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We propose a simple and fast fixed-point iteration algorithm (FiPIt) to obtain the global, 
non-linear solution of macro models with two endogenous state variables and occasionally 
binding constraints. This method uses fixed-point iteration on Euler equations to avoid 
solving two simultaneous non-linear equations (as with the time iteration method) or 
creating modified state variables requiring irregular interpolation (as with the endogenous 
grids method). In the small-open-economy RBC and Sudden Stops models provided as 
examples, FiPIt is much faster than time iteration and various hybrid methods.
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1. Introduction

Important branches of the recent macroeconomics literature study quantitative solutions of models in which constraints 
are triggered endogenously (i.e. they are “occasionally binding”), as in studies of the zero-lower-bound on interest rates 
or financial crises triggered by credit constraints. Because these models typically feature non-linear decision rules that 
lack analytic solutions and capture precautionary savings, global solution methods (e.g. time iteration or endogenous grids 
methods) are the preferable tool for solving them. Global methods are, however, less practical than perturbation methods, 
because of limitations that make them slow and difficult to implement with widely used software (e.g. Matlab). On the 
other hand, perturbation methods for solving models with occasionally binding constraints, such as OccBin developed by 
Guerrieri and Iacoviello (2015) and DynareOBC proposed by Holden (2016), have caveats that limit the scope of the findings 
that can be derived from using them (see Aruoba et al. (2019), de Groot et al. (2019))

This paper proposes a simple and fast algorithm to obtain the global solution of models with two endogenous states 
and occasionally binding constraints. This algorithm is denoted as FiPIt because it is based on the well-known fixed-point 
iteration approach to solve systems of transcendental equations. It is easy to implement in a Matlab platform and is sig-
nificantly faster than the standard time iteration algorithm and several hybrid alternatives. FiPIt’s solution strategy builds 
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on the class of time iteration methods that originated in the work of Coleman (1990), who first proposed a global solution 
method based on policy function iterations of the Euler equation. Since then, various enrichments and modifications of this 
approach have been developed, in particular the endogenous grids method proposed by Carroll (2006) (see Rendahl (2015)
for a general discussion of these methods and an analysis of their convergence properties). FiPIt differs from these methods 
in that it applies the fixed-point iteration method to solve a model’s Euler equations. For instance, in the Sudden Stops 
model solutions provided as example in this paper, the bonds (capital) Euler equation is used to solve directly for a “new” 
bonds decision rule (capital pricing function) without the need of a non-linear solver. The capital decision rule is solved for 
in “exact” form using the models’ optimality conditions.

The endogenous grids method also avoids using a non-linear solver, but it does so by defining alternative state variables 
so that obtaining analytic solutions of Euler equations for control variables (e.g. consumption, investment) requires irregular 
interpolation of functions defined over endogenous grids of the original state space. This is innocuous in one-dimensional 
problems, but in two- and higher-dimensional problems it requires elaborate interpolation methods to tackle the non-
rectangular nature of the endogenous grids. In particular, Ludwig and Schön (2018) developed a method using Delaunay 
interpolation, and showed that it is significantly faster than standard time iteration.1 Alternatively, Brumm and Grill (2014)
proposed a variant of the time iteration method that still uses a non-linear solver but gains speed and accuracy by updating 
grid nodes to track decision rule kinks using also Delaunay interpolation. In contrast, FiPIt retains the original state variables 
so that standard multi-linear interpolation on regular grids can be used.

We apply the algorithm to solve the model proposed by Mendoza (2010), which is a model of Sudden Stops (financial 
crises) in a small open economy. This model includes an occasionally binding credit constraint limiting intertemporal debt 
and working capital not to exceed a fraction of the market value of physical capital (i.e. pledgeable collateral). The results 
show that, relative to the time iteration method, FiPIt reduces execution time by a factor of 2.5 (or 18.1 when solving an 
RBC variant of the model).2 We also found that FiPIt continues to perform well for several parameter variations, despite 
the well-known drawback of fixed-point iteration methods indicating that their convergence is not guaranteed. Execution 
times for seven parameter variations of the model were smaller than using time iteration by factors of 2.0 to 18.1. Ludwig 
and Schön (2018) report reductions by factors of 2.7 to 4.1 using endogenous grids with Delaunay interpolation v. standard 
time iteration, or 1.8 to 2.5 using their hybrid method v. standard time iteration, when solving a perfect-foresight model of 
human capital accumulation in a small open economy.3

In addition to the Delaunay interpolation, a second drawback of the endogenous grids method relative to the FiPIt
method is that it still requires a root-finder in order to determine equilibrium solutions in points of the state space in which 
occasionally binding constraints bind (see Ludwig and Schön (2018)). FiPIt requires a non-linear solver only if the solution of 
the allocations when the constraint binds cannot be separated from the solution of the multiplier of the constraint. The two 
are separable in models that feature several widely-used occasionally binding constraints, including standard no-borrowing 
constraints, maximum debt limits, and constraints on debt-to-income and loan-to-value ratios that depend on endogenous 
variables. Solving variations of the SS model using these constraints, FiPIt reduced execution time relative to the time 
iteration method by a factor of 13.0 for a loan-to-value-ratio constraint and 17.9 for a maximum debt limit.

There are applications in the literature that solve models using fixed-point iteration algorithms with some features 
similar to the one we proposed here. Carroll (2011) described and implemented a fixed-point iteration algorithm for solving 
the workhorse complete-markets RBC model of a closed economy. Boz and Mendoza (2014), Bianchi and Mendoza (2018)
and Bianchi et al. (2016) solved open-economy models with occasionally binding collateral constraints iterating on bond 
decision rules and/or pricing functions. All these applications considered only one endogenous state variable. Perri and 
Quadrini (2018) solved a two-country model with two endogenous state variables and a credit constraint resulting from an 
enforcement friction using Fortran and a state space with 121 points (11 nodes for each state variable). This paper differs 
from these studies in that we develop an algorithm that solves models with two endogenous states easily and fast in a 
standard Matlab platform and with a sizable state space including 2,160 points. FiPIt can be used in a variety of models 
with two endogenous states. The choice of functions that are iterated on using the Euler equations can vary across models, 
and there can be more than one arrangement for the same model.

The rest of the paper proceeds as follows. The next Section describes the principles of the algorithm in the simple case of 
a model of savings with endowment income, and uses this example also to explain how FiPIt differs from the time iteration 
and endogenous grids methods. Section 3 describes the Sudden Stops model and provides a step-by-step description of 
the complete algorithm. Section 4 provides quantitative results, evaluates the robustness of the algorithm, and conducts 

1 Adjacent points in the endogenous grids do not generally match adjacent nodes in the matrix formed by the original grids. Ludwig and Schön tackled 
this problem using Delaunay interpolation. They also proposed a hybrid method that uses an exogenous grid for one of the endogenous states and an 
endogenous grid for the second.

2 We used Matlab version R2017a on a Windows 10 laptop with an Intel Core i7-6700HQ 2.60 GHz chip, 4 physical cores and 16 GB of RAM. The state 
space for the Sudden Stops (RBC) model has 72 (80) nodes on foreign assets and 30 on domestic capital. The Sudden Stops (RBC) model solved in 810 
(100) seconds, compared with 1,986 (1,808) using the time iteration method.

3 They report faster solution times for each individual scenario than with our algorithm but these are not comparable due to differences in models and 
hardware. We solve a stochastic model with three shocks, capital accumulation and adjustment costs, and a credit constraint that depends on the model’s 
two endogenous states and a market price. They solve a deterministic model in which human capital is an accumulable factor produced with an exponential 
technology and a no-borrowing constraint. We do not have details about the software and hardware they used.
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performance comparisons with alternative algorithms, including the standard time iteration method. Section 5 presents 
conclusions. In addition, the Matlab codes and an Appendix that provides a user’s guide to the codes are available online.

2. A fixed-point iteration algorithm for a simple savings model

We describe the principles of the FiPIt method using a savings model with stochastic endowment income and an ex-
ogenous interest rate. This model is a workhorse of various branches of the macro literature, including consumption and 
savings in partial equilibrium, heterogeneous agents models with incomplete markets, and international macro models of 
the small open economy.

A representative agent chooses consumption and savings plans so as to maximize a standard expected utility function:

E0

{ ∞∑
t=0

βt u(ct)

}
, (1)

subject to the budget or resource constraint:

ct = ezt ȳ + bt − qbt+1, (2)

and a debt limit:

bt+1 ≥ −ϕ. (3)

In the utility function, β ∈ (0, 1) is the subjective discount factor and u(·) is the period utility function, which can be 
any standard twice, continuously differentiable and concave utility function, although the CRRA functional form is the one 
used most often:

u(ct) = c1−σ
t

1 − σ
,

where σ is the relative risk aversion coefficient. In the resource constraint, ezt ȳ is stochastic income with mean ȳ and shocks 
zt of exponential support ezt , bt are holdings of one-period, non-state-contingent discount bonds traded in a frictionless 
credit market. In a partial equilibrium model of savings or a model of a small open economy, the real interest rate r is 
exogenous, so the price of bonds is also exogenous and given by q ≡ 1

1+r . In a general equilibrium model of heterogeneous 
agents, the above optimization problem is solved by each individual agent facing idiosyncratic income uncertainty, and the 
interest rate is endogenously determined so as to clear the bond market. The FiPIt method can be used in all of these 
models, except that in the heterogeneous agents model we would also need to iterate on the interest rate until the bond 
market clears. We focus on the small open economy case to simplify the exposition.

If the utility function satisfies the Inada condition and income shocks follow a discrete Markov process or a truncated 
continuous distribution, the debt limit follows from Aiyagari’s Natural Debt Limit: agent’s never choose optimal plans that 
leave them exposed to the risk of non-positive consumption, and hence never borrow more than the annuity value of the 
lowest income realization. Alternatively, agents may face an ad-hoc debt limit tighter than the natural debt limit. Thus, the 
model includes an occasionally binding constraint, albeit of a simple form: bt+1 ≥ −ϕ .

The Euler equation for bond holdings is

uc (ct) = (1 + r)βEt [uc(ct+1)] + μt, (4)

where uc(ct) is the marginal utility of ct and μt is the multiplier on the debt limit. Note that using the resource constraint 
to substitute for consumption, the Euler equation can be expressed as:

uc
(
ezt ȳ + bt − qbt+1

)= (1 + r)βEt
[
uc
(
ezt+1 ȳ + bt+1 − qbt+2

)]+ μt . (5)

A competitive equilibrium for this economy is defined by stochastic sequences [ct , bt+1]∞t=0 that satisfy equations (3) and 
(5) for all t . The economy has a well-defined limiting distribution of (b, y) (i.e. a stochastic steady state) only if β(1 + r) < 1
(see Ljungqvist and Sargent (2012), Ch. 18). This condition is also a general equilibrium outcome in heterogeneous agents 
models, because otherwise all agents would want an infinite amount of bonds, which is inconsistent with market clearing 
in the market of risk-free bonds.

