Appendix for

Natural Resources and Sovereign Risk in Emerging Economies: A Curse *and* a Blessing

Franz Hamann* Juan Camilo Mendez-Vizcaino[†] Enrique G. Mendoza[‡] Paulina Restrepo-Echavarria[§]

March 17, 2023

^{*}Banco de la Republica, fhamansa@banrep.gov.co

[†]Banco de la Republica, jmendevi@banrep.gov.co

[‡]University of Pennsylvania and NBER, egme@econ.upenn.edu

[§]Federal Reserve Bank of St. Louis, paulinares@me.com.

The views expressed in this document are those of the authors and not those of the Banco de la República and/or the Federal Reserve Bank of St Louis or The Federal Reserve System. We thank multiple seminar participants as well as Cristina Arellano, V.V. Chari, Mark L.J. Wright, and Juan Sanchez for helpful conversations. We would like to thank Maria Arias, Sergio Arango, Leonardo Barreto, Praew Grittayaphong, and Brian Reinbold for their excellent research assistance.

Contents

A	Data	3
B	Institutional Investor Index & Sovereign Risk Measures	5
	B.1 Moody's and Fitch Credit Ratings	5
	B.2 Emerging Markets Bond Index (EMBI)	9
C	III, Oil Production and External Debt	12
D	Panel Estimation Approach	18
	D.1 Estimation results	22
E	Oil Price Upswings and Downswings	24
F	Are all Oil Exporting Countries Price Takers?	25
	F.1 Data	26
	F.2 Results	26
G	Model Variants under Commitment	29
	G.1 Financial Autarky	32
	G.2 Exogenous q	33
	G.3 Endogenous q	35
H	Theoretical Results on Debt, Reserves & Country Risk	37
Ι	Dynamic Programming Problem under Financial Autarky	51
J	Business Cycle Moments by Country	62
K	VAR	73
	K.1 Reduced-Structural-IRFS	73

K.2	Reduced-IRFS							•										•	•	•	•				•		•	•	•					•	•					•	•		8	;1
-----	--------------	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	---	---	---	---	--	--	--	---	--	---	---	---	--	--	--	--	---	---	--	--	--	--	---	---	--	---	----

A Data

We collected data for GDP, consumption, trade balance, oil rents as a percentage of GDP, oil production (extraction), oil reserves, oil consumption, oil net exports, oil prices, total public debt, total external public debt, net foreign assets, default episodes, and country risk for the thirty largest oil-producing emerging economies in 2010. Those thirty countries are Saudi Arabia, Iran, Iraq, Kuwait, Venezuela, United Arab Emirates, Russian Federation, Libya, Nigeria, Kazakhstan, Qatar, China, Brazil, Algeria, Mexico, Angola, Azerbaijan, Ecuador, India, Oman, Sudan, Malaysia, Indonesia, Egypt, Yemen, Argentina, Syrian Arab Republic, Gabon, Colombia and Vietnam.

As an indicator of country risk we use the Institutional Investor Index (III from now on). The III country credit rating, is a measure of sovereign debt risk that is published biannually in the March and September issues of the Institutional Investor magazine. It is also commonly known as the Country Credit Survey. More specifically, the III is an indicator used to identify and measure country risk, where country risk refers to a collection of risks related to investing in a foreign country, including political risk, exchange rate risk, economic risk, sovereign risk and transfer risk. We have biannual data for the 1979-2014 period. The index is based on information provided by senior economists and sovereign-risk analysts at leading global banks and money management and securities firms. The respondents have graded each country on a scale of zero to 100, with 100 representing the least likelihood of default. Respondents responses are weighted according to their institutions' global exposure.

The data on oil reserves, oil production, oil net exports (thousands of barrels per day), and oil prices (Brent crude oil, USD per barrel) is from the US Energy Information Administration (EIA) from 1980 to 2014. For reserves, we used proved reserves. For oil prices we use the real price by deflating the Brent spot price FOB with the US CPI index for all urban consumers all items in US City average, seasonally adjusted (1982-1984=100).

GDP, Oil rents as a percentage of GDP, consumption, and the trade balance, are taken from the World Bank's World Development Indicators Database. Using oil rents we construct oil GDP by multiplying GDP (constant LCU) times oil rents as a percentage of GDP. Non-Oil GDP is obtained by subtracting oil GDP from total GDP. We construct gross oil output by multiplying the nominal price of oil (Brent crude oil, USD per barrel) times oil production (average number of barrels per year). When computing gross oil output as percentage of GDP, we use GDP in current USD.

Total public debt data comes from the International Monetary Fund's Historical Public Debt Database (HPDD). We have information, covering 1971-2015 period, for Gross Government Debt. Total public external debt data is taken from the World Bank Global Development Finance database (GDF), which has annual data for over 130 countries on total external debt by maturity and type of debtor (private non-guaranteed debt and publicly guaranteed debt). The data goes back as far as 1970 and is collected on the basis of public and publiclyguaranteed debt reported in the World Bank's Debtor Reporting System by each of the countries. This information is not available for Saudi Arabia, Iraq, Kuwait, United Arab Emirates, Libya, Qatar, Oman, Malaysia and Syria.

