is around the minimum value observed in the data between 1980 and

2012.

Finally, we consider an increase in the discount factor from β = 0.95 to β = 0.96. This makes

agents less willing to borrow and the economy becomes relatively less exposed to crises. As a

result, there are lower gains from macroprudential policy. Notice that higher patience also makes

agents relatively more precautionary about future fluctuations, which in principle could make

macroprudential policy more desirable. Quantitatively, however, the first effect dominates, as can

be seen in Table 6.

35This specification is proposed by Schmitt-Grohe and Uribe (2003) to avoid the problem with the unit root in
net foreign assets that arises when using perturbation methods to solve small open economy models. In our model,
its purpose is only to approximate what would happen if the interest rate could respond to debt choices in a richer
general equilibrium model.

36The average macroprudential debt tax is slightly higher because now the planner also internalizes how borrowing
affects the interest rate, which is taken as exogenous by individual agents. The welfare gains of moving from
the constrained efficient equilibrium with an exogenous interest rate to the decentralized equilibrium with the
endogenous interest rate are about the same as in the baseline, which again suggests that the exogeneity of the
interest rate does not have significant effects on the quantitative results.
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Table 6: Sensitivity Analysis

Macroprudential Welfare Crisis Prob. Asset Price Drop Equity Premium
Debt Tax Gains DE SP DE SP DE SP

Baseline 3.6 0.30 4.0 0.02 −43.9 −5.4 4.8 0.8
Low WK (θ = 0.12) 3.6 0.21 5.4 0.02 −37.1 −5.6 4.1 1.0
Endogenous R 3.7 0.28 3.88 0.00 −43.1 −6.6 4.8 0.7
Higher Patience 3.1 0.20 2.65 0.02 −51.0 −10.4 4.62 0.54
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J Asset Pricing

We report here more details on the asset pricing implications of the models and the implications

of macroprudential policy. Figure J.1 shows plots of six key asset pricing variables as functions

of B in the DE and SP economies when TFP and the interest rate take their average values and

κ = κH (this is in contrast with Figure 2, which plotted policy functions for a “bad” state with

low TFP and κL). The variables plotted are the expected return on assets, the price of assets, the

Sharpe ratio, the volatility of returns, the risk premium, and the price of risk.

In this Figure DE experiences higher risk premia, return volatilities, risk prices and Sharpe

ratios due to the fact that the DE is significantly more risky than the SP economy. Moreover,

differences with SP become larger for lower values of B since this implies that it is more likely

that the collateral constraint will bind at t+ 1. On the other hand, expected return are higher for

SP. The higher risk premia in DE should in principle push asset prices down by reducing excess

returns. At equilibrium, however, this effect is more than offset by the first-order effect of the SP’s

debt tax, which by arbitrage of returns between assets and bonds this tax increases the expected

return on assets. In turn, higher excess returns contribute to explain the uniformly lower asset

prices of the SP relative to the DE for all the domain of B in panel (b), in line with eq. (8).

It is also important to note in Figure J.1 the significant nonlinearities in the asset pricing

variables within the DE itself (and keeping in mind we are looking at these variables for realizations

of shocks in a “good” state as of date t). In particular, in the region with a positive probability

of a crisis at t + 1, the Sharpe ratio, return volatility, risk premium and price of risk are steep

decreasing functions of B, while they are virtually flat in the stable credit region. Similarly, asset

prices are a steeper function of B in the positive crisis probability region than in the stable credit

region.

Table 7 reports statistics that characterize the main properties of asset pricing behavior in

the DE and SP. The Table shows expected excess returns (Et[Rq
t+1]) in column (1) and its two

components, namely the after-tax risk free rate and the equity premium (Rep
t ) in columns (2) and

(3) respectively. Using eq. (9), Rep
t is decomposed into the two components that result from the

effect of collateral constraints that bind at t (column (4)) or are expected to bind at t+ 1 (column

(5)), and the standard risk premium component given by the covariance between the stochastic

discount factor and asset returns (column (6)). The equity premium in column (3) is equal to the

sum of these three components. In addition, the Table reports the market price of risk (column

(7)), the log standard deviation of returns (column (8)) and the Sharpe ratio (column (9)). All of

these statistics are reported for the unconditional long-run distributions of each economy as well

as for distributions conditional on the collateral constraint being binding and not binding.