Since there are no inefficiencies affecting the small open economy (other than the incompleteness of asset markets), the 
competitive equilibrium can be represented as the solution to the following dynamic programming problem:

V (b, z) = max
c,b′

{
c1−σ

1 − σ
+ β

∑
′

π(z′, z)V
(
b′, z′)} , (6)
z
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subject to

c = ez ȳ + b − qb′

b′ ≥ −ϕ

The solution to the above Bellman equation is characterized by a decision rule b′(b, z) and the associated value function 
V (b, z), and the decision rule together with the Markov process of the shocks induce a joint ergodic (unconditional) distri-
bution of bonds and income λ(b, z).

“Euler equation” methods typically solve for b′(b, z) over a discrete state space of (b, z) pairs using the recursive equilib-
rium conditions that follow from the first-order-conditions of the above Bellman equation:

c(b, z)−σ ≥ βR
∑

z′
π(z′, z)

(
c(b′(b, z), z′)

)−σ (7)

c(b, z) = ez ȳ + b − qb′(b, z). (8)

The recursive equilibrium of the model is then defined as the pair of decision rules c(b, z), b′(b, z) that satisfy these two 
conditions.

The FiPIt method poses a conjecture of the decision rule b̂′
j(b, z) in iteration j, defined over the nodes of discrete grids for 

b and z. Intermediate values are then found by interpolation. The function b̂′
j(b, z) uses the resource constraint to generate 

its associated consumption function as c j(b, z) = ez ȳ + b − qb̂′
j(b, z). Using this consumption function, the above first-order 

conditions can be combined into an equation that solves for the “new” consumption function:

c j+1(b, z) =
{

βR
∑

z′
π(z′, z)

(
c j(b̂

′
j(b, z), z′)

)−σ
}− 1

σ

(9)

In the right-hand-side of this Euler equation, we need the value of ct+1, which is obtained by evaluating the consumption 
function at the t+1-values of the state variables: c j(b̂′

j(b, z), z′)). Since b̂′
j(b, z) is defined only on the nodes of the grid of 

bonds, this consumption function is interpolated over its first argument in order to determine c j(b̂′
j(b, z), z′) (i.e. the value 

of ct+1 implied by the conjectured consumption function). Once this is done, the Euler equation solves directly for a new 
consumption function c j+1(b, z) without a non-linear solver. Using the resource constraint, this new consumption function 
yields a new decision rule for bonds b′

j+1(b, z), which is re-set to b′
j+1(b, z) = −ϕ if b′

j+1(b, z) ≤ −ϕ . Then the decision 
rule conjecture is updated to b̂′

j+1(b, z) as a convex combination of b̂′
j(b, z) and b′

j+1(b, z): b̂′
j+1(b, z) = (1 − ρ)b̂′

j(b, z) +
ρb′

j+1(b, z). The process is repeated until b′
j+1(b, z) = b̂′

j(b, z) for all (b, z) in the grids, up to a convergence criterion.
Three points raised by Judd (1998) about fixed-point iteration algorithms like this one are worth recalling. First, using 

collocation methods instead of solving for a finite state space, the fixed-point iteration method can be represented in a 
form analogous to the Parameterized Expectations method, because the latter is a fixed-point iteration method that uses 
simulation and regression to construct conditional expectations. Second, using 0 < ρ < 1 (ρ > 1) to set the decision rule 
of the next iteration is useful to address possible instability (slow convergence) of the algorithm. Third, a finite state space 
may be preferable to collocation methods to define the decision rules depending on whether we expect decision rules 
to be smooth or to have strong curvature. The latter can be particularly important in models with occasionally binding 
constraints that depend on endogenous variables, such as credit constraints that depend on collateral prices and yield 
U-shaped decision rules because of the Fisherian debt-deflation mechanism (see Bianchi and Mendoza (2018)). This will be 
the case in the model solved in the next Section.

Fixed-point iteration differs from the time iteration method because the latter applies the conjectured decision rule 
b̂′

j(b, z) only to substitute for the term bt+2 in the right-hand-side of the Euler equation (5), and then uses a non-linear 
solver to solve the resulting non-linear equation for the optimal choice of bt+1 as a function of (zt , bt). Hence, we can think 
of the fixed-point iteration method as a “proxy time iteration method” that substitutes for the bt+1 in the right-hand-side 
of the Euler equation with a proxy that is defined to be the conjectured decision rule, instead of treating that bt+1 term 
as endogenous.4 Fixed-point iteration is also different from the endogenous grids method, because it does not redefine the 
endogenous state variable and instead solves the problem over the original rectilinear grids (b, z). Still, fixed-point iteration 
retains the main computational advantage of the endogenous grids method, which is that the Euler equation is reduced to 
an equation with an analytic solution for the decision rule, avoiding the need to use non-linear solvers.

4 From this perspective, it may seem as if the FiPIt method solves the “incorrect” Euler equation. Yet, as the paper shows, the solutions satisfy the same 
equilibrium conditions and are negligibly different from those obtained using standard time iteration. This is because FiPIt is essentially an application of 
the standard fixed-point iteration approach to solve transcendental equations.
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3. The FiPIt method for two-dimensional models

This Section provides a detailed description of the steps that the FiPIt method follows to solve a model with two en-
dogenous states and an occasionally binding constraint. The model pertains to a small open economy with two endogenous 
states, capital (k) and net foreign assets (b), and a credit constraint. If the constraint never binds, the algorithm solves a 
standard RBC model of a small open economy, and if it binds it solves a model with endogenous financial crises or Sudden 
Stops.

3.1. Model structure and equilibrium conditions

The model is the same as in Mendoza (2010), except that the preferences with endogenous discounting are replaced with 
standard time-separable expected utility with exogenous discounting at rate β . The economy is inhabited by a representative 
firm-household with preferences defined over stochastic sequences of consumption ct and labor supply Lt , for t = 0, ..., ∞, 
given by:

E0

[ ∞∑
t=0

βt (ct − Lω
t
ω )1−σ

1 − σ

]
(10)

The agent chooses sequences of consumption, labor, investment, and holdings of real, one-period international bonds, 
bt+1 (the agent borrows when bt+1 < 0), so as to maximize the above utility function subject to the following budget and 
collateral constraints:

ct(1+τ )+kt+1 − (1− δ)kt + a

2

(kt+1 − kt)
2

kt
= At F (kt, Lt , vt)− pt vt −φ(Rt −1)(wt Lt + pt vt)−qb

t bt+1 +bt, (11)

qb
t bt+1 − φRt(wt Lt + pt vt) ≥ −κqtkt+1. (12)

The right-hand-side of the budget constraint is the sum of net profits from production and the resources generated by 
trading assets abroad. Net profits are equal to gross production minus the cost of imported inputs minus the servicing 
of foreign working capital loans for labor and imported inputs. Gross output is represented by a constant-returns-to-scale 
technology, At F (kt , Lt, vt) = exp(ε A

t ) Ākγ
t Lα

t vη
t , that requires capital, kt , labor and imported inputs, vt , to produce a tradable 

good sold at a world-determined price (normalized to unity without loss of generality). TFP is subject to a random shock 
ε A

t with exponential support around a mean of Ā . Working capital loans pay for a fraction φ of the cost of imported inputs 
and labor in advance of sales. These loans are obtained from foreign lenders at the beginning of each period and repaid at 
the end. Lenders charge the world gross real interest rate Rt = R̄ exp(εR

t ) on these loans, where εR
t is an interest rate shock 

around a mean value R̄ . Imported inputs are purchased at an exogenous relative price in terms of the world’s numeraire 
pt = p̄ exp(ε P

t ), where p̄ is the mean price and ε P
t is a shock to the world price of imported inputs (i.e., a terms-of-trade 

shock). The shocks ε A
t , εR

t , and ε P
t follow a joint first-order Markov process. The resources generated by trading assets 

abroad are given by −qb
t bt+1 + bt , where qb

t is the price of the international bonds, which satisfies qb
t = R−1

t .
The left-hand-side of the budget constraint is the sum of consumption expenditures, investment and capital adjustment 

costs. Gross investment is it = kt+1 − (1 − δ)kt and gross investment inclusive of adjustment costs is ĩt = kt+1 − (1 − δ)kt +
a
2

(kt+1−kt )
2

kt
. Since government expenditures are not included in the model, we include a time-invariant consumption tax τ

that is used to calibrate the model to match the average share of government expenditures in GDP in the data. This is done 
so that consumption and investment shares in the model can match their data counterparts. Since the tax is constant, it 
does not distort the savings-consumption margin. The tax does distort labor supply but this distortion is constant over time, 
since the tax itself is constant.

The credit constraint limits the total debt, which is equal to intertemporal debt plus working capital financing, not to 
exceed the fraction κ of the market value of the end-of-period capital stock. This is a more complex constraint than borrow-
ing constraints of the class bt+1 ≥ −ϕ , widely used in heterogeneous agents models and also in the algorithm proposed by 
Ludwig and Schön (2018). Notice that the prices qt and wt that appear in this constraint (and the wage in the budget con-
straint), are endogenous market prices taken as given by the agent when solving its optimization problem. As in Mendoza 
(2010), the wage rate must be on the labor supply curve (i.e. it must equal the tax-adjusted marginal disutility of labor), 
which requires wt = Lω−1(1 + τ ), and the price of capital must satisfy the optimality condition requiring that qt = ∂ ĩt

∂kt+1
. 

With these simplifications noted, the competitive equilibrium of the economy can be represented with the optimization 
problem of the firm-household, instead of defining separate problems for households and firms. This equilibrium, however, 
cannot be represented as the solution to a planner’s problem formulated as a single Bellman equation, because the planner 
would internalize the responses of wages and asset prices to its optimal plans, while the representative firm-household does 
not.

Defining λt and μt as the future-value multipliers of the budget and collateral constraints respectively, the model’s 
equilibrium conditions in sequential form are:
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(
ct − Lω

t

ω

)−σ

= λt(1 + τ ) (13)

At F Lt (kt, Lt, vt) = wt

(
1 + φ(Rt − 1) + μt

λt
φRt

)
(14)

At F vt (kt, Lt , vt) = pt

(
1 + φ(Rt − 1) + μt

λt
φRt

)
(15)

λt = 1

qb
t

βEt[λt+1] + μt (16)

λt = 1

qt
βEt

[
λt+1

(
exp(ε A

t+1)Fkt+1 − δ + a

2

(kt+2 − kt+1)
2

k2
t+1

+ qt+1

)]
+ μtκ (17)

qt = ∂ ĩt

∂kt+1
= 1 + a

(
kt+1 − kt

kt

)
(18)

wt = Lω−1(1 + τ ) (19)

ct(1 + τ ) + kt+1 − (1 − δ)kt + a

2

(kt+1 − kt)
2

kt

= At F (kt, Lt, vt) − pt vt − φ(Rt − 1)(Lω
t (1 + τ ) + pt vt) − qb

t bt+1 + bt

(20)

Solving this model with the time iteration method requires solving the Euler equations (16) and (17) as part of a system 
of non-linear equations. Given conjectures of the decision rules for capital and bonds, and simplifying using the other 
equilibrium conditions, the two Euler equations form a two-equation system that yields the “new” decision rules. When 
the collateral constraint does not bind, these two Euler equations have their standard forms. When the constraint binds, 
the multiplier μt is an additional endogenous variable and there is an additional equation, which is the constraint holding 
with equality. The solution can still be reduced to a two-equation system, by using the constraint to substitute for qb

t bt+1
together with the conjectured decision rules so as to obtain a two-equation system in kt+1 and μt .5

Solving with the endogenous grid method requires defining grids for two alternative state variables (s1, s2) such that 
s1

t ≡ qb
t bt+1 and s2

t ≡ kt+1/(1 − δ), and then proceeding as in Ludwig and Schön (2018) to first determine the values of 
(bt+1, kt+1) associated with each (s1

t , s2
t ) pair, then use the optimality conditions (including the Euler equations) to solve 

for the contemporaneous controls, particularly (ct , it), and then use the resource constraint and the definition of gross 
investment to extract the implied values of the original endogenous states (bt , kt ), namely the endogenous grids. When 
solving for the contemporaneous controls, the optimality conditions form a system of equations that has an analytic solution, 
thus avoiding the need to use a non-linear solver, but the endogenous grids of (bt+1, kt+1) are irregular, so interpolation 
of the relevant functions required to obtain the solution of the system is implemented using Delaunay interpolation.6 As 
noted earlier, FiPIt does not need either non-linear solvers or interpolation methods for irregular grids.7 Standard bi-linear 
interpolation over rectangular grids still applies.