We use the updated and extended version of the "External Wealth of Nations" dataset, constructed by Lane & Milesi-Ferretti (2007) to obtain information on net foreign asset positions. It contains data for the 1970-2015 period and for 188 countries (including those in our sample), plus the euro area as a whole. Specifically, net foreign assets series are based on three alternative measures: i) the accumulated current account, adjusted to reflect the impact of capital transfers, valuation changes, capital gains and losses on equity and Foreign Direct Investment (FDI), and debt reduction and forgiveness; ii) the net external position, reported in the International Investment Positions section of the International Monetary Fund's Balance of Payments Statistics (BOPS), and net of gold holdings; iii) the sum of net equity and FDI positions (both adjusted for valuation effects), foreign exchange reserves and the difference between accumulated flows of "debt assets", and the stock of debt measured by the World Bank (or the OECD).

Default data is from Borensztein & Panizza (2009) for the 1979-2004 period. We include sovereign defaults on foreign currency bond debt and foreign currency bank debt. A sovereign default is defined as the failure to meet a principal or interest payment on the due date (or within the specified grace period) contained in the original terms of the debt issue, or an exchange offer of new debt that contains terms less favorable than the original issue. Such rescheduling agreements covering short and long term debt are considered defaults even where, for legal or regulatory reasons, creditors deem forced rollover of principal to be voluntary. We use the updated and extended version default data from Reinhart & Rogoff (2010) dataset for the 2005-2014 period. A default is defined as an external sovereign default crisis or a restructuring of external debt.

B Institutional Investor Index & Sovereign Risk Measures

In this section, we show that the Institutional Investor Index (III) is a robust measure of sovereign risk by showing that it is highly correlated with other measures of sovereign risk. We also explain how we use the III to chain the Emerging Markets Bond Index (EMBI) backwards to be able to use it to calculate the average and standard deviation of the spread used in Section 4.

B.1 Moody's and Fitch Credit Ratings

Credit ratings by agencies such as Moody's and Fitch are commonly used measures of sovereign risk. These agencies assign risk based on rating symbols. Tables B1 and B2 provide brief descriptions of what each symbol signifies about credit risk. Table B3 provides the date each agency first issued a credit risk rating to a given sovereign.

Rating	Description
Aaa	Obligations rated Aaa are judged to be the highest quality, subject to the lowest level of credit risk.
Aa	Obligations rated Aa are judged to be of high quality and are subject to very low credit risk.
А	Obligations rate A are judged to be upper-medium grade and are subject to low credit risk.
Baa	Obligations rated Baa are judged to be medium-grade and subject to moderate credit and as such may possess certain speculative characteristics.
Ва	Obligations rated Ba are judged to be speculative and are subject to substantial credit risk.
В	Obligations rated B are considered speculative and are subject to high credit risk.
Caa	Obligations rated Caa are judged to be speculative of poor standing and are subject to very high credit risk.
Ca	Obligations rated Ca are very highly speculative and are likely in, or very near, default with some prospect of principal and interest.
С	Obligations rated C are the lowest rated and are typically in default, with little prospect for recovery of principal or interest.

Table B1: Moody's Global Long-Term Rating Scale

Note: Moody's appends numerical modifiers 1, 2, and 3 to each generic rating classification from Aa through Caa. The modifier 1 indicates that the obligation ranks in the higher end of its generic rating category, the modifier 2 indicates a mid-range ranking, and the modifier 3 indicates a ranking in the lower end of that generic rating category.

Table B2: Fitch International Credit Rating Scale

Rating	Description
AAA	Highest credit quality. AAA ratings denote the lowest expectation of default risk. They are assigned only in cases of exceptionally strong capacity for payment of financial commitments. This capacity is highly unlikely to be adversely affected by foreseeable events.
АА	Very high credit quality. AA ratings denote expectations of very low default risk. They indicate very strong capacity for payment of financial commitments. This capacity is not significantly vulnerable to foreseeable events.
А	High credit quality. A ratings denote expectations of low default risk. The capacity for payment of financial commitments is consid- ered strong. This capacity may, nevertheless, be more vulnerable to adverse business or economic conditions than is the case for higher ratings.
BBB	Good credit quality. BBB ratings indicate that expectations of de- fault risk are currently low. The capacity for payment of financial commitments is considered adequate, but adverse business or eco- nomic conditions are more likely to impair this capacity.
BB	Speculative. BB ratings indicate an elevated vulnerability to default risk, particularly in the event of adverse changes in business or eco- nomic conditions over time; however, business or financial flexibility exists that supports the servicing of financial commitments.
В	rightly speculative. B ratings indicate that material default risk is present, but a limited margin of safety remains. Financial commit- ments are currently being met; however, capacity for continued pay- ment is vulnerable to deterioration in the business and economic en- vironment.
CCC	Substantial credit risk. Default is a real possibility.
CC	Very high levels of credit risk. Default of some kind appears probable. Near default. A default or default-like process has begun, or the issuer
С	is in standstill, or for a closed funding vehicle, payment capacity is irrevocably impaired.
RD	Restricted default.
D	D ratings indicate an issuer that in Fitch's opinion has entered into bankruptcy filings

Note: Within rating categories, Fitch may use modifiers. The modifiers "+" or "-" may be appended to a rating to denote relative status within major rating categories. Such suffixes are not added to AAA ratings and ratings below the CCC category.