The unconditional equity premium is significantly higher in the DE than in the SP by about
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Figure J.1: Asset Pricing Variables in “Good” States of Nature

400 basis points (4.8 v. 0.8 percent).37 This difference is due to both higher risk premium (1.5 vs.

0.2 percent) and higher liquidity premium (4.7 vs. 1.8 percent). Moreover, the difference in equity

37the sizable equity premium in the DE contrasts sharply with existing findings (e.g. Heaton and Lucas (1996))
showing that credit frictions without the Fisherian deflation mechanism do not produce large premia.
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Table 7: Asset Pricing Moments

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Expected Risk-free Equity Liquidity Collateral Risk Price
Return Plus Tax Premium Premium Effect Premium of Risk σt(R

q
t+1) SRt

Decentralized Equilibrium
Unconditional 6.0 1.2 4.8 4.7 1.4 1.5 14.6 9.1 0.5
Constrained 85.6 1.2 84.4 84.1 0.0 0.2 4.1 6.2 13.7
Unconstrained 1.3 1.2 0.1 0.0 1.5 1.6 15.3 9.3 0.0

Social Planner
Unconditional 4.1 3.3 0.8 1.8 1.2 0.2 5.2 3.8 0.2
Constrained 6.9 -21.8 28.7 28.5 0.0 0.2 5.1 3.8 7.6
Unconstrained 3.9 5.0 -1.2 0.0 1.3 0.2 5.2 3.8 -0.3

Note: The Sharpe ratio for each row is computed as the average of all corresponding equilibrium realizations of excess
returns divided by the standard deviation of excess returns. All figures except the Sharpe ratios are in percent.

premium can be attributed to both higher volatility (14.6 vs 5.2) and higher price of risk (14.6

vs 5.2). Higher price of risk in DE reflects the fact that consumption, and therefore the pricing

kernel, fluctuate significantly more in the former than in the latter. Moreover, financial crises

episodes introduce higher volatility in asset prices and asset returns. Finally, the unconditional

Sharpe ratio of the DE is 0.5 v. 0.2 in the SP, implying that risk-taking is “overcompensated” in

the competitive equilibrium relative to the compensation it receives under the optimal policy. The

differences in asset pricing statistics between DE and SP apply to constrained and unconstrained

region, as Table 7 shows.
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K Comparison with the work of Jeanne & Korinek

Bianchi and Mendoza (BM) and Jeanne and Korinek (JK) developed models of optimal macro-

prudential policy in which assets valued at market prices serve as collateral, and hence in both

the competitive equilibrium is distorted by pecuniary externalities that can be tackled with debt

taxes.38 This Section of the Appendix reviews the differences between the two studies and pro-

vides a comparative analysis with numerical examples and formal proofs illustrating important

differences in the optimal policy problems.

K.1 Differences in Model Structure and Results

The models proposed by BM and JK differ in several parts of their structure and in the formulation

of the optimal policy problems. In terms of model structure, the models differ in that in the BM

setup individual assets are used as collateral, production is endogenous, and working capital loans

subject to the collateral constraint are used to pay for a fraction of the cost of inputs. In contrast,

in the JK setup aggregate assets are used as collateral by individual borrowers and output is an

exogenous stochastic process. In addition, the credit constraints differ in that in the JK model

the constraint is specified as the sum of the fraction of assets pledgeable as collateral plus an

exogenous constant.

The differences in the structure of the models imply that the BM setup has three key features

absent from the JK model: (a) agents value asset holdings for their role in relaxing the collateral

constraint when they formulate their optimal plans, (b) the constraint generates inefficiencies in

factor allocations and production, and (c) financial crises have effects on both aggregate supply

and demand. The quantitative findings are also different, because BM find that there is strong

financial amplification affecting output, consumption and debt via the Fisherian deflation of asset

prices and large pecuniary externalities, which result in optimal macroprudential policy having

large effects on the probability and magnitude of crises. In contrast, as explained in Section 3.4

of the paper, in the quantitative analysis conducted by JK, the constant term in the credit limit

dwarfs the fraction of the value of assets that serve as collateral, and the probability of crises

equals the exogenous probability of a low-output regime. As a result, they find that debt taxes

cannot affect the probability of crises and have small effects on their magnitude.