3.2. Description of the FiPIt algorithm

The FiPIt method solves the model’s equilibrium conditions in recursive form. The model has two endogenous states, b
and k, and three exogenous states, using s to denote the triple of exogenous shocks s ≡ (A, R, p), which includes shocks to 
TFP (A), the world interest rate (R) and the price of imported inputs (p). The recursive equilibrium is defined by a set of 
recursive functions for allocations [b′(b, k, s), k′(b, k, s), c(b, k, s), L(b, k, s), v(b, k, s)], prices [w(b, k, s), q(b, k, s)] and mul-
tipliers [λ(b, k, s), μ(b, k, s)] that satisfy the recursive representation of equations (13)-(20), which is provided in Section 2 
of the Appendix.

The recursive equilibrium is solved for over a discrete state space, which requires defining discrete grids for (b, k, s). The 
grid for the shock triples s ∈ S comes from the discretization of the stochastic processes of the model’s three shocks. This is 
typically done using Tauchen’s quadrature method. Here we take S and the associated Markov transition probability matrix 
from Mendoza (2010), where S has eight triples (i.e. each shock has two realizations). For the endogenous states, we define 
grids with M nodes for bonds and N nodes for capital, respectively: B = {b1 < b2 < ... < bM}, K = {k1 < k2 < ... < kN }. The 

5 If the solution implies a value of bt+1 lower than the lower bound of the grid of bonds, we set bt+1 to that lower bound and solve again the 
two-equation system for the values of kt+1 and μt+1 consistent with that value of bt+1. Hence, the lower bound of the bonds grid is still treated as a 
constraint of the form bt+1 ≥ −ϕ .

6 The Ludwig-Schön algorithm still needs to solve a non-linear equation in order to solve for the contemporaneous controls in states in which the 
borrowing constraint binds.

7 A non-linear equation may need to be solved for in states in which the credit constraint binds, depending on the structure of the constraint (as we 
explain in subsection 3.2), but this is separate from the need to solve a two-Euler-equation non-linear system when time iteration is used to solve models 
with two endogenous states.
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state space has M × N × 8 elements and is defined by all (b, k, s) ∈ B ⊗ K ⊗ S. Once parameter values and the discrete state 
space are defined, the FiPIt algorithm is implemented following the steps described below.

Step 1. Start iteration j with conjectured functions for the price of capital q̂ j(b, k, s), the decision rule for bonds b̂′
j(b, k, s), 

and the multiplier ratio ˆ̃μ j(b, k, s) ≡ μ j(b, k, s)/λ j(b, k, s). The first iteration can start with ˆ̃μ0(b, k, s) = 0 so that the first 
pass runs as if it were an RBC model and only cases where the constraint binds pass positive multipliers to the next 
iteration. The initial functions can be set to q̂0(b, k, s) = 1 and b̂′

0(b, k, s) = b, which imply decision rules equal to initial 
states for capital and bonds. Note also that this same algorithm can be used to solve a standard RBC model without the 
occasionally binding constraint, by simply setting κ high enough so that the constraint never binds.

Step 2. Using the recursive equilibrium conditions, compute the iteration- j implied decision rules for capital k′
j(b, k, s), con-

sumption, investment (inclusive of adjustment costs), labor, inputs and output as shown below. Note that, given q̂ j(b, k, s), 
the capital decision rule has an analytic solution that follows from optimality condition (18) (i.e. the capital decision rule 
has a closed-form solution as a function of the price of capital). The factor allocation rules follow from the conditions equat-
ing marginal products with marginal costs, which include factor prices and financing costs. The wages bill wL is replaced 
with (1 + τ )Lω because of the optimality condition for labor supply. With these arguments in mind, the iteration- j implied 
decision rules are:

k′
j(b,k, s) =k

a

[
q̂ j(b,k, s) − 1 + a

]
(21)

ĩ j(b,k, s) =(k′
j(b,k, s) − k)

[
1 + a

2

(
k′

j(b,k, s) − k

k

)]
− δk (22)

v j(b,k, s) =
{

Akγ η
ω−α
ω α

1+τ

α
ω

p
ω−α
ω [1 + φ(R − 1) + ˆ̃μ j(b,k, s)φR]

} ω
ω(1−η)−α

(23)

L j(b,k, s) =
{

α

η(1 + τ )
pv j((b,k, s)

} 1
ω

(24)

y j(b,k, s) =Akγ L j(b,k, s)α v j(b,k, s)η (25)

Consumption then follows from the resource constraint:

(1 + τ )c j(b,k, s) = y j(b,k, s) − pv j(b,k, s) − φ(R − 1)
[
(1 + τ )L j(b,k, s)ω + pv j(b,k, s)

]
− ĩ j(b,k, s) − b̂′

j(b,k, s)

R
+ b

(26)

Note that for points where ˆ̃μ j(b, k, s) = 0, factor allocations and output are the same as for an RBC model without credit 
frictions, which because of the GHH structure of period utility (i.e. the marginal rate of substitution between c and L is 
independent of c) depend only on (k, s). We keep them as functions of all three states because when ˆ̃μ j(b, k, s) > 0 factor 
allocations and output do depend on the three states.

Step 3. Assume the collateral constraint does not bind. This implies that the new decision rule for the modified multiplier 
is μ̃ j+1(b, k, s) = 0, and the new decision rules for the rest of the endogenous variables are solved using the recursive 
equilibrium conditions as follows:

3.1 Factor allocations and output again match the expressions corresponding to an RBC model with perfect credit markets:

v j+1(b,k, s) =
{

Akγ η
ω−α
ω α

1+τ

α
ω

p
ω−α
ω [1 + φ(R − 1)]

} ω
ω(1−η)−α

(27)

L j+1(b,k, s) =
{

α

η(1 + τ )
pv j+1(b,k, s)

} 1
ω

(28)

y j+1(b,k, s) =Akγ L j+1(b,k, s)α v j+1(b,k, s)η (29)

3.2 Solve for c j+1 by applying the fixed-point iteration method to the Euler equation for bonds. The iteration- j conjectures 
for capital and bonds are used everywhere in the right-hand-side of this Euler equation, so that we obtain an analytic 
solution for c j+1. Keep track of the subscripts denoting which function is used in each term:
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c j+1(b,k, s) =
⎧⎨
⎩βR E

⎡
⎣
(

c j(b̂
′
j(b,k, s),k′

j(b,k, s), s′) − L j(b̂′
j(b,k, s),k′

j(b,k, s), s′)ω

ω

)−σ
⎤
⎦
⎫⎬
⎭

− 1
σ

+ L j+1(b,k, s)ω

ω

(30)

In the above expression, the functions c j(b, k, s) and L j(b, k, s) are defined only at the nodes of B ⊗ K ⊗ S, but since 
the values of b̂′

j(b, k, s) and k′
j(b, k, s) generally do not match node grids in B and K, respectively, c j(·) and L j(·)

are interpolated over their first two arguments to determine c j(b̂′
j(b, k, s), k′

j(b, k, s), s′) and L j(b̂′
j(b, k, s), k′

j(b, k, s), s′). 
Standard bi-linear interpolation is applied. Use extrapolation if k′

j(b, k, s) is below (above) k1 (kN ) and also if b̂′
j(b, k, s)

is above bM , but for b̂′
j(b, k, s) < b1 evaluate the functions at b1, because the lower bound on bonds represents an 

ad-hoc debt limit commonly used for calibration of the model to the data (see de Groot et al. (2019)). Note also that, 
because of the fractional exponent (since typically σ > 1) the above equation solves only if c j(·) − L j(·)ω

ω > 0, but if 
this is true for the consumption and labor decision rules implied by the initial conjectures set for the first iteration 
(c0(·), L0(·)), it will also be true at any iteration j > 0.

3.3 Solve for b′
j+1(b, k, s) using the resource constraint:

b′
j+1(b,k, s) = R

{
y j+1(b,k, s) − pv j+1(b,k, s) − φ(R − 1)

[
(1 + τ )L j+1(b,k, s)ω + pv j+1(b,k, s)

]
− ĩ j(b,k, s) − (1 + τ )c j+1(b,k, s) + b

} (31)

3.4 Evaluate if the collateral constraint binds. If:

b′
j+1(b,k, s)

R
− φR

[
(1 + τ )L j+1(b,k, s)ω + pv j+1(b,k, s)

]+ κ q̂ j(b,k, s)k′
j(b,k, s) ≥ 0, (32)

the constraint does not bind at the point (b, k, s), the functions with j + 1 subscripts are saved, and skip to Step 5. 
Otherwise, the constraint binds at this point, the functions with j + 1 subscripts are discarded and move to Step 4.

Step 4. Solve for new decision rules when the collateral constraint binds. Since q̂ j(b, k, s) has not changed, we use the same 
iteration- j implied decision rule for capital k′

j(b, k, s) = k
a

[
q̂ j(b,k, s) − 1 + a

]
and the same function ĩ j(b, k, s) as before. 