Unlike the III that is updated each semester, credit rating changes can occur at any time for an individual sovereign. In order to merge credit ratings data with the III, we use the credit rating that has been assigned the longest to a sovereign during a particular semester and merge that rating with the respective semester III reading. Since the III is a continuous variable and credit rating are a discrete variable (i.e. factor variable over the ordinal ratings labels), we visualize their correlation with box plots.

Country	Moody's	Fitch			
Argentina	11/18/1986	5/28/1997			
Brazil	11/18/1986	12/1/1994			
China	5/18/1988	12/11/1997			
Colombia	8/4/1993	8/10/1994			
Ecuador	7/24/1997	11/8/2002			
Egypt	10/9/1996	8/19/1997			
Gabon		10/29/2007			
India	1/28/1988	3/8/2000			
Iran		5/10/2002			
Iraq		8/7/2015			
Kazakstan	11/11/1996	11/5/1996			
Kuwait	1/29/1996	12/20/1995			
Malaysia	1/18/1986	8/13/1998			
Mexico	12/18/1990	8/30/1995			
Oman	1/29/1996				
Qatar	1/29/1996	3/6/2015			
Russia	10/7/1996	10/7/1996			
Saudi Arabia	1/29/1996	11/24/2004			
Venezuela	12/29/1976	9/15/1997			

Table B3: Credit Agency Rating's First Issued Date

Box plots are used to show the overall dispersion of a continuous variable over groups. In our case, the y-axis is the continuous III, and the x-axis is the agency's credit rating ranks. The credit rating ranks are ordered along the x-axis from highest to lowest credit risk (from left to right). The box plots then graphs the quartiles of III observations over each credit risk rating. The horizontal line across the middle of the box is the median. The second quartile is the region from the median line to the bottom of the box, while the third quarter is the region from the median line to the top of the box. The bottom end of the lower whisker is the smallest value excluding outliers and the top end of the upper whisker is the largest value excluding outliers. Outliers are plotted as dots above and below the whisker of the box. Outliers above the upper whisker are 1.5 times greater than the third quartile while outliers below the lower whisker are 1.5 times lower than the first quartile. Figure B1 plots the III over Moody's credit risk ratings, and figure B2 plots the III over Fitch credit risk ratings.

Figure B1: Moody's Long-Term Sovereign Credit Ratings over the III

Figure B2: Fitch Long-Term Sovereign Credit Ratings over the III

We can see from the distributional characteristics of III over the Moody's and Fitch credit risk ratings that each sovereign's corresponding III measure tends to increase as its credit rating improves. This indicates that the III is correlated with credit ratings.

B.2 Emerging Markets Bond Index (EMBI)

The Emerging Market Bond Index (EMBI) is JP Morgan's index of dollar denominated bonds issued for various emerging economies. It is one of the most widely used benchmarks of emerging market sovereign debt. The index comprises of US dollar-denominated Brady bonds, loans, and Eurobonds that have a face value of \$500 million dollars or more and have a maturity greater than a year. The EMBI is quoted as a spread on sovereign debt over US treasuries, and the III is a measure of sovereign risk where 0 indicates high risk of default and 100 indicates low risk of default. Thus we expect to see these two move in opposite directions if the III is a good indicator of sovereign risk. In other words we expect the EMBI to rise as sovereign risk increases. Indeed we see in table B4 that the EMBI and III are negatively correlated, moving in the same direction to indicate sovereign risk.

Country	Correlation
Angola	-0.570
Argentina	-0.751
Azerbaijan	0.031
Brazil	-0.789
China	0.312
Colombia	-0.740
Ecuador	-0.442
Egypt	-0.642
Gabon	-0.667
India	-0.186
Indonesia	-0.167
Iraq	-0.163
Kazakhstan	-0.293
Malaysia	-0.434
Mexico	-0.723
Nigeria	-0.666
Russian Federation	-0.686
Venezuela	-0.629
Vietnam	0.146

Table B4: Correlation Between EMBI and III

Since the EMBI was introduced only in 1992, we have fewer observations of the EMBI

than we have for the III. Following Erb et al. (1996), we can use the fact that the EMBI and the III are correlated with each other to extend the EMBI backwards so that it starts in the same year as the III for country i.