38Work on both projects started in the late 2000s, with the first working papers issued in 2010: Bianchi,
J. and E.G. Mendoza (2010), Overborrowing, Financial Crises and ’Macro-prudential’ Taxes, NBER WP
No. 16091, June 2010. Jeanne, O. and A. Korinek (2010), Managing Credit Booms and Busts: A
Pigouvian Taxation Approach, NBER WP 16377, September 2010. The last revision by BM is the
paper to which this Appendix belongs, and the last revision by JK is Jeanne and Korinek (2012),
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.4554&rep=rep1&type=pdf.
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K.2 Comparative Analysis of Planner Problems

The BM and JK studies pose social planner problems that differ critically in whether the planner

has the ability to influence asset prices when the collateral constraint binds, which in turn results

in differences in how optimal policy is constructed. In the planner’s problem studied by JK, the

planner’s date-t debt choice is not allowed to affect date-t asset prices when the constraint binds.

The planner only considers how its debt choice affects prices at t+1. Effectively, today’s borrowing

capacity is predetermined with respect to today’s debt choice. In contrast, in BM’s formulation

the planer sets its date-t debt choice considering its effects on asset prices at both t and t+1. This

is important because, as discussed in Section 2 of the main text, the time-inconsistency problem

of macroprudential policy under commitment originates precisely in the planner’s ability to affect

asset prices contemporaneously when the constraint binds, and this ability is also an important

feature of the optimal time-consistent policy. The different planning problems result in different

optimality conditions (compare eq. (14) in the main text of this paper v. eq. (19) in JK (2010)),

and different optimal tax results (compare Prop. 1 and eq (17) in this paper v. eq. (21) in JK

(2010)). We provide below theoretical results and numerical examples demonstrating that the

two planner problems are not equivalent and that the solution of the planner’s problem in the JK

setup can be suboptimal in the BM model.

In order to compare the JK and BM planner problems, one can interpret the former as one that

uses a “reduced-form pricing function” to value collateral. For the two to be equivalent, the two

planner problems should yield analogous optimality conditions, which would also imply analogous

optimal debt tax expressions. This could be the case if two assumptions that JK impose on the

reduced-form pricing function are satisfied. First, the asset price is increasing in net worth (p. 10 of

Jeanne and Korinek (2010)) states that “one can see that if the price of the asset is increasing with

aggregate net liquid wealth the social planner raises saving”). Second, Assumption 1 from p. 9 of

Jeanne and Korinek (2010), which states that the reduced-form pricing function is differentiable

and satisfies κ∂q̂(b,z,c)
∂c

< 1. These, however, are assumptions about an endogenous equilibrium

outcome, namely the asset pricing function, and in fact their validity turns out to be difficult to

establish. In particular, we show below that the two planner problems are not equivalent and

that Assumption 1 is invalid in general for the CRRA utility function that both JK and BM

use, including for the parameterization considered in JK’s work. Moreover, since Assumption 1

is a non-parametric assumption, it would need to be verified numerically by solving first for the

equilibrium price of the “true” Markov perfect equilibrium without reduced-form pricing function

for a particular state space and parameterization.
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K.2.1 The two planner problems

We start by re-writing simplified versions of the planning problems in JK and BM using a com-

mon notation. As in Appendix A3 in Jeanne and Korinek (2010), the JK planner’s problem is

represented by the following Lagrangian (with choice variable bt+1 and ignoring the constant term

in the JK borrowing constraint for simplicity):

L = Et
∞∑
t=0

βt
[
u

(
zt + bt −

bt+1

R

)
+ µt

(
bt+1

R
+ κq̄(b, z)

)]
(K.1)

µ is the Lagrange multiplier on the collateral constraint, and q̄ is defined as the price of the asset

when the constraint is binding (see p. 12 of Jeanne and Korinek (2010)).