This is the most computationally intensive step, because it solves a non-linear simultaneous equations system to determine 
L j+1(b, k, s), v j+1(b, k, s), c j+1(b, k, s), b′

j+1(b, k, s), μ̃ j+1(b, k, s). The five equations in the system are the two optimality 
conditions for factor allocations, the Euler equation for bonds (with the μ̃ terms), the credit constraint holding with equality, 
and the resource constraint. To make the solution more tractable, we express L j+1(b, k, s), v j+1(b, k, s), c j+1(b, k, s) and 
b′

j+1(b, k, s) as functions of μ̃(b, k, s), and use the results to reduce the system to a single non-linear equation in μ̃(b, k, s). 
In the simplified system, factor allocations, consumption and bonds are functions denoted L j+1(b, k, s, μ̃), v j+1(b, k, s, μ̃), 
c j+1(b, k, s, μ̃) and b′

j+1(b, k, s, μ̃), but to make the notation simpler we write them as depending on μ̃ only (still, keep in 
mind the set of equations needs to be solved for each (b, k, s) for which the constraint was found to be binding in step 3.4):

v(μ̃) =
{

Akγ η
ω−α
ω α

1+τ

α
ω

p
ω−α
ω [1 + φ(R − 1) + μ̃φR]

} ω
ω(1−η)−α

(33)

L(μ̃) =
{

α

η(1 + τ )
pv(μ̃)

} 1
ω

(34)

b′(μ̃)

R
= − κ q̂ jk

′
j + φRpv(μ̃)

[
1 + α

η

]
(35)

(1 + τ )c(μ̃) =Akγ L(μ̃)α v(μ̃)η − pv(μ̃) − φ(R − 1)pv(μ̃)

[
1 + α

η

]
− ĩ j − b′(μ̃)

R
+ b (36)

The equations for labor and inputs follow from combining the borrowing constraint with the optimality conditions equating 
marginal products with marginal costs, including the μ̃ terms. They are the same equations used in Step 2, but now we 
need to find the value of μ̃ j+1 that solves them, instead of taking as given μ̃ j .
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In addition to equations (33)-(36), the solution for μ̃ j+1(b, k, s) must also satisfy the Euler equation for bonds, which 
can be written as:

μ̃ j+1(b,k, s) = 1 −
βR E

[(
c j(b̂′

j(b,k, s),k′
j(b,k, s), s′) − L j(b̂′

j(b,k,s),k′
j(b,k,s),s′)ω

ω

)−σ
]

(
c(μ̃ j+1(b,k, s)) − L(μ̃ j+1(b,k,s))ω

ω

)−σ (37)

Notice the numerator in the second term in the right-hand-side still applies fixed-point iteration by computing expected 
marginal utility using j-dated functions only. The values of c j(b̂′

j(b, k, s), k′
j(b, k, s), s′) and L j(b̂′

j(b, k, s), k′
j(b, k, s), s′) are 

again determined by bi-linear interpolation.
Algebraic manipulation of equations (33)-(37) reduces to this non-linear equation in μ̃ j+1(·)

(1 − μ̃ j+1(·))
{

C
ω

(1−η)ω−α

1

[
α

1 + φ(R − 1) + μ̃ j+1(·)φR

] ηω+α
(1−η)ω−α −

[
αC1

1 + φ(R − 1) + μ̃ j+1(·)φR

] ω
(1−η)ω−α

C2

−
(

ĩ j(·) − κ q̂ j(·)k′
j(·) − b

1 + τ

)}−σ

= βR E

⎡
⎣(c j(b̂

′
j(·),k′

j(·), s′) − L j(b̂′
j(·),k′

j(·), s′)ω

ω

)−σ
⎤
⎦

(38)

where:

C1 ≡
(

1

1 + τ

)1−η

Akγ

(
η

αp

)η

(39)

C2 ≡ 1

ω
+ η

α
+ φ

(
1 + η

α

)
(2R − 1) (40)

Note again that, because of the fractional exponent in the right-hand-side of (38), the equation solves only if c j(·) − L j(·)ω
ω >

0. Since the first iteration starts with μ̃0(·) = 0, any state that yields a binding credit constraint in the first itera-
tion will solve for μ̃1(·) as long as the same condition required for the unconstrained consumption function (eq. (30)) 
to solve in the first iteration holds, namely that c0(·) − L0(·)ω

ω > 0 for the decision rules implied by the initial con-
jectures set for the first iteration. Moreover, since when the constraint binds it must be true that 0 < μ̃ < 1, it fol-

lows from eq. (37) that c j(·) − L j(·)ω
ω > 0 will hold for any iteration j > 0. Once μ̃ j+1(b, k, s) is solved, the func-

tions v j+1(b, k, s), L j+1(b, k, s), b′
j+1(b, k, s), c j+1(b, k, s) are determined using equations (33)-(36), but replacing μ̃ with 

μ̃ j+1(b, k, s). The functions with j + 1 subscripts are saved, and we move to Step 5.
It is important to note that, depending on the structure of the occasionally binding constraint, if μ̃ can be solved for 

separately after solving for the allocations, Step 4 is much easier because FiPIt does not require a non-linear solver anywhere. 
For example, if working capital is not in the credit constraint, we can set b′

j+1(b, k, s)/R = −κq̂ j(b, k, s)k′
j(b, k, s), and this 

can be used to determine c j+1(b, k, s) directly from the resource constraint. The implied value of μ̃ j+1(b, k, s) can then be 
solved for from the bonds Euler equation. The same applies for a credit constraint set to a constant value, as in Ludwig and 
Schön (2018), where they used bt+1 ≥ 0. Hence, FiPIt can solve models with a large class of occasionally binding constraints 
without using a non-linear solver at any point, whereas the Ludwig-Schön algorithm needs both the Delaunay interpolation 
and a non-linear solver when the constraint binds.

Step 5. Return to Step 3 and repeat ∀(b, k, s) ∈ B⊗ K⊗ S. This is necessary before proceeding to compute a new asset pricing 
function, because the complete set of j+1-dated functions is required.

Step 6. Compute the new pricing function q j+1(b, k, s). We describe two ways of doing this:

6.1 The FiPIt algorithm proceeds in a manner analogous to fixed-point iteration on the Euler equation for bonds, by applying 
the new decision rules for c j+1(·), L j+1(·), b′

j+1(·), and μ̃ j+1(·) to the Euler equation for capital and solving it so as to 
obtain the following analytic solution for q j+1(b, k, s):

q j+1(b,k, s) =
βEt

[(
c j+1

(
b′

j+1(·),k′
j(·), s′

)
− L j+1

(
b′

j+1(·),k′
j(·),s′

)ω

ω

)−σ [
d′ (·) + q̂ j

(
b′

j+1(·),k′
j(·), s′

)]]
(

c j+1(·) − L j+1(·)ω
ω

)−σ
(1 − κμ̃ j+1(·))

(41)

where
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d′ (b′
j+1(·),k′

j(·), s′)

= γ A′k′
j(·)γ −1L j+1

(
b′

j+1(·),k′
j(·), s′)α

v j+1

(
b′

j+1(·),k′
j(·), s′)η − δ + a

2

(k′
j(b

′
j+1(·),k′

j(·), s′) − k′
j(·))2

k′
j(·)2

The asset price used in the right-hand-side of (41) is the conjecture set in Step 1. Since all the functions in 
the right-hand-side are known, the equation solves directly for q j+1(b, k, s). The values of c j+1

(
b′

j+1(·),k′
j(·), s′

)
,

L j+1

(
b′

j+1(·),k′
j(·), s′

)
and q̂ j

(
b′

j+1(·),k′
j(·), s′

)
are determined by bi-linear interpolation. The value of the divi-

dends function d′(·) is obtained by applying bi-linear interpolation to evaluate L j+1

(
b′

j+1(·),k′
j(·), s′

)
and

v j+1

(
b′

j+1(·),k′
j(·), s′

)
in the marginal product of capital and k′

j(b
′
j+1(·), k′

j(·), s′) in the adjustment cost term. No-

tice that the decision rule for bonds that sets the value of bt+1 at which all these functions are interpolated is a 
j+1-indexed function, not the j-indexed function used in Steps 3 and 4, but over the capital dimension we are still using 
the j-indexed decision rule.

6.2 A variant of the algorithm labeled Fixed-Point Iteration with Forward Solution (FPIFS) solves for the new price conjecture 
by iterating to convergence on the capital Euler equation (i.e. it uses the forward solution of the asset price). Index the 
iterations on this equation with superscript z, the iterations solve this functional equation problem, always using the 
j + 1-dated functions and the multiplier μ̃ j+1(·) obtained in Steps 3 to 5:

qz+1(b,k, s) =
βEt

[(
c j+1

(
b′

j+1(·),k′
j(·), s′

)
− L j+1

(
b′

j+1(·),k′
j(·),s′

)ω

ω

)−σ [
d′ (·) + qz

(
b′

j+1(·),k′
j(·), s′

)]]
(

c j+1(·) − L j+1(·)ω
ω

)−σ
(1 − κμ̃ j+1(·))

(42)

Iterate until ||qz+1(b, k, s) − qz(b, k, s)|| ≤ εq for small εq , and if the result converges, the final result sets q j+1(b, k, s). 
The values of c j+1

(
b′

j+1(·),k′
j(·), s′

)
, L j+1

(
b′

j+1(·),k′
j(·), s′

)
, d′ (·) and qz

(
b′

j+1(·),k′
j(·), s′

)
are determined using bi-

linear interpolation as in step 6.1.

Step 7. Check the convergence of the conjectured functions. Convergence requires that for small ε f the following conditions 
are satisfied ∀(b, k, s) ∈ B ⊗ K ⊗ S:

|q j+1(b,k, s) − q̂ j(b,k, s)| ≤ ε f (43)

|b′
j+1(b,k, s) − b̂′

j(b,k, s)| ≤ ε f (44)

|μ̃ j+1(b,k, s) − ˆ̃μ j(b,k, s)| ≤ ε f (45)

If any of the above convergence conditions fails, update the conjectured functions using a convex combination of the last 
conjectures and the new functions to dampen possible overshooting or speed up convergence. This is conventional practice 
because there is no guarantee that fixed-point iteration algorithms converge, but when they diverge it is generally because 
they overshoot the true solution. Hence, the new conjectures are:

x̂ j+1(b,k, s) = (1 − ρx)x̂ j(b,k, s) + ρxx j+1(b,k, s) (46)

for x = [q, b′, μ̃] and some 0 ≤ ρx . Notice that x̂ j(b, k, s) in the right-hand-side of this expression represents the initial 
conjectures that were used in the current iteration, while x̂+1 j(b, k, s) in the left-hand-side denotes the new conjectures for 
the next iteration. Use 0 < ρx < 1 (ρx > 1) for the particular function x(·) that is not converging (converging too slowly). 
Return to Step 2, setting x̂ j(b, k, s) = x̂ j+1(b, k, s), and repeat until convergence is attained.

If the three convergence conditions hold, the recursive competitive equilibrium has been solved. The level of the multi-
plier on the credit constraint can then be solved for as follows:

μ j+1(b,k, s) = μ̃ j+1(b,k, s)

(
c j+1(b,k, s) − L j+1(b,k, s)ω

ω

)−σ

(47)

The accuracy of the solution can then be evaluated by verifying that all the equilibrium conditions hold, including compu-
tations of the errors in the Euler equations of k and b, denoted E E K (b, k, s) and E E B(b, k, s) respectively. In recursive form, 
the Euler equation errors are given by:

E E B(·) = 1 −

[(
βR E

[(
c(b′(·),k′(·), s′) − L(b′(·),k′(·),s′)ω

ω

)−σ
]

+ μ(·)
)−1/σ

+ L(·)ω
ω

]
(48)
c(·)
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E E K (·) = 1 −

⎡
⎢⎣
⎛
⎝βE

[(
c(b′(·),k′(·),s′)− L(b′(·),k′(·),s′)ω

ω

)−σ (
d′(·)+q

(
b′(·),k′(·),s′))]

q(·)(1−κμ̂(·))

⎞
⎠

−1/σ

+ L(·)ω
ω

⎤
⎥⎦

c(·) (49)

where (·) denotes the state (b, k, s) and decision rules without subscripts are the model solutions.