We use the following equation to build the index for each country:

$$EMBI_t = \alpha_0 + \alpha_1 III_t + \epsilon_t \tag{B1}$$

Suppose we have observations of the *EMBI* for country *i* starting at time *t* through *T* where t < T. We estimate (B1) using observations *t* through *T* of the *EMBI* and *III* for country *i*. Table B5 reports the estimates for α_1 in (B1) for each country. We see that most country's estimate is negative and statistically significant. This implies that equation (B1) is an appropriate model to use to estimate values of the EMBI that are not available. We are then able to plug observation III_{t-1} into the estimated model to calculate the fitted value for $EMBI_{t-1}$. Now we re-estimate (B1) using observations t - 1 through *T* of the *EMBI* and *III*, and then plug observation III_{t-2} into the newly estimated model to calculate the fitted value for $EMBI_{t-2}$. We continue this back-substitution until we have exhausted all observations of the III for country i. Our final output is an index of the EMBI re-constructed to the same time as the first observation of the III for country i. Figures of our reconstructed EMBI indices are available upon request.

Country	Slope Coefficient	Standard Error
Angola	-61.18	35.98
Argentina	-156.10^{***}	20.91
Azerbaijan	1.44	17.76
Brazil	-21.82^{***}	2.59
China	1.75^{**}	0.81
Colombia	-14.98^{***}	2.24
Ecuador	-84.03^{***}	26.61
Egypt	-14.14^{***}	3.19
Gabon	-37.46^{***}	10.79
India	-6.00	12.96
Indonesia	-2.41	2.95
Iraq	-5.01	6.96
Kazakhstan	-18.56	15.15
Malaysia	-7.38^{***}	2.49
Mexico	-17.11^{***}	2.49
Nigeria	-42.23^{***}	7.88
Russian Federation	-41.69^{***}	7.47
Venezuela	-74.32^{***}	13.99
Vietnam	6.89	10.43

Table B5: α_1 Estimates on Observed Values of the EMBI

*** p<0.01, ** p<0.05, * p<0.1

C III, Oil Production and External Debt

Figure C1 plots the relationship between the III and oil production value to GDP ratio, for each country, over the period 1979-2010. One feature stands out from Figure C1: when oil production value to GDP ratio is high, the country risk index tends to improve. Note that there are countries where the correlation is not significant, such as Iran, United Kingdom, Egypt or Gabon.

Figure C1: Institutional Investor Index (X-Axis) and oil production value to GDP (%, Y-Axis).

Figure C2 presents the III versus oil production (in billion barrels per year).

Figure C2: Institutional Investor Index (X-Axis) and oil production (billion barrels per year, Y-Axis).

In this figure, absolute value of correlation coefficients greater than 0.5 are displayed in red. As we can see, there is not a clear pattern, since there are some countries for which the relationship is clearly positive, while for others it is negative or zero. This suggests that oil price is the "main driving force" behind changes in the country risk index (and not oil production). In Figure C3 we document the association between III and the oil production growth rate.

Figure C3: Institutional Investor Index (X-Axis) and oil production growth rate (%, Y-Axis).

In this case, correlation coefficients lower than -0.5 are displayed in red. The results point in the direction that there is not any association between these two variables, although a negative relationship is observed for Sudan and Vietnam. Additionally, Figure C4 shows the relationship between the III and total public external debt to GDP ratio.

Figure C4: Institutional Investor Index (X-Axis) and total external public debt to GDP (%, Y-Axis).

Note that for most countries, correlation coefficients are displayed in red, which means that these are lower than -0.5. As we can see, III goes down when total public external debt increases. Additionally, Figure C5 shows the association between total external public debt to GDP ratio and oil production value to GDP ratio.

Figure C5: Total external public debt to GDP (%, X-Axis) and oil production value to GDP (%, Y-Axis).

As we can see, for 9 countries there is a negative correlation, which implies than when oil production value to GDP is high, total public external debt tends to be low. Nevertheless, such a contention is not reinforced by the rest of countries in the sample, since no significance is observed. Moreover, in the case of Egypt, the estimated coefficient shows almost a positive and statistically strong effect.

Moreover, Figure C6 plots the average III against average oil production value to GDP: In this case, we compute a low correlation coefficient (-0.187). The negative trend indicates that countries with high oil production value to GDP over time show a high country risk (or a low average III). It is important to mention that average oil production value to GDP may be low because historical GDP is very high when compared with the historical oil production value, such as in USA or Norway. Furthermore, this negative relationship may also be driven by exceptional cases such as Libya or Iraq, which have average oil production value to GDP of about 67 and 39 percent, and average III of about 41 and 17, respectively.

Figure C6: Average Institutional Investor Index (X-Axis) and average oil production value to GDP (Y-Axis): 1979-2010.