The reduced-form pricing function q̄(b, z) is taken as given by the planner, but in the planner’s

optimum it satisfies the Euler equation for assets of the competitive equilibrium. It is implicit in

this treatment that the planner does not have incentives to alter the price implied by the function

q̄ when the constraint binds at t. This planner cares for how the debt choice affects “tomorrow’s”

asset price (∂q̄′(b′, z′)/∂b′ 6= 0) but not for how it affects “today’s” price (i.e. ∂q̄(b, z)/∂b′ = 0,

trivially since b′ is not an argument of q̄(b, z)). Since this is a property of an endogenous equilibrium

object (the pricing function), it would need to be proved or at least verified numerically. Intuitively,

because this property makes the borrowing capacity of date t predetermined with respect to the

choice of bt+1, the planner is prevented from choosing optimally on this margin when the constraint

binds at t, because the planner does not realize how that debt choice can be used to influence

date-t prices and borrowing capacity.

In BM planner’s problem, the planner does care about the effects of b′ on asset prices when

the credit constraint binds “today.” The planner’s problem was formulated in Problem 2 (p. 14)

using the standard, explicit approach to formulate optimal policy problems without commitment

as Markov perfect equilibria, but here we rewrite it in simpler form as follows. Take as given a

conjecture of the policy rule for bonds of future planners B(b, z), and the associated consumption

allocations C(b, z) and asset prices Q(b, z), the BM planner’s problem is characterized by the

following Bellman equation:

V(b, z) = max
c,b′,q

u

(
b′

R
− b+ z

)
+ βEz′|zV(b′, z′) (K.2)

b′

R
≥ −κq

u′(c)q = βEz′|zu′
(
b′ + z′ − B(b′, z′)

R

)
(Q(b′, z′) + z′)
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Note that using the above pricing condition, the collateral constraint of this problem can be

re-written as:
b′

R
≥ −κq̃(b, b′, z)

where

q̃(b, b′, z) =
βEz′|zu′

(
b′ + z′ − B(b′,z′)

R

)
(Q(b′, z′) + z′)

u′(c)
(K.3)

The above constraints make evident the key difference between the BM and JK planner prob-

lems: In the BM case, the planner internalizes that the choice of b′ influences current consumption

and, through the resulting effect on the stochastic discount factor, it affects current asset prices and

hence current borrowing capacity. In contrast, in the JK planner’s problem (K.1) the date-t asset

price and borrowing capacity are predetermined. At equilibrium it is true that in the BM setup

q̃(b, b′, z) = q(b, z), but this condition is not imposed before actually solving the time-consistent

planner’s problem. This treatment is also more general, because it can capture solutions in which

numerically it turns out that the effects of the debt choice on asset prices when the constraint

binds are negligible and solutions in which they are not, and it allows us to establish properties like

the sign of the macroprudential debt tax from primitives like the concavity of the utility function.

K.2.2 Non-equivalence of the planner problems

For the JK planner’s problem (K.1) to be equivalent to the BM planner’s problem (K.2), it must be

that optimal policies solve (K.1) if and only if they solve (K.2). Before discussing the mathematical

analysis showing that this does not hold in general, we provide the economic intuition behind the

result why the equivalence can fail in both directions. First, the solution to JK planner’s problem

may still be time-inconsistent (i.e is not a solution to the BM problem). To see this, consider the

reduced-form q̄(b, z) that the JK planner takes as given. At any point in time, the planner may

have incentives to deviate from the implied asset price q̄(b, z) so as to affect current asset prices,

as formally established below. The JK planner takes borrowing capacity of the current period as

predetermined, and does not realize that it has a choice despite having a binding constraint. In

contrast, BM’s planner faces a borrowing capacity given by q̃(b, b′, z), and hence it knows that when

choosing b′ it can indeed affect asset prices. Second, using the pricing function of the true MPE

that solves the planner’s problem in BM as a reduced-form price in the JK setup might still leave

the JK planner with the incentive to deviate. To see this, recall that the optimal time-consistent

policy internalizes how additional borrowing raises the asset price, while the reduced-form planner

takes it as given and hence perceives a lower marginal benefit from borrowing, which could lead

it to borrow less.

One may be tempted to conjecture that the JK planner’s problem supports the time-consistent
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solution of the BM setup, because the planner at time t takes as given the policy functions in future

periods. Note, however, that this is necessary but not sufficient to ensure time consistency. It is

not sufficient in particular for ensuring that the Markov stationarity condition of the MPE holds,

because the assumption that the planner takes the policy functions of future planners as given

does not guarantee that the optimal choices of future planners will be consistent with those policy

functions that the current planner assumed. This would need to be proven in order to demonstrate

that the JK planner’s solution satisfies the Markov stationarity condition. But in fact, we show

below that Markov stationarity fails precisely because the JK planner is not allowed to internalize

the effect of the choice of bt+1 on qt.