4. Application to Sudden Stops model

This Section examines solutions of the Sudden Stops model obtained with a set of Matlab programs we developed 
to implement the FiPIt algorithm. The Matlab codes and an Appendix that explains how the codes execute each of the 
algorithm steps are available online. All the computations were made using Matlab R2017a on a Windows 10 laptop with 
an Intel Core i7-6700HQ 2.60 GHz four-core chip and 16 GB of RAM.

The model’s parameter values are taken from Mendoza (2010) and listed in Table 1, including the same baseline value for 
the collateral coefficient (κ = 0.2). We also use the same Markov process for the model’s three shocks. The only difference, 
as mentioned earlier, is that instead of using preferences with an endogenous rate of time preference we use standard 
time-separable expected utility with constant discounting, setting the subjective discount factor at β = 0.92.

Table 1
Calibrated parameter values.

Parameter Value

σ risk aversion coefficient 2.0
ω labor elasticity coefficient 1.8461
β discount factor 0.92
a capital adjustment cost 2.75
φ working capital parameter 0.2579
δ depreciation rate 0.088
α labor share 0.59
η imported inputs share 0.10
γ capital share of income 0.31
τ tax on consumption 0.17
A average TFP 6.982
κ collateral coefficient 0.20

The state space consists of evenly-spaced grids with 72 nodes for bonds and 30 nodes for capital. K spans the 
[654.5, 885.5] interval and B spans the [-188.6, 800.0] interval. Solving with larger grids increases sharply execution time 
and produces negligibly different results, while solving with smaller grids is faster but yields inaccurate results. The Markov 
process of the shocks has two realizations for each shock and their values together with the associated 8x8 transition prob-
ability matrix approximate the variability, autocorrelation, and contemporaneous correlation of TFP, interest rates and the 
price of imported inputs in the data (see Mendoza (2010) for details).

To assess the performance of the FiPIt algorithm, we computed solutions using FiPIt and the FPIFS variant, as well as 
solutions from three other algorithms: TIFS replaces the fixed-point iteration solution of the bonds decision rule with a 
standard time iteration solution that uses a non-linear solver, and solves for the price of capital using the forward solution 
of the capital Euler equation; TIFPI uses again standard time iteration for the bonds decision rule, but solves for the price of 
capital using the fixed-point iteration approach; and FTI is the full time iteration solution in which the Euler equations for 
capital and bonds are solved as a non-linear equation system. In all these solutions except FTI, we found faster convergence 
by setting the dampening parameters for updating the conjectured functions to 0.3 for the price of capital (0.25 for a 
scenario with 60 capital nodes) and 1 for bonds and μ̃. For FTI solutions, we kept ρx = 1 for all three functions, and 
confirmed that these produces convergence in the smallest number of iterations.

4.1. Comparison of results & performance metrics

Table 2a and 2b report long-run moments of the main macro aggregates and performance statistics of the algorithm 
for the following seven solution scenarios: Columns (1) and (2) are FiPIt solutions with capital grids of 60 and 30 nodes 
respectively, (3) is the TFIS solution, (4) is the FPIFS solution, (5) is the TIFPI solution, (6) is the FTI solution and Column (7) 
shows the results from Mendoza (2010) for reference.

The comparison of Cols. (1) and (2) shows that solving using FiPIt with the smaller capital grid has nearly no effect on 
the results but reduces execution time by a factor of 2.5. The moments reported in Columns (2) to (6) are very similar, 
and in fact identical up to one or two decimals. Hence, all of the four solution algorithms we tried yield effectively the 
same results. The results from Mendoza (2010) in Column (7) are qualitatively similar in terms of ranking of volatilities 
and signs and ranking of correlations and autocorrelations, but quantitatively show more differences. These are due to the 
different discount factors (Mendoza used endogenous discounting) and the different solution methods (Mendoza solved 
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Table 2a
Long-run moments: Sudden Stops model (κ = 0.2).

(1) (2) (3) (4) (5) (6) (7)
FiPIt-large k grid FiPIt TIFS FPIFS TIFPI FTI Mendoza (2010)

Mean
gdp 393.629 393.619 393.626 393.618 393.626 393.549 388.339
c 273.910 274.123 274.074 274.124 274.073 274.011 267.857
i 67.482 67.481 67.484 67.481 67.484 67.459 65.802
nx/gdp 0.016 0.015 0.015 0.015 0.015 0.015 0.024
k 765.191 765.171 765.202 765.170 765.202 764.922 747.709
b/gdp 0.007 0.015 0.013 0.015 0.013 0.012 -0.104
q 1.000 1.000 1.000 1.000 1.000 1.000 1.000
leverage ratio -0.106 -0.102 -0.103 -0.102 -0.103 -0.103 -0.159
v 42.618 42.617 42.618 42.617 42.618 42.609 41.949
working capital 76.660 76.658 76.659 76.658 76.659 76.644 75.455

Standard deviation (in percent)
gdp 3.91 3.94 3.94 3.94 3.94 3.94 3.85
c 3.95 4.03 4.02 4.03 4.02 4.03 3.69
i 13.33 13.33 13.33 13.33 13.33 13.32 13.45
nx/gdp 2.90 2.94 2.94 2.94 2.94 2.94 2.58
k 4.40 4.49 4.49 4.49 4.49 4.50 4.31
b/gdp 18.72 19.62 19.47 19.62 19.47 19.45 8.90
q 3.20 3.20 3.20 3.20 3.20 3.20 3.23
leverage ratio 8.79 9.22 9.15 9.22 9.15 9.14 4.07
v 5.87 5.89 5.89 5.89 5.89 5.89 5.84
working capital 4.33 4.35 4.35 4.35 4.35 4.36 4.26

Correlation with GDP
gdp 1.000 1.000 1.000 1.000 1.000 1.000 1.000
c 0.849 0.842 0.844 0.842 0.844 0.844 0.931
i 0.646 0.641 0.641 0.641 0.641 0.641 0.641
nx/gdp -0.122 -0.117 -0.118 -0.117 -0.118 -0.120 -0.184
k 0.757 0.761 0.761 0.761 0.761 0.761 0.744
b/gdp -0.133 -0.120 -0.119 -0.120 -0.119 -0.117 -0.298
q 0.400 0.387 0.387 0.387 0.387 0.387 0.406
leverage ratio -0.125 -0.111 -0.111 -0.111 -0.111 -0.108 0.258
v 0.831 0.832 0.832 0.832 0.832 0.832 0.823
working capital 0.994 0.994 0.994 0.994 0.994 0.994 0.987

First-order autocorrelation
gdp 0.823 0.825 0.824 0.825 0.824 0.825 0.815
c 0.823 0.830 0.829 0.830 0.829 0.829 0.766
i 0.500 0.501 0.500 0.501 0.500 0.500 0.483
nx/gdp 0.589 0.601 0.598 0.601 0.598 0.598 0.447
k 0.964 0.962 0.962 0.962 0.962 0.962 0.963
b/gdp 0.989 0.990 0.990 0.990 0.990 0.990 0.087
q 0.444 0.447 0.446 0.447 0.446 0.446 0.428
leverage ratio 0.991 0.992 0.992 0.992 0.992 0.992 0.040
v 0.776 0.777 0.777 0.777 0.777 0.777 0.764
working capital 0.800 0.801 0.801 0.801 0.801 0.801 0.777

Prob. of Sudden Stops 1.98% 1.99% 2.03% 1.99% 2.04% 2.05% 3.32%

Note: Column (1) and Column (2) are for the FiPIt algorithm, fixed-point iteration is used for both the bonds decision rule and the price of capital. Column 
(3) is for the TIFS method, which uses the time iteration method for the bonds decision rule and the forward solution of the capital Euler equation for the 
price of capital. Column (4) is for the FPIFS method, which uses fixed-point iteration for the bonds decision rule and the forward solution of the capital 
Euler equation for the price of capital. Column (5) is for the TIFPI method, which uses time iteration for the decision rule for bonds and fixed-point iteration 
for the price of capital. Column (6) is for the FTI method, which solves the bonds decision rule and the price of capital by solving the Euler equations for 
bonds and capital as two simultaneous non-linear equations. Sudden Stop states are defined as in Mendoza (2010): states (b, k, s) such that μ(b, k, s) > 0
and the trade balance-GDP ratio is at least 2 percentage points above its value in the RBC model.

forcing decision rules to be on the nodes of the grids of bonds and capital, instead of using interpolation, and used value 
function iteration on a quasi planner’s problem with w and q restricted to satisfy the labor supply and investment optimality 
conditions). The one item that differs sharply is the probability of Sudden Stops, which is about 2.0 percent in Cols. (1)-(6) v. 
3.3 percent in Mendoza’s paper.8 This is due to the approximately-continuous decision rules obtained using interpolation in 
our solutions v. decision rules forced to be on grid nodes in Mendoza’s solution. This makes our estimates of the frequency 
with which μ(b, k, s) > 0, and of the trade balance adjustment implied by the associated b′(b, k, s) in those states, more 

8 We applied the same definition of Sudden Stops: coordinates (b, k, s) in which the collateral constraint binds and the trade balance-GDP ratio is at least 
2 percentage points above what the RBC model yields.
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Table 2b
Performance metrics: Sudden Stops model (κ = 0.2).

(1) (2) (3) (4) (5) (6)
FiPIt-large k grid FiPIt TIFS FPIFS TIFPI FTI

Bonds Euler equation
Max Log10 abs. Euler error -1.56 -1.56 -1.56 -1.56 -1.56 -1.53
At grid points (b,k, s) (1, 11, 3) (1, 6, 3) (1, 6, 3) (1, 6, 3) (1, 6, 3) (2, 1, 7)
Mean Log10 abs. Euler error -6.27 -6.27 -5.39 -6.20 -5.38 -5.36

Capital Euler equation
Max Log10 abs. Euler error -6.68 -6.68 -6.70 -6.67 -6.70 -1.76
At grid points (b,k, s) (72, 1, 7) (72, 1, 7) (32, 1, 7) (72, 1, 7) (32, 1, 7) (1, 1, 7)
Mean Log10 abs. Euler error -7.04 -7.05 -6.98 -6.97 -7.04 -5.41

Grid size (#b,#k) (72, 60) (72, 30) (72, 30) (72, 30) (72, 30) (72, 30)

Seconds elapsed 1985 810 3735 956 4136 1986
Relative to FiPIt 2.5 1.0 4.6 1.2 5.1 2.5
Number of iterations 196 196 190 178 207 94

Note: Column (1) and Column (2) are for the FiPIt algorithm, fixed-point iteration is used for both the bonds decision rule and the price of capital. Column 
(3) is for the TIFS method, which uses the time iteration method for the bonds decision rule and the forward solution of the capital Euler equation for the 
price of capital. Column (4) is for the FPIFS method, which uses fixed-point iteration for the bonds decision rule and the forward solution of the capital 
Euler equation for the price of capital. Column (5) is for the TIFPI method, which uses time iteration for the decision rule for bonds and fixed-point iteration 
for the price of capital. Column (6) is for the FTI method, which solves the bonds decision rule and the price of capital by solving the Euler equations for 
bonds and capital as two simultaneous non-linear equations. Sudden Stop states are defined as in Mendoza (2010): states (b, k, s) such that μ(b, k, s) > 0
and the trade balance-GDP ratio is at least 2 percentage points above its value in the RBC model.

accurate. In all of our results, the long-run probability of states with μ > 0 is about 2.6 percent, but 23 percent of these 
states do not yield a sufficiently large increase in the trade balance to classify as a Sudden Stop.