D Panel Estimation Approach

Before proceeding to dynamic panel data models, we need to verify that all variables are integrated of the same order. In doing so, we have used the test of the panel unit root of Im et al. (2003) IPS henceforth), which is based on averaging individual unit root test statistics for panels. Specifically, they proposed a test based on the average of augmented Dickey-Fuller statistics (ADF henceforth) computed for each group in the panel. In accordance with some survey on panel unit root tests (such as those discussed in Banerjee (1999)), this test is less restrictive and more powerful than others that do not allow for heterogeneity in the autoregressive coefficient. IPS test permit solving serial correlation problem by assuming heterogeneity between units (in this case, countries) in a dynamic panel framework, as considered here. The basic equation of IPS test is as follows:

$$\Delta y_{it} = \alpha_i + \beta_i y_{it-1} + \sum_{j=1}^p \phi_{ij} \Delta y_{it-j} + \epsilon_{it}$$
(D1)

for i = 1, 2, ..., N and t = 1, 2, ..., T, where N refers to the number of countries in the panel and T refers to the number of observations over time. In this case, y_i stands for each variable under consideration in our model (for example, III, oil GDP or non-oil GDP), α_i is the individual fixed effect and p is the maximum number of lags included in the test. The null hypothesis then becomes $\beta_i = 0$ for all i, against the alternative hypothesis, which is that $\beta_i < 0$ for some $i = 1, ..., N_1$ and $\beta_i = 0$ for $i = N_1 + 1, ..., N$, where N_1 denote the number of stationary panels. Therefore, IPS statistic can be written as follows:

$$\bar{t} = \frac{1}{N} \sum_{i=1}^{N} t_i^{ADF} \tag{D2}$$

where t_i^{ADF} is the ADF t-statistic for country *i*, taking into account the country specific ADF regression, given by (D1). The \bar{t} statistic has been shown to be normally distributed under H_0 . Table D1 reports the outcome for the global sample of this test.

As we can see, each variable is integrated of order one. Once the order of stationary has been defined, we estimated a country risk equation on the basis of cross-country panel data. In particular, we focus on three estimation methods which are consistent when both T and N are large. At one extreme, the usual practice is either to estimate N separate regressions

	Lev	els	Log	gs
	<i>t</i> -statistic	<i>P</i> -value	<i>t</i> -statistic	<i>P</i> -value
Inst. Inv.	0.280	0.610	0.293	0.615
Δ Inst. Inv.	-11.629	0.000	-11.645	0.000
Oil GDP	5.286	1.000	0.680	0.752
Δ Oil GDP	-11.972	0.000	-13.776	0.000
Non-oil GDP	14.801	1.000	2.247	0.988
Δ Non-oil GDP	-7.413	0.000	-10.345	0.000
Oil Reserves	4.376	1.000	2.404	0.992
Δ Oil Reserves	-13.954	0.000	-14.352	0.000
Ext. pub. debt to GDP	1.113	0.867	3.727	1.000
Δ Ext. pub. debt to GDP	-12.196	0.000	-11.045	0.000
NFA	0.117	0.546	•	
Δ NFA	-9.364	0.000	•	

Table D1: Im et al. (2003) panel unit root test outcome: 1979-2010

Note: When computing NFA outcome, we excluded Iraq because of data limitations.

and compute the mean of the estimated coefficients across countries, which is called the Mean Group (MG) estimator. Pesaran & Smith (1995) show that the MG estimator will produce consistent estimates of the average of the parameters, but ignores the fact that certain parameters are the same across countries.

At the other extreme are the traditional pooled estimators (such as dynamic fixed effects estimators), where the intercepts are allow to differ across countries while all other coefficients and error variances are constrained to be the same. In this case, the model controls for all time-invariant differences between countries, so the estimated coefficient cannot be biased because of omitted time-invariant characteristics. An intermediate technique is the Pooled Mean Group (PMG) estimator, proposed by Pesaran et al. (1999), which relies on a combination of pooling and averaging of coefficients, allowing the intercepts, short-run coefficients and error variances to differ freely across countries, but the long-run coefficients are constrained to be the same.

Therefore, for the implementation of these methods we consider the following model:

$$III_{it} = \theta_{0i} + \theta_{1i} OilGDP_{it} + \theta_{2i} NonOilGDP_{it} + \theta_{3i} OilR_{it} + \theta_{4i} X_{it} + \theta_{5i} Default_{it} + \mu_i + \epsilon_{it}$$
(D3)

Again, each observation is subscripted for the country *i* and the year *t*. In this case, $X \in \{ExtPubD, OilDisc, NFA\}$. The variable *III* is the log of Institutional Investor's country credit ratings, OilGDP is the log of oil GDP, NonOilGDP is the log of non-oil GDP, OilR is the log of oil reserves stock, ExtPubD is the external public debt to GDP ratio, OilDisc is the log of oil discoveries, NFA corresponds to net foreign assets to GDP ratio, and Default is a dummy variable that the country is in default. Additionally, μ_i is a set of country fixed effects (such as geographical or institutional factors) and ϵ_{it} is the idiosyncratic error term.