The rationale for arguing that under Assumption 1 of JK the planner problems are equivalent

is based on the following heuristic argument. The two approaches would be equivalent if at

equilibrium when the collateral constraint binds at t the planner faces no relevant debt choice.

Jeanne and Korinek (2012) state that this is the case if Assumption 1 holds: “This assumption

guarantees that when the social planner reduces aggregate debt, the collateral constraint (14) is

relaxed.” In turn, this would imply that there is only one optimal debt choice for the planner that

can satisfy the constraint with equality, as excess borrowing capacity would be a monotonically

decreasing function of debt. In this case, since at equilibrium q̃(b, b′, z) = q(b, z), it is “inessential”

to impose the borrowing constraint b′

R
≥ −κq(b, z) as opposed to b′

R
≥ −κq̃(b, b′, z).

The above argument, however, has two important drawbacks. First, in the optimal time-

consistent planner’s problem that BM study, the planner faces more than one debt choice that can

satisfy the collateral constraint with equality, and these different choices differ in terms of social

value. Second, Assumption 1 is invalid under the CRRA preferences that both BM and JK use.

We prove these two results and illustrate them numerically. These findings imply that the way

in which the collateral constraint is treated is essential and leads to suboptimal choices for the

JK planner, because it is prevented from internalizing how b′ affects the current equilibrium price

when the constraint binds.

If the two planner problems are equivalent, it should be possible to demonstrate that the same

optimality conditions characterize the planners’ optimal plans under both solutions. We show next

that this is not the case. Using Proposition 2 in Jeanne and Korinek (2012), and rearranging the

Kuhn-Tucker conditions, the optimality conditions of JK’s planner’s problem are characterized by

recursive functions c(·), q(·), µ(·) such that:39

39Note also that JK denote the Lagrange multiplier of the credit constraint by λ whereas here we denoted it µ.
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u′(c(b, z)) = µ(b, z) + βREt
[
u′(c(b′, z′)) + µ(b′, z′)κ

∂q

∂b′

]
(K.4)

u′(c(b, z))q(b, z) = βEu′(c(b′(b, z)), z′))[z′ + q(b′(b, z), z′)] (K.5)

b′(b, z)

R
+ c(b, z) = b+ z (K.6)

µ(b, z)(b′(b, z)− κq(b, z)) = 0, b′(b, z) ≥ −κq(b, z) (K.7)

In contrast, the optimality conditions of the BM planner’s problem are given by

u′(c(b, z)) = βREt
{
u′(C(bt+1, zt+1))− κµt+1

u′(ct+1)
u′′(C(bt+1, zt+1))Q(bt+1, zt+1) (K.8)

+
κµ(b, z)

u′(c(b, z))
[u′′(c(b, z))q(b, z) +Qb(bt+1, zt+1)u′(C(bt+1, zt+1))

κµt
u′(c(b, z))

u′′(C(bt+1, zt+1))Cb(bt+1, zt+1)(Q(bt+1, zt+1) + zt+1)] + µ(b, z)

}
u′(c(b, z))q(b, z) = βEu′(C(b′(b, z)), z′))[Q(b′(b, z), z′) + z′] (K.9)

b′(b, z)

R
+ c(b, z) = b+ z (K.10)

µ(b, z)(b′(b, z)− κq(b, z)) = 0, b′(b, z) ≥ −κq(b, z) (K.11)

There are obvious differences in the optimality conditions (4)-(7) v. (K.8)-(K.11) both when the

collateral constraint binds and when it does not. When the collateral constraint binds at t and it

has zero probability of binding at t+1, the JK planner faces a wedge between the marginal benefit

of c and c′ given by µ, indicating again that it takes the date-t borrowing capacity as predetermined.