The performance metrics for each of the solution methods reported in Table 2b include the maximum and average of 
the base-10 logarithm of the absolute value of the Euler equation errors. The results show that all the solutions have similar 
accuracy with small maximum and average errors. The FTI solution yields larger errors, but still this makes little difference 
in the statistical moments it produces relative to those produced by the other solutions.

In terms of execution time, the FiPIt method in Col. (2) of the Table dominates the other solution methods by large 
margins.9 The absolute speeds will vary widely with hardware and software configurations, but the relative speeds are 
likely to vary less and the ranking across methods based on this criterion is unlikely to change. Comparing speeds relative 
to FiPIt, which took 810 seconds to run, the second fastest method is FPIFS in Col. (4), which took 20 percent longer. This 
algorithm only differs from FiPIt in that it solves for the price of capital by solving forward the capital Euler equation. The 
slowest methods are the three that use time iteration (i.e. a non-linear solver) for at least one Euler equation. In Cols. (3) 
and (5) the bonds decision rule is solved with the time iteration method, but the price of capital is solved using the forward 
solution in Col. (3) v. fixed-point iteration in Col. (5). This makes little difference in execution time, as they take 4.6 and 5.1 
times longer than the FiPIt solution in Col. (2), respectively. Interestingly, the standard FTI method in Col. (6), which solves 
the simultaneous non-linear Euler equations for bonds and capital, is significantly faster than the methods used in Cols. (3) 
and (5), indicating that solving only one non-linear Euler equation instead of two does not guarantee a faster algorithm. 
Still, the FTI execution time exceeds that of the FiPIt solution by a factor of 2.5!

The FTI solution is faster than the ones in Cols. (3) and (5) because time iteration takes advantage of the contraction 
mapping properties of the two non-linear Euler equations by solving them simultaneously while fixed-point iteration meth-
ods do not. Intuitively, every iteration with FTI tends to generate relatively more accurate outcomes, and hence attains 
convergence in 94 iterations. The algorithms in Cols. (3) and (5) take more than twice as many iterations (190 iterations for 
TIFS and 207 for TIFPI), and still in each they have to use a root finder because they solve for the bonds decision rule using 
time iteration. The FiPIt method converges in a similar number of iterations (196) as these two methods, but goes through 
each iteration much faster because it avoids using non-linear solvers when the constraint does not bind, overcoming the 
drawback of not taking advantage of the contraction mapping properties of the Euler equations, and this makes it the fastest 
method.10 FPIFS in Col. (4) is the second fastest for a similar reason, and it is slower than FiPIt because solving the price of 
capital with the forward solution is slower than with fixed-point iteration.

In addition to comparing Euler equation errors, we also compared the recursive equilibrium functions produced by each 
solution method relative to the FiPIt solution. Table 3 shows the maximum and mean of the absolute value of the point-wise 
differences of the functions as a ratio of the corresponding FiPIt solution. The differences are generally negligible, except 

9 FiPIt has even lower relative execution times than the other methods when solving the RBC model, because it avoids using the non-linear solver 
completely (see Section 4.2 for details).
10 This suggests that FiPIt can be again much faster than FTI in applications in which, as explained in Section 3, the structure of the occasionally binding 

constraint is such that FiPIt does not need a root-finder in states in which the constraint binds (e.g. qb
t bt+1 ≥ −κqtkt+1, qb

t bt+1 ≥ −ϕ). We show results for 
a case like this in subsection 4.2.
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Table 3
Absolute values of differences in equilibrium functions relative to 
FiPIt solution.

Differences relative to FiPIt method

(1) (2) (3) (4)
TIFS FPIFS TIFPI FTI

Max difference
b′ 3.17e+00 5.71e-02 3.21e+00 9.94e+00
k′ 2.23e-04 7.17e-07 2.23e-04 1.10e-02
q 6.04e-04 1.99e-06 6.04e-04 1.30e-01
c 9.72e-05 7.08e-07 9.72e-05 1.09e-02
i 8.75e-02 5.79e-05 8.74e-02 2.25e+00
L 4.92e-05 3.94e-07 4.92e-05 2.57e-03
v 9.08e-05 7.27e-07 9.08e-05 4.76e-03
gdp 3.27e-05 2.61e-07 3.27e-05 1.77e-03

Mean difference
b′ 6.29e-04 1.10e-05 6.37e-04 4.35e-03
k′ 1.13e-05 2.76e-07 1.15e-05 9.81e-05
q 3.16e-05 7.61e-07 3.22e-05 5.64e-04
c 2.00e-05 3.22e-07 2.03e-05 7.10e-05
i 1.74e-04 3.27e-06 1.76e-04 1.51e-03
L 1.22e-06 3.27e-09 1.22e-06 2.38e-05
v 2.24e-06 6.03e-09 2.25e-06 4.40e-05
gdp 8.16e-07 2.19e-09 8.18e-07 1.62e-05

Fig. 1. Long-run distributions of the Sudden Stops model solved with FiPIt.

for the maximum differences for b′ and i in the FTI solution, which reach 9.94 and 2.25 respectively in states in which the 
corresponding denominator is very close to zero. Still, as shown in Table 2a this makes little difference in first moments 
and is nearly irrelevant for second- and higher-order moments.

Fig. 1 shows the ergodic marginal distributions of bonds and capital, and the ergodic joint marginal distribution of both 
variables produced by the FiPIt solution. These plots are generated using the full ergodic distribution of (b, k, s), which FiPit
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Note: All plots show solutions obtained with the FiPIt method. Surface plots in red (blue) are for the SS (RBC) model.

Fig. 2. Equilibrium recursive functions of the Sudden Stops & RBC models. (For interpretation of the colors in the figure, the reader is referred to the web 
version of this article.)

computes using a procedure that iterates to convergence on the law of motion of the conditional distribution of (b, k, s)
(starting from an arbitrary initial condition) taking into account the fact that the decision rules of capital and bonds are 
generally off the nodes of the corresponding grids. Full details are provided in the Appendix. The long-run moments listed 
in Table 2a were produced using this distribution. The distributions produced by all the other solution methods are visually 
identical, and hence we only show the ones for the FiPIt case. Relative to the distributions that the RBC model would 
produce, the distribution of bonds shifts to the right because of the credit constraint and the stronger precautionary saving 
incentives. The distribution of capital shows higher dispersion and a fatter left tail because of the fire-sales of capital in 
states in which the constraint binds.

We also examined the recursive equilibrium functions to evaluate the relevance of the global solution to capture non-
linearities. Fig. 2 shows the decision rules of bonds and capital, the pricing function of capital and the multiplier of the 
credit constraint across the full state space of endogenous states, B ⊗ K, with s evaluated for a state with low TFP, high 
interest rate, and high input prices. We show results for the Sudden Stops model and for the RBC variant, and provide only 
the FiPIt results because the other methods yield visually identical graphs. The equilibrium functions of the Sudden Stops 
model show significant non-linearities, whereas the RBC outcomes are approximately linear. The non-linearities result from 
the fire-sales of capital when the constraint binds, the resulting collapse in the price of capital, and the associated sharp 
reversal in the bond position as borrowing capacity collapses.

The sharp curvature of these non-linear solutions highlights the advantages of using a finite-state-space solution method, 
instead of a colocation method, as well as the importance of solving using first-order conditions and approximately-
continuous decision rules. Decision rules that capture accurately the non-linearities implied by occasionally binding con-
straints are critical for quantifying the positive and normative implications of this class of models, including Sudden Stops 
models. For their positive implications, the magnitude, dynamics and frequency of financial crises depends critically on the 
behavior of decision rules near and at the constraint. For the normative implications, quantifying the size of distortions 
induced by the credit constraint and the properties of optimal policies to tackle them hinges critically on how likely and 
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Table 4
Amplification and asymmetry of Sudden Stop events.

(1) (2)
FiPIt FTI

SS NSS SS NSS

gdp -0.777 -0.001 -0.789 -0.001
c -3.849 -0.255 -3.882 -0.260
i -24.965 -1.036 -25.384 -1.089
q -6.090 -0.253 -6.194 -0.266
nx/gdp 4.033 0.233 4.047 0.238
b′/gdp 4.215 0.251 4.229 0.257
k′/gdp -1.667 -0.105 -1.680 -0.110
lev. ratio 1.166 0.081 1.167 0.082
L -1.178 -0.001 -1.196 -0.002
v -2.146 -0.003 -2.180 -0.003
w. cap -2.160 -0.003 -2.193 -0.003

Note: Sudden Stop (SS) states are defined as states in which the collateral 
constraint binds and the trade balance-GDP ratio in the Sudden Stop model 
is more than 2 percentage points above the trade balance-GDP ratio of the 
RBC model. The coefficients are computed as mean differences relative to the 
RBC model in percent of the RBC unconditional averages.

how severely is the credit constraint expected to bind at t+1 in a state in which it does not bind at t (see Bianchi and 
Mendoza (2018)).

The plots of equilibrium functions do not control for whether particular (b, k, s) triples have positive probability in the 
stochastic steady state. States with zero-probability are irrelevant in the long run, and if this is the case in the region where 
equilibrium functions are non-linear, the non-linearities would be of less relevance than what the equilibrium functions 
suggest. To assess this issue, we follow Mendoza (2010) to calculate impact amplification coefficients and report the results 
in Table 4. These coefficients measure the excess response of macro variables across the Sudden Stops and RBC solutions 
for each triple (b, k, s), separating the state space into Sudden Stop (SS) and non-Sudden Stop (NSS) regions.11 The averages 
shown in the SS and NSS columns of the Table are computed using the limiting distribution of (b, k, s) of the Sudden Stops 
model. The results in the SS column measure amplification on impact when a crisis occurs. Differences across the SS and 
NSS columns illustrate asymmetry, namely the amount by which shocks of identical magnitudes generate different effects 
when the collateral constraint is present and active v. when is not.

Table 4 compares amplification coefficients produced by the FiPIt and FTI solutions (the other methods yield nearly 
identical results). The coefficients differ very marginally and in most instances they are the same up to the second decimal. 
The Table shows that the Sudden Stops model yields significant amplification and asymmetry. Amplification coefficients on 
factor allocations and output are relatively smaller, because on impact at date-t when the credit constraint binds it can only 
affect them via its effect on working capital financing and hence on labor and imported inputs. In turn, this is due to the 
absence of the wealth effect on labor supply implied by the utility function specification and to the fact that the date-t 
capital stock is pre-determined.