Now, with a maximum lag of one for all variables except *Default*, we construct the autorregresive distributive lag (ARDL) (1,1,1,1,1,0) dynamic panel specification of (D3):

$$III_{it} = \lambda_i III_{i,t-1} + \delta_{10i} OilGDP_{it} + \delta_{11i} OilGDP_{i,t-1} + \delta_{20i} NonOilGDP_{it} + \delta_{21i} NonOilGDP_{i,t-1} + \delta_{30i} OilR_{it} + \delta_{31i} OilR_{i,t-1} + \delta_{40i} X_{it} + \delta_{41i} X_{i,t-1} + \theta_{5i} Default_{it} + \mu_i + \epsilon_{it}$$

$$(D4)$$

Then, the error correction equation of (D4) is:

$$\Delta III_{it} = \phi_i \left(III_{i,t-1} - \hat{\theta_{0i}} - \hat{\theta_{1i}}OilGDP_{it} - \hat{\theta_{2i}}NonOilGDP_{it} - \hat{\theta_{3i}}OilR_{it} - \hat{\theta_{4i}}X_{it} - \hat{\theta_{5i}}Default_{it} \right) - \delta_{11i}\Delta OilGDP_{it} - \delta_{21i}\Delta NonOilGDP_{it} - \delta_{31i}\Delta OilR_{it} - \delta_{41i}\Delta X_{it} + \epsilon_{it} \quad (D5)$$

where

$$\hat{\theta_{0i}} = \frac{\mu_i}{1 - \lambda_i}; \hat{\theta_{1i}} = \frac{\delta_{10i} + \delta_{11i}}{1 - \lambda_i}; \hat{\theta_{2i}} = \frac{\delta_{20i} + \delta_{21i}}{1 - \lambda_i}$$
$$\hat{\theta_{3i}} = \frac{\delta_{30i} + \delta_{31i}}{1 - \lambda_i}; \hat{\theta_{4i}} = \frac{\delta_{40i} + \delta_{41i}}{1 - \lambda_i}; \hat{\theta_{5i}} = \frac{\theta_{5i}}{1 - \lambda_i}; \phi_i = -(1 - \lambda_i)$$

In this case, ϕ_i is the error correction speed of adjustment parameter, and we would expect ϕ_i to be negative if the variables exhibit a return to long-run equilibrium¹.

¹Replacing $\hat{\theta}_i$ -parameters and ϕ_i in equation (D3) we get:

$$\Delta III_{it} = -(1-\lambda_i) \Big(III_{i,t-1} - \frac{\mu_i}{1-\lambda_i} - \frac{\delta_{10i} + \delta_{11i}}{1-\lambda_i} OilGDP_{it} - \frac{\delta_{20i} + \delta_{21i}}{1-\lambda_i} NonOilGDP_{it} - \frac{\delta_{30i} + \delta_{31i}}{1-\lambda_i} OilR_{it} - \frac{\delta_{40i} + \delta_{41i}}{1-\lambda_i} X_{it} - \frac{\theta_{5i}}{1-\lambda_i} Default_{it} \Big) - \delta_{11i} \Delta OilGDP_{it} - \delta_{21i} \Delta NonOilGDP_{it} - \delta_{31i} \Delta OilR_{it} - \delta_{41i} \Delta X_{it} + \epsilon_{it} \Big) - \delta_{11i} \Delta OilGDP_{it} - \delta_{21i} \Delta NonOilGDP_{it} - \delta_{31i} \Delta OilR_{it} - \delta_{41i} \Delta X_{it} + \epsilon_{it} \Big) - \delta_{11i} \Delta OilGDP_{it} - \delta_{21i} \Delta NonOilGDP_{it} - \delta_{31i} \Delta OilR_{it} - \delta_{41i} \Delta X_{it} + \epsilon_{it} \Big)$$

Removing similar terms, the above expression is as follows:

$$\Delta III_{it} = -(1-\lambda_i)III_{i,t-1} + \mu_i + (\delta_{10i} + \delta_{11i})OilGDP_{it} + (\delta_{20i} + \delta_{21i})NonOilGDP_{it} + (\delta_{30i} + \delta_{31i})OilR_{it} + (\delta_{40i} + \delta_{41i})X_{it} + \theta_{5i}Default_{it} - \delta_{11i}\Delta OilGDP_{it} - \delta_{21i}\Delta NonOilGDP_{it} - \delta_{31i}\Delta OilR_{it} - \delta_{41i}\Delta X_{it} + \epsilon_{it}$$

Rewriting:

$$\begin{split} III_{it} - III_{i,t-1} &= -(1 - \lambda_i)III_{i,t-1} + \mu_i + (\delta_{10i} + \delta_{11i})OilGDP_{it} + (\delta_{20i} + \delta_{21i})NonOilGDP_{it} + (\delta_{30i} + \delta_{31i})OilR_{it} \\ &+ (\delta_{40i} + \delta_{41i})X_{it} - \delta_{11i}(OilGDP_{it} - OilGDP_{i,t-1}) - \delta_{21i}(NonOilGDP_{it} - NonOilGDP_{i,t-1}) \\ &- \delta_{31i}(OilR_{it} - OilR_{i,t-1}) - \delta_{41i}(X_{it} - X_{i,t-1}) + \theta_{5i}Default_{it} + \epsilon_{it} \end{split}$$