On the other hand, the wedge faced by the BM planner shows three additional terms that reflect

the effects of the debt choice on current asset prices. The first term is κµ(b,z)
u′(c(b,z))

u′′(c(b, z))q(b, z),

which shows that one more unit of debt today rises current consumption and, via the resulting

effect on the stochastic discount factor, rises the value of collateral and relaxes the collateral

constraint. The second term is Qb(bt+1, zt+1)u′(C(bt+1, zt+1)), which shows that one more unit of

debt reduces asset prices tomorrow, and the lower expected capital gains reduce today’s asset price

and tighten the constraint. The third term is κµt
u′(ct)

u′′(C(bt+1, zt+1))Cb(bt+1, zt+1)(Q(bt+1, zt+1) +

zt+1), which shows that one more unit of debt reduces consumption tomorrow, and again via the

stochastic discount factor rises asset prices today and relaxes the constraint. For the two planner

problems to be equivalent, these effects should vanish, but this does not hold in general because

the borrowing capacity is not predetermined, it depends on the date-t debt choice bt+1 via its

effects on consumption at t and t+ 1 and hence on the stochastic discount factor and asset prices

at t, and thus the planner faces a relevant choice about consumption and debt when the constraint

binds at date t.
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When the collateral constraint is not binding at date t but may bind at t + 1, the wedges in

the planners’ Euler equations have a similar intuition, but they are different expressions. In JK, the

wedge is βREtκ∂q(bt+1,zt+1)
∂b

µt+1 whereas in BM the wedge is−βREt κµ(B(b,z),z′)
u′(C(B(b,z),z′))

u′′(C(bt+1, zt+1))Q(bt+1, zt+1).

These wedges indicate that both planners internalize the effect of the debt choice of date t on the

value of collateral at t+1 if the constraint becomes binding, and hence these are the wedges that

determine the macroprudential component of the debt taxes that decentralize the planner prob-

lems (see equation (21) in Jeanne and Korinek (2010) and Proposition 1 in this paper). But the

expressions are very different in that it is straightforward to prove that the wedge in the BM

planner is strictly positive because of the concavity of the utility function, which demonstrates

that the BM macroprudential debt tax is unambiguously positive, while the JK wedge depends

on the assumed derivative of an equilibrium object (the pricing function). Jeanne and Korinek

(2012) argue that the tax is positive if ∂q(b′,z′)
∂b

> 0, but the latter is not proved (in p. 10 they write

“...one can see that if the price of the asset is increasing with aggregate net liquid wealth...the so-

cial planner raises saving above the laissez-faire level, strictly so if there is a risk that the collateral

constraint will bind in the next period”).

If the two planner problems were equivalent, the wedges related to µt+1 and the macroprudential

debt taxes would be equivalent too. The above arguments show, however, that the two planner

problems are not equivalent. To fully prove that the taxes are the same, one would need to prove

that this holds:

βREtκ
∂q(b′, z′)

∂b
µ(b′, z′) = −βREt

κµ(B(b, z), z′)

u′(C(B(b, z), z′)
u′′(C(bt+1, zt+1))Q(bt+1, zt+1)

using q(b, z) = βEu′(c(b′(b,z)),z′))[z′+q(b′(b,z),z′)]
u′(c(b,z))

. As noted before, this requires that (a) the incentives

to influence date-t asset prices with the debt choice when the constraint binds at t vanish, and (b)

that the assumed derivative of the reduced-form pricing function in the JK planner be identical to

the derivative implicit in the equilibrium pricing kernel of the BM planner. A necessary condition

for these properties to hold would be that the heuristic argument that there is no relevant debt

choice when the constraint binds is correct.

K.2.3 Numerical example of non-equivalence

We now provide a numerical example showing that the solutions to the JK and BM planner

problems are not equivalent, because in this example the BM planner faces a relevant debt choice

when the constraint binds. The asset prices and bond positions used for this example were solved

using the parameter values from Jeanne and Korinek (2010) and their specification of the borrowing
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Figure K.1: Borrowing and Welfare for the BM and JK Planners

constraint.40

Figure 1 shows two plots. The left panel plots borrowing capacity (i.e. κq̃(b, b′, z)) as a function

of the bond choice b′ for given b, z, where q̃ is as defined in (K.3), together with the 45 degree

line. A given b′ satisfies the credit constraint if the borrowing capacity is greater or equal than

the debt along the 45 degree line. The panel on the right plots the social welfare of the planner

associated with each borrowing choice. There is a discontinuity for borrowing choices for which

borrowing capacity is below the 45 degree line, because these are not feasible choices since they

violate the credit constraint.