The FiPIt method yields more accurate results than those produced by the solution method used in Mendoza (2010). 
The results in Table 4 are qualitatively similar to those reported in Table 4 of Mendoza’s paper, but quantitatively there are 
significant differences. Differences in model structure (i.e. endogenous v. exogenous discounting) play some role, but the 
bulk of the differences is due to differences in the solution methods. Mendoza solved for decision rules forced to be on grid 
nodes using value function iteration, while FiPIt solves for interpolated decision rules and iterates on the model’s optimality 
conditions. FiPIt yields coefficients for “supply side” variables (i.e. GDP, labor, imported inputs and working capital) that are 
smaller, while those for the rest of the variables (particularly investment and the price of capital) are larger. Moreover, for 
supply-side variables in the NSS region FiPIt yields near-zero amplification while Mendoza reports figures in the -0.29 to 
-0.11 range. The FiPIt results are the correct ones because the amplification coefficients for these variables should indeed 
differ from zero only due to numerical approximation error. Since k is pre-determined at each date t and there is no 
wealth effect on labor supply, when μ(b, k, s) = 0 the set of optimality conditions is the same in the RBC and Sudden 
Stops models and in both cases all supply-side variables depend only on (k, s). The coefficients around -0.11 to -0.29 that 
Mendoza obtained result from non-trivial numerical approximation errors due to inaccuracies of the solution algorithm 
when averaging outcomes for states in which the NSS and SS regions are adjacent and in determining the value of μ(b, k, s)
when assigning (b, k, s) triples to the SS and NSS sets.

11 A triple (b, k, s) belongs in the SS set if the trade balance-GDP ratio in the Sudden Stops model is 2 percentage points or more above its value in the 
RBC model, otherwise it belongs in the NSS region. The amplification coefficients for each variable at a given (b, k, s) are calculated as differences relative 
to their values in the RBC model in the same state and expressed in percent of the unconditional mean of the variable also in the RBC model. For variables 
defined in ratios, the coefficient is the difference in the Sudden Stops model relative to the RBC model.
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Table 5a
Sudden Stops model variations: working capital & discounting.

(a) Working capital φ = 0 (b) Discount factor β = 0.91

(1) (2) (3) (4) (5)
FiPIt FiPIt 

(no root-finder when μ > 0)
FTI FiPIt FTI

Mean
gdp 406.361 406.361 406.291 368.772 368.159
c 282.681 282.681 282.564 255.219 254.877
i 69.847 69.847 69.824 59.863 59.678
nx/gdp 0.015 0.015 0.015 0.029 0.029
k 792.035 792.035 791.780 678.870 676.802
b/gdp -0.202 -0.202 -0.205 -0.161 -0.160
q 1.000 1.000 1.000 1.000 1.000
leverage ratio -0.095 -0.095 -0.097 -0.195 -0.195
v 45.079 45.079 45.072 39.798 39.729
working capital 0.000 0.000 0.000 71.585 71.460

Standard deviation (in percent)
gdp 3.71 3.71 3.71 3.93 3.93
c 3.82 3.82 3.82 3.91 3.92
i 13.16 13.16 13.16 12.17 12.16
nx/gdp 2.94 2.94 2.93 2.12 2.11
k 4.44 4.44 4.45 4.53 4.54
b/gdp 20.06 20.06 19.88 2.28 2.26
q 3.16 3.16 3.16 2.88 2.88
leverage ratio 9.47 9.47 9.39 0.69 0.68
v 5.42 5.42 5.43 5.97 5.97
working capital – – – 4.38 4.39

Correlation with GDP
gdp 1.000 1.000 1.000 1.000 1.000
c 0.820 0.820 0.823 0.969 0.969
i 0.593 0.593 0.594 0.713 0.713
nx/gdp -0.083 -0.083 -0.085 -0.310 -0.311
k 0.775 0.775 0.776 0.754 0.754
b/gdp -0.070 -0.070 -0.067 -0.093 -0.096
q 0.334 0.334 0.334 0.442 0.441
leverage ratio -0.076 -0.076 -0.073 -0.024 -0.030
v 0.795 0.795 0.795 0.833 0.833
working capital – – – 0.988 0.988

First-order autocorrelation
gdp 0.834 0.834 0.834 0.818 0.818
c 0.860 0.860 0.860 0.759 0.759
i 0.501 0.501 0.500 0.330 0.330
nx/gdp 0.608 0.608 0.606 0.068 0.068
k 0.962 0.962 0.962 0.970 0.970
b/gdp 0.991 0.991 0.991 0.423 0.415
q 0.446 0.446 0.446 0.234 0.235
leverage ratio 0.992 0.992 0.992 0.686 0.679
v 0.788 0.788 0.788 0.756 0.757
working capital – – – 0.755 0.756

Prob. of Sudden Stops 1.43% 1.43% 1.49% 39.98% 40.44%

Note: Columns (1), (2) and (4) are FiPIt solutions and Columns (3) and (5) are time iteration (FTI) solutions. Column 
(2) shows results for the model with φ = 0 obtained with the FiPIt algorithm without using a non-linear solver when 
μ > 0, since it is not needed.

4.2. Robustness analysis & credit constraint variations

The last set of experiments evaluates the robustness and stability of the FiPIt algorithm by examining its performance 
relative to the time iteration method for various parameter changes. This is important in light of the potential instability 
of fixed-point iteration methods. As documented below, the FiPIt method remains stable and continues to outperform the 
FTI method in all the experiments. We also provide results for the RBC variant of the model and for variations of the credit 
constraint for which FiPIt does not require using a non-linear solver in states in which the constraint binds and found even 
larger gains in execution time in both instances.

Tables 5a, 5b, 6a, 6b, 7a and 7b show long-run moments and performance metrics obtained by solving the model using 
the FiPIt and FTI methods for these parameter changes: (a) removing working capital (φ = 0); (b) lowering the discount 
factor (β = 0.91); (c) reducing the collateral coefficient (κ = 0.15); (d) increasing the collateral coefficient (κ = 0.25); (e) 
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Table 5b
Sudden Stops model variations: working capital & discounting.

(a) Working capital φ = 0 (b) Discount factor β = 0.91

(1) (2) (3) (4) (5)
FiPIt FiPIt 

(no root-finder when μ > 0)
FTI FiPIt FTI

Bonds Euler equation
Max Log10 abs. Euler error -1.81 -1.81 -1.80 -1.55 -1.53
At grid points (b,k, s) (1, 1, 3) (1, 1, 3) (1, 1, 3) (3, 1, 3) (3, 1, 3)
Mean Log10 abs. Euler error -6.74 -6.74 -5.75 -8.23 -5.24

Capital Euler equation
Max Log10 abs. Euler error -6.70 -6.70 -2.76 -6.69 -1.81
At grid points (b,k, s) (72, 1, 7) (72, 1, 7) (1, 1, 7) (72, 1, 7) (2, 1, 7)
Mean Log10 abs. Euler error -7.02 -7.02 -5.55 -9.74 -5.31

Grid size (#b,#k) (72, 30) (72, 30) (72, 30) (72, 30) (72, 30)

Seconds elapsed 297 123 1593 1220 2405
Relative to FiPIt 2.4 1.0 13.0 1.0 2.0
Number of iterations 200 200 95 244 87

Note: Columns (1), (2) and (4) are FiPIt solutions and Columns (3) and (5) are time iteration (FTI) solutions. Column (2) shows results 
for the model with φ = 0 obtained with the FiPIt algorithm without using a non-linear solver when μ > 0, since it is not needed.

setting the collateral coefficient so that the constraint never binds (κ ≥ 1.0), which yields the RBC solution; (f) increasing the 
labor disutility coefficient (ω = 2.5); and (g) increasing the relative risk aversion coefficient (σ = 3.0). For each parameter 
variation, the grids of capital and bonds were re-sized to obtain the fastest solution that does not distort the quantitative 
results, using identical grids for the FiPIt and FTI solutions. Still, this resulted in grids of about the same dimensions as 
before: 71 or 72 nodes in B and 30 nodes in K, except for case (e) with the RBC model, for which 80 nodes in B were 
needed, and case (f) that needed only 62 nodes in B.12

The dominance of the FiPIt method is robust to all these parameter changes, and in all cases the algorithm is stable 
and yields solutions nearly identical to the FTI results. Comparing across the cases in which the root-finder is needed to 
solve allocations when the credit constraint binds, FTI is 2.0 to 6.0 times slower than FiPIt depending on which scenario 
is considered. Comparing v. the scenario in which FiPIt does not need the root-finder when the constraint binds (Col. (2) 
of Table 5a), FTI is 13.0 times slower, and for solving the RBC model, which also does not need a root-finder (Col. (6) of 
Table 6a), FTI is 18.1 times slower. In both of these instances, FiPIt solves in about 2 minutes. Moreover, in most cases FiPIt
did not require changing the values of the dampening parameters for the updates of the decision rule for bonds (ρb = 1), 
the credit constraint multiplier (ρμ = 1) and the pricing function (ρq = 0.3).

It is worth noting that the time iteration solutions required about the same number of iterations (between 87 and 119) 
and execution time in all the experiments except case (f) in Table 7b, which has the smaller B grid and used about the 
same number of iterations but solved faster than the other time iteration solutions. There is more variation in both number 
of iterations and execution times in the FiPIt solutions, but the two tend to move together: The slowest solution was for 
case (b) in Table 5b which took 1,220 seconds and 244 iterations.

For the case without working capital (case (a) in Table 5b), Column (2) shows the results that FiPIt yields when the code 
is modified to take into account that a root-finder is not needed to solve when the credit constraint binds, as explained in 
Section 3 (since the constraint is now of the form b′

j+1(b, k, s)/R ≥ −κq̂ j(b, k, s)k′
j(b, k, s)). We also solved an additional ex-

periment with an alternative credit constraint in the same class that does not require a non-linear solver: b′
j+1(b, k, s)/R ≥ ϕ

with ϕ set one standard deviation below the average of b′ in the limiting distribution of the RBC model. These experiments 
illustrate the large additional gain in speed that FiPIt yields when used to solve models with constraints like these. In Case 
(a) Column (2), the FiPIt solution is obtained in almost one-third of the time taken by the FiPIt algorithm that uses the 
non-linear solver, which implies that FiPIt is faster than the time iteration solution by a factor of 13.0 (v. 5.6 with the FiPIt
algorithm that uses the non-linear solver). In the case with the constraint given by ϕ , the FiPIt solution is faster than the 
time iteration method by a factor of 17.9.

5. Conclusions

FiPIt is a simple and fast algorithm designed to solve macroeconomic models with two endogenous state variables and 
occasionally binding constraints with widely used software. The algorithm applies fixed-point iteration on the Euler equa-
tions and by doing so it avoids solving the Euler equations as a non-linear system, as with the standard time iteration 

12 When solving the RBC variant of the model, the bonds grid is extended to accommodate larger debt positions that are part of the equilibrium solution. 
In this case, B consists of 80 nodes spanning the [-300.0, 800.0] interval. The upper bound is the same as before, but the lower bound of -300 is significantly 
smaller (relative to -188.6 used in the solutions reported earlier).
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Table 6a
Sudden Stops model variations: collateral coefficient.