Again, simplifying this equality we obtain:

$$\begin{split} III_{it} &= \lambda_i III_{i,t-1} + \delta_{10i} OilGDP_{it} + \delta_{11i} OilGDP_{i,t-1} + \delta_{20i} NonOilGDP_{it} + \\ &\delta_{21i} NonOilGDP_{i,t-1} + \delta_{30i} OilR_{it} + \delta_{31i} OilR_{i,t-1} + \delta_{40i} X_{it} + \delta_{41i} X_{i,t-1} + \theta_{5i} Default_{it} + \mu_i + \epsilon_{it} \\ \end{split}$$

Note that this expression is equivalent to (D4). For a long-run relationship to exist, we require that $\phi \neq 0$.

	Mod	el (1)	Mod	el (2)	Model (3)				
	χ^2 -stat	P-value	χ^2 -stat	P-value	χ^2 -stat	P-value			
MG vs. DFE	0.02	1.000	0.01	1.000	0.06	1.000			
PMG vs. DFE	0.03	1.000	0.03	1.000	0.03	1.000			
MG vs. PMG	4.42	0.491	5.05	0.537	8.99	0.174			

Table D2: Hausman test outcome: 1979-2010

D.1 Estimation results

In this subsection we estimate the PMG, MG and DFE estimators for model (D5). In order to obtain reliable estimators and seeking to maintain a large data sample, we include information for China, India, and Brazil since these countries have large proven oil reserves, although these have not been oil net exporters in the time interval considered here. When deciding about model selection, we apply the Hausman test to see whether there are significant differences among these three estimators. The null of this test is that the difference between DFE and MG, DFE and PMG or PMG and MG is not significant. Consider, for example, the test between DFE and PMG. If the null is not rejected, the DFE estimator is recommended since it is efficient. The alternative is that there is a significant difference between PMG and DFE, and the null is rejected. Specifically, the Hausman statistic is:

$$H = (\beta_{DFE} - \beta_{PMG})' [\operatorname{var}(\beta_{DFE}) - \operatorname{var}(\beta_{PMG})]^{-1} (\beta_{DFE} - \beta_{PMG}) \sim \chi^2$$

where β_j is the vector of coefficients and $var(\beta_j)$ is the covariance matrix of β_j , estimated using the *j*-technique, for *j* =DFE, PMG. Under the null hypothesis, *H* has asymptotically the χ^2 distribution. Table D2 reports the results of Hausman test, in which Model (1) corresponds to equation (D5), excluding *NFA* from X_i , while Model (2) excludes *Default*. Model (3) includes all variables in X_i into the regressors.

Under the current specification, the hypothesis that the country risk equation (equation (D5)) is adequately modeled by a PMG or MG model is resoundingly rejected. In general, when considering Model (1) the results in table D2 suggest that it is not possible to reject the null hypothesis of the homogeneity restriction on regressors (in the short and long run), since P-values are both 1, which indicates that DFE is more efficient estimator than MG and

PMG, respectively. Notice that this conclusion holds for Model (2) and Model (3), because P-values associated to these tests are 1. Because of this, we choose to employ the DFE estimator.

The results for the unbalanced panel are found in Section 2 of the paper, and for robustness purposes Table D3 shows the results for the balanced panel.

Table D3: BALANCED PANEL- Dynamic Fixed Effects Regression Results for Institutional Investor Index

	ΔΙ	nst. Investor In	dex
	Model (1)	Model (2)	Model (3)
Convergence Coefficient			
Inst. Investor Index (-1)	-0.233***	-0.234***	-0.236***
	(0.032)	(0.032)	(0.032)
Short-Run Coefficients			
Δ Oil Production	0.012	0.011	0.019
	(0.032)	(0.031)	(0.031)
Δ Non-Oil GDP	0.112	0.071	0.061
	(0.075)	(0.076)	(0.075)
Δ Oil Reserves	0.028	0.027	0.025
	(0.024)	(0.023)	(0.023)
Δ Ext. pub. debt to GDP	-0.082	-0.220**	-0.238***
	(0.073)	(0.091)	(0.090)
Δ Oil Discoveries	-0.003	-0.002	-0.002
	(0.004)	(0.004)	(0.004)
Δ NFA		-0.193***	-0.187***
		(0.056)	(0.055)
Long-Run Coefficients			
Oil Production	0.217**	0.256***	0.250***
	(0.085)	(0.085)	(0.083)
Non-Oil GDP	0.529***	0.480***	0.495***
	(0.174)	(0.172)	(0.169)
Oil Reserves	-0.217***	-0.195***	-0.196***
	(0.060)	(0.061)	(0.060)
Ext. pub. debt to GDP	-1.024***	-1.436***	-1.205***
	(0.217)	(0.275)	(0.274)
Default	-0.225**		-0.213**
	(0.091)		(0.088)
Oil Discoveries	0.026	0.021	0.022
	(0.024)	(0.024)	(0.023)
NFA		-0.067	-0.082
		(0.148)	(0.146)
Constant	-2.577**	-2.219*	-2.355**
	(1.218)	(1.205)	(1.194)