As indicated in the left panel, there are two values of the debt choice that satisfy the collateral

constraint with equality, one higher and one lower than the debt amount that would be chosen

in the absence of the credit constraint. Thus, the BM planner faces two possible debt choices to

choose from when the constraint binds, while the JK planner is effectively forced to choose the one

with less debt. Since the BM planner attains higher utility with the higher debt, this is its optimal

choice. If the price implied by this optimal choice were given to the JK planner, it would choose

the unconstrained solution, but this would then deliver a price that is different from the optimal

time-consistent solution of the BP planner and it would violate the collateral constraint. Thus, in

this example the solution of the planner’s problem in JK is suboptimal and time-inconsistent.

These results are based on one parameterization, but they are more general. They hold also

for the parameterizations in the BM papers. In addition, we prove below that the results also hold

in general in a two-period model with CRRA preferences, and show a numerical example based

on log utility.

40Parameter values are β = 0.96, R = 1.03, σ = 2, zL = 0.969zH = 1, πL = 0 : 05κ = 0.046, dividend parameter ,
α = 0.2 and the extra term in the credit constraint ψ = 1.97.
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K.2.4 Two-period model: numerical example & general results

We conclude by showing that, in general, the choices of JK’s planner are suboptimal relative to the

optimal time-consistent planner studied by BM in a simple two-period model. For simplicity, there

is no uncertainty and both the rate of time preference and the interest rate are zero. Households

start with an endowment w and k1 units of an asset. This asset is in fixed unit supply and is

traded at a price q. Assets purchased in the first period, k2, deliver z units of consumption in

period 2. Households can borrow up to a fraction κ of the market value of aggregate assets.

The households’ optimization problem in the decentralized equilibrium is:

max
b,k2,c1,c2

u(c1) + u(c2)

s.t

c1 + b+ qk2 = w + qk1

c2 = k2z + b

b ≥ −κq

Hence, the decentralized equilibrium without policy intervention satisfies these optimality condi-

tions:

u′(c1) = u′(c2) + µ

u′(c1)q = u′(c2)z

k = 1

µ(b+ q) = 0, µ ≥ 0

Notice c2 ≥ c1 must hold in equilibrium since µ ≥ 0.

Since k2 = k1 = 1, the JK planner’s problem is:

max
b
u(w − b) + u(z + b)

b ≥ −κq

where q = u′(z+b)z
u′(w−b) but is taken as given by the planner.

Again since k2 = k1 = 1, the BM planner’s problem is:

max
b
u(w − b) + u(z + b)

b ≥ −κu
′(z + b)z

u′(w − b)
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We assume log utility in order to derive tractable closed-form analytical results and prove that

the BM planner faces two relevant debt choices when the constraint binds. Following this, we

prove that Assumption 1 of Jeanne and Korinek (2012) fails in general for CRRA utility, not just

the log case.

If κ is large enough, the economy is unconstrained and c1 = c2 = w+z
2

, and bunc = w−z
2

. Hence,

we focus on values of κ such that the collateral constraint binds. In particular, we show numerical

results for these parameter values κ = 0.4, w = 0.2, z = 1.4.

Figure 2 is the analog of Figure 1 but for the two-period model. The panel in the left shows

borrowing capacity and the one in the right social welfare, both as functions of the debt choice.

The unconstrained level of borrowing (i.e. without the credit constraint) is bunc = −0.6. As

before, the JK planner yields one level of debt that satisfies the collateral constraint with equality,

bmax
1 = −0.17. For the BM planner, there are two debt levels that satisfy the collateral constraint

with equality: bmax
1 = −0.17 and bmax

2 = −0.84, with associated asset prices q1 = 0.41 and

q2 = 1.68 respectively.41

As in Figure 1, the panel on the right of Figure 2 shows that the optimal time-consistent

solution of the BM planner delivers higher welfare than the JK planner. As mentioned earlier,

by taking the borrowing capacity as given, the JK planner does not internalize that by borrowing

bmax
2 = −0.84 it can boost the asset price and relax the collateral constraint. Taking q2 = 1.68 as

given, the JK planner would like to choose the unconstrained level of borrowing, which would be

inconsistent with that value of the asset price and would violate the collateral constraint. The JK

planner chooses bmax
1 = −0.17, which is suboptimal.