(c) Lower coll. coeff. κ = 0.15 (d) Higher coll. coeff. κ = 0.25 (e) RBC non-binding coll. coeff. κ ≥ 1

(1) (2) (3) (4) (5) (6)
FiPIt FTI FiPIt FTI FiPIt FTI

Mean
gdp 393.503 393.433 393.728 393.659 393.847 393.813
c 276.545 276.436 271.926 271.807 264.021 263.871
i 67.442 67.420 67.517 67.495 67.530 67.518
nx/gdp 0.007 0.008 0.022 0.022 0.045 0.046
k 764.752 764.503 765.564 765.316 765.885 765.759
b/gdp 0.109 0.106 -0.070 -0.073 -0.372 -0.377
q 1.000 1.000 1.000 1.000 1.000 1.000
leverage ratio -0.057 -0.059 -0.142 -0.144 -0.286 -0.288
v 42.604 42.596 42.630 42.622 42.649 42.646
working capital 76.634 76.620 76.681 76.667 76.716 76.710

Standard deviation (in percent)
gdp 3.91 3.91 3.96 3.96 3.99 3.99
c 3.87 3.87 4.20 4.20 5.15 5.14
i 13.23 13.22 13.43 13.43 13.51 13.51
nx/gdp 2.90 2.89 3.02 3.01 3.53 3.52
k 4.43 4.44 4.54 4.55 4.65 4.65
b/gdp 19.10 18.92 20.73 20.55 30.28 30.04
q 3.18 3.18 3.23 3.23 3.24 3.23
leverage ratio 8.96 8.88 9.76 9.68 14.42 14.31
v 5.87 5.87 5.91 5.91 5.91 5.91
working capital 4.33 4.33 4.38 4.38 4.40 4.40

Correlation with GDP
gdp 1.000 1.000 1.000 1.000 1.000 1.000
c 0.842 0.844 0.836 0.839 0.773 0.776
i 0.641 0.642 0.640 0.640 0.640 0.640
nx/gdp -0.085 -0.088 -0.145 -0.148 -0.227 -0.230
k 0.758 0.758 0.763 0.763 0.767 0.767
b/gdp -0.169 -0.167 -0.072 -0.069 0.090 0.093
q 0.390 0.390 0.385 0.385 0.381 0.381
leverage ratio -0.165 -0.164 -0.060 -0.057 0.112 0.115
v 0.831 0.831 0.833 0.833 0.834 0.834
working capital 0.995 0.995 0.994 0.994 0.995 0.995

First-order autocorrelation
gdp 0.823 0.823 0.826 0.826 0.830 0.830
c 0.823 0.822 0.837 0.837 0.885 0.885
i 0.500 0.499 0.501 0.501 0.516 0.516
nx/gdp 0.602 0.600 0.607 0.604 0.711 0.709
k 0.961 0.961 0.962 0.962 0.964 0.964
b/gdp 0.989 0.988 0.991 0.991 0.997 0.997
q 0.447 0.447 0.446 0.446 0.460 0.460
leverage ratio 0.990 0.990 0.993 0.993 0.997 0.997
v 0.776 0.776 0.777 0.777 0.780 0.780
working capital 0.800 0.800 0.802 0.802 0.807 0.808

Prob. of Sudden Stops 2.90% 2.98% 1.34% 1.45% – –

Note: Columns (1), (3) and (5) are for the FiPIt algorithm. Columns (2), (4) and (6) are for the full time iteration method (FTI).

Table 6b
Sudden Stops model variations: collateral coefficient.

(c) Lower coll. coeff. κ = 0.15 (d) Higher coll. coeff. κ = 0.25 (e) RBC non-binding coll. coeff. κ ≥ 1

(1) (2) (3) (4) (5) (6)
FiPIt FTI FiPIt FTI FiPIt FTI

Bonds Euler equation
Max Log10 abs. Euler error -1.56 -1.53 -1.55 -1.53 -3.01 -3.01
At grid points (b,k, s) (1, 1, 3) (1, 1, 3) (1, 2, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3)
Mean Log10 abs. Euler error -6.13 -5.25 -6.50 -5.52 -6.93 -5.79

Capital Euler equation
Max Log10 abs. Euler error -6.68 -1.83 -6.68 -1.80 -6.69 -4.30
At grid points (b,k, s) (71, 1, 7) (1, 1, 7) (72, 1, 7) (1, 1, 7) (24, 1, 7) (2, 1, 3)
Mean Log10 abs. Euler error -7.07 -5.38 -7.05 -5.46 -7.10 -5.53

Grid size (#b,#k) (71, 30) (71, 30) (72, 30) (72, 30) (80, 30) (80, 30)

Seconds elapsed 1066 2668 657 1604 100 1808
Relative to FiPIt 1.0 2.5 1.0 2.4 1.0 18.1
Number of iterations 196 94 196 94 201 94

Note: Columns (1), (3) and (5) are for the FiPIt algorithm. Columns (2), (4) and (6) are for the full time iteration method (FTI).
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Table 7a
Sudden Stops model variations: labor elasticity & risk aversion.

(f) Higher labor coeff. ω = 2.5 (g) Higher risk aversion σ = 3

(1) (2) (3) (4)
FiPIt FTI FiPIt FTI

Mean
gdp 110.477 110.441 393.797 393.722
c 78.995 78.897 277.504 277.357
i 18.937 18.924 67.534 67.509
nx/gdp -0.007 -0.006 0.005 0.005
k 214.735 214.586 765.801 765.531
b/gdp 0.289 0.278 0.138 0.134
q 1.000 1.000 1.000 1.000
leverage ratio 0.027 0.023 -0.044 -0.045
v 11.960 11.956 42.639 42.630
working capital 21.514 21.507 76.697 76.682

Standard deviation (in percent)
gdp 3.33 3.33 3.97 3.98
c 6.31 6.24 4.35 4.35
i 13.11 13.11 13.46 13.46
nx/gdp 5.39 5.31 3.25 3.24
k 4.32 4.34 4.59 4.61
b/gdp 56.17 55.03 28.69 28.55
q 3.17 3.17 3.23 3.23
leverage ratio 26.48 25.94 13.55 13.49
v 5.40 5.41 5.91 5.92
working capital 3.76 3.77 4.39 4.40

Correlation with GDP
gdp 1.000 1.000 1.000 1.000
c 0.451 0.463 0.744 0.747
i 0.614 0.614 0.638 0.639
nx/gdp -0.077 -0.084 -0.059 -0.062
k 0.755 0.756 0.765 0.765
b/gdp -0.039 -0.034 -0.058 -0.054
q 0.366 0.365 0.381 0.381
leverage ratio -0.043 -0.037 -0.048 -0.044
v 0.797 0.797 0.834 0.834
working capital 0.992 0.992 0.995 0.995

First-order autocorrelation
gdp 0.820 0.821 0.828 0.828
c 0.941 0.939 0.894 0.894
i 0.489 0.489 0.506 0.506
nx/gdp 0.857 0.852 0.733 0.731
k 0.960 0.960 0.963 0.963
b/gdp 0.995 0.995 0.995 0.995
q 0.435 0.435 0.450 0.450
leverage ratio 0.995 0.995 0.996 0.996
v 0.768 0.769 0.779 0.779
working capital 0.793 0.794 0.804 0.805

Prob. of Sudden Stops 3.38% 3.66% 1.29% 1.35%

Note: Columns (1) and (3) are for the FiPIt algorithm. Columns (2) and (4) are for the full time 
iteration method (FTI).

method, and does not require interpolation of decision rules over irregular grids, as with the endogenous grids method. 
Analytic solutions are obtained for recursive equilibrium functions in each iteration of the algorithm, and standard bi-linear 
interpolation for obtaining these analytic solutions remains applicable.

The FiPIt algorithm can handle a large class of occasionally binding constraints, including constraints set to fixed values 
as well as constraints that depend on endogenous variables. If the constraints are such that equilibrium allocations and 
prices when the constraints bind must be solved jointly with their associated multipliers, FiPIt does need a root-finder in 
states in which the constraint bind, but for a large class of constraints the two can be solved separately and FiPIt does 
not require a non-linear solver anywhere. In contrast, the endogenous grid method requires a root finder whenever the 
constraint binds.

We documented the performance gains and accuracy of FiPIt by comparing the solutions it produces for a Sudden 
Stops model of a small open economy vis-a-vis solutions obtained with the time iteration method, and hybrid methods that 
combine fixed-point and time iteration techniques. In addition, we explored the robustness of our algorithm by documenting 
solutions for seven parameter variations, including an RBC model in which the constraint never binds. The algorithm was 
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Table 7b
Sudden Stops model variations: labor elasticity & risk aversion.

(f) Higher labor coeff. ω = 2.5 (g) Higher risk aversion σ = 3

(1) (2) (3) (4)
FiPIt FTI FiPIt FTI

Bonds Euler equation
Max Log10 abs. Euler error -1.49 -1.46 -1.66 -1.63
At grid points (b,k, s) (1, 1, 7) (1, 1, 7) (2, 1, 7) (2, 1, 7)
Mean Log10 abs. Euler error -6.20 -5.72 -6.56 -5.39

Capital Euler equation
Max Log10 abs. Euler error -6.12 -1.94 -7.08 -1.69
At grid points (b,k, s) (62, 1, 7) (1, 1, 7) (71, 1, 7) (1, 1, 7)
Mean Log10 abs. Euler error -6.41 -5.44 -7.44 -5.46

Grid size (#b,#k) (62, 30) (62, 30) (71, 30) (71, 30)

Seconds elapsed 283 1700 1108 3533
Relative to FiPIt 1.0 6.0 1.0 3.2
Number of iterations 163 98 246 119

Note: Columns (1) and (3) are for the FiPIt algorithm. Columns (2) and (4) are for the full time iteration 
method (FTI).

coded in Matlab and executed in a standard Windows laptop. In all cases, FiPIt produced results nearly identical to time 
iteration results with large gains in speed and comparable accuracy as measured by Euler equation errors. Time iteration 
solutions exceeded the execution time of the FiPIt solutions by factors of 2.0 to 18.1. The largest gains were obtained in 
cases in which FiPIt does not use root-finders anywhere, which include the RBC solution and a variation of the Sudden 
Stops model without working capital. In these cases, solving for allocations when the constraint binds does not require a 
non-linear solver. Time iteration took 18.1 and 13 times longer than FiPIt to solve the RBC model and the Sudden Stops 
model without working capital, respectively. For the baseline Sudden Stops model, which does need the solver to determine 
allocations when the constraint binds, time iteration took 2.5 times longer than FiPIt.

The FiPIt algorithm can be extended to other models with two endogenous states, since applying it requires mainly a 
fixed-point strategy to iterate on recursive functions using Euler equations. In this paper, FiPIt was applied to the Euler 
equation for bonds to solve for the bonds decision rule and to the Euler equation for capital to solve for the price of capital. 
The Tobin’s Q investment optimality condition was then used to determine the decision rule for capital. It is possible to 
re-arrange the solution in other ways that FiPIt may still accommodate, for example conjecturing the bonds and capital 
decision rules and using the two Euler equations to solve for their updates. Applying these principles to other models with 
two endogenous state variables so that they can be solved using FiPIt seems relatively straightforward. We provide a brief 
sketch of four examples (Huggett (1993), Mendoza (1995), Mendoza and Smith (2006) and Ludwig and Schön (2018)) in the 
online Appendix.

Performance gains using FiPIt are likely to be even larger if the algorithm is coded in languages that are more efficient 
than Matlab at handling high-dimensional, sequential loops and parallel optimization, such as Julia, Fortran or Python. The 
large gains in speed and simplicity of the algorithm also open up the possibility of exploring research topics such as Bayesian 
estimation of models of financial crisis driven by occasionally binding collateral constraints.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .red .2020 .01.001.
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