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

E Oil Price Upswings and Downswings

Dowr	nswings	Upswings							
Period	Number of Months	Period	Number of Months						
NOV 75 - OCT 78	36	NOV 78 - JAN 81	27						
FEB 81 - JUL 86	66	AUG 86 - JUL 87	12						
AUG 87 - NOV 88	16	DEC 88 - OCT 90	23						
NOV 90 - DEC 93	38	JAN 94 - OCT 96	34						
NOV 96 - DEC 98	26	JAN 99 - SEP 00	21						
OCT 00 - DEC 01	15	JAN 02 - JUL 08	79						
AUG 08 - MAY 10	22								
TOTAL	219	TOTAL	196						

Table E1: Oil Price Upswings and Downswings

Figure E1 provides a complementary view of the association between oil-price movements and macroeconomic fluctuations to that provided by business cyce moments. It shows the differential performance of macro variables across oil price upswings and downswings. To construct this figure we divided our panel dataset into two groups, one for all years in which oil prices rose (oil-price upswings) and one for all years in which they fell (oil-price downswings). Table E1 shows how each year in the time-series corresponds to a downswing or an upswing. We then averaged the changes in the different macroeconomic variables over the upswings and downswings and provide in Figure E1 plots of the average change in each macro variable over the upswings and downswings of oil prices.

Oil price upswings are associated with higher growth in GDP and oil production, trade balance improvement, and lower sovereign risk (higher III). Likewise, oil price downswings are associated with lower growth in oil extraction and GDP, trade balance deterioration, and higher sovereign risk.

Figure E1: Oil Price Swings and Macro Performance

F Are all Oil Exporting Countries Price Takers?

This appendix examines whether the countries in our sample are price takers in the world market of oil.² We examine causality between a country's extraction and oil prices using two strategies, both in a bivariate context. First, we test on the levels, using a modified version of the Granger causality test proposed by Toda & Yamamoto (1995). Second, we test causality using the Granger test on the first differences of both series.

For the causality test a modified Wald test (MWALD) is used as proposed by Toda & Yamamoto (1995) that avoids the problems associated with the ordinary Granger causality test by ignoring any possible non-stationary or cointegration between series when testing for causality. ³The Toda & Yamamoto (1995) approach fits a standard vector autoregressive

²We are grateful to Norberto Rodriguez-NiÒo from the Banco de la República de Colombia for his assistance with this analysis.

³As quoted from Wolde-Rufael (2005) "... given that unit root and cointegration tests have low power against

model in the levels of the variables (rather than the first differences, as the case with Granger causality tests) thereby minimizing the risks associated with the possibility of wrongly identifying the order of integration of the series.

The basic idea of this approach is to artificially augment our bivariate VAR or order k, by the maximal order of integration, one in this case. Once this is done, a (k+1)-th order of VAR is estimated and the coefficients of the last one lagged vector is ignored. The application of the Toda & Yamamoto (1995) procedure ensures that the usual Wald test statistic for Granger causality has the standard asymptotic distribution hence valid inference can be done.

Lag length for VAR are chosen based on information criteria (Akaike, Schwarz and Hanna-Quinn), when there is not agreement between those indicators, pormanteau (bivariate Lung-Box statistic) test is used to decide. This statistics joint with its P-values are contained and third and four columns of tables F1 and F2.

F.1 Data

We used monthly data of crude oil for the 20 major exporting countries; the sample period cover from January 2002 to November 2016. The data source is Joint Oil Data Initiative (JODI) Database (available at http://www.jodidb.org/TableViewer/tableView.aspx). For Colombia, the figures have source Banco de la Rep⁻blica and are based on DIAN-DANE. Units are thousand barrels per period. Exports the top 20 countries accounted for approximately 96% of reported crude oil exports at the JODI base in 2015.

F.2 Results

Unit root test results (not presented here but available up to request) show that all the variables are integrated of order one.

Table F1 shows the results for the TY test. It is worth to remain that the null hypothesis in this as next table is that of non-causality. Table F2 presents results for Granger causality test, for the series in differences. Results in both tables coincide signaling oil exports from

the alternative, these tests can be misplaced and can suffer from pre-testing bias (see Pesaran et al. (2001); Toda & Yamamoto (1995)). Moreover, as demonstrated by Toda & Yamamoto (1995), the conventional F-statistic used to test for Granger causality may not be valid as the test does not have a standard distribution when the time series data are integrated or cointegrated."

United Arab Emirates, Oman, Brazil and