We finish with two propositions. The first one generalizes the results illustrated above nu-

merically for the log-utility case. The second one proves that Assumption 1 in JK is not valid in

general for CRRA utility.

Proposition V If (z − κz)2 − 4κzw > 0, the BM planer has two debt choices for which the

collateral constraint holds with equality.

Proof: With log utility, the debt that satisfies the collateral constraint with equality is given by

b = −κ (w−b)z
z+b

. This is a quadratic equation which has two roots if (z − κz)2 − 4κzw > 0. The two

debt solutions are:

b =
κz − 1±

√
(z − κz)2 − 4κzw

2

41This may suggest that there could be multiple equilibria in the decentralized economy, but this is not the case
in this example. In particular, bmax

2 is not a decentralized equilibrium, because bmax2 < bunc, which in turn implies
that c1 > c2 and thus violates the optimality condition µ ≥ 0. Thus, the decentralized equilibrium without policy
intervention is unique.
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Figure K.2: Two-Period Model: Borrowing & Welfare for the BM and JK Planners.

Proposition VI Let q̂(b, c1) = u′(c2)
u′(c1)

z2 and u(.) = c1−σ

1−σ , then Assumption 1 of Jeanne and Korinek

(2012) (i.e. κ δq̂(b,c1)
δc1

< 1 ) is violated because there exists c1 such that κ δq̂(b,c1)
δc1

≥ 1 for all κ > 0.

Proof: At equilibrium, since k1 = k2 = 1, the period budget constraints of the two period model

imply that feasible allocations satisfy:

c2 = z2 + b′

b′ = z1 − c1 + b

c1 = z1 − b′ + b

c1 + c2 = z1 + z2 + b

Hence,

q̂(b, c1) =
u′(z2 + z1 − c1 + b)

u′(c1)
z2

With the CRRA utility function, we have that the pricing function is:

q̂(b, c1) =

(
c1

c2

)σ
z2

From the feasible consumption allocation and the pricing function with CRRA utility we obtain

that:
∂
(
c1
c2

)
∂c1

=
∂
(

c1
z2+z1−c1+b

)
∂c1

=
z2 + z1 + b

c2
2
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and thus,

∂q̂(b, c1)

∂c1

= σ

(
c1

c2

)σ−1

z2

(
z2 + z1 + b

c2
2

)
= σcσ−1

1 z2

(
z2 + z1 + b

c1+σ
2

)
= σcσ−1

1 z2

(
z2 + z1 + b

((z2 + z1 + b)− c1) 1+σ

)
It follows from the above that, for any σ > 0,

lim
c1→z1+z2+b

∂q̂(b, c1)

∂c1

=∞

Thus, the derivative of the pricing function with respect to c1 grows infinitely large as c1 approaches

its maximum feasible amount z1 +z2 + b (or equivalently as c2 approaches zero from above), which

is finite. Hence, Assumption 1 from JK is violated

Furthermore, for any σ > 1, this also holds:

lim
c1→0,z1+z2+b6=0

∂q̂(b, c1)

∂c1

= 0

Hence, the derivatives of the pricing function approach zero and infinity as c1 approaches its

minimum and maximum feasible allocations respectively. Since the Inada condition of CRRA

preferences imply that c1 and c2 are strictly positive at equilibrium, and since the pricing function

is strictly convex, this also implies that, for σ > 1 there exists a finite, feasible value c∗1 < z1 +z2 +b

such that
δq̂(b,c∗1)

δc1
= 1/κ, and hence for any c1 ≥ c∗1 Assumption 1 fails.42

42Since consumption allocations are positive and δq̂(b,c1)
δc1

= σ
(
c1
c2

)σ−1
z2

(
z2+z1+b

c22

)
, clearly the first derivative of

the pricing function is positive. The convexity then follows from noting that δ2q̂(b,c1)
δc21

> 0, because increasing the

feasible c1 reduces the feasible c2, so that both c1
c2

and z2+z1+b
c22

rise, and thus the derivative of the pricing function

rises with c1.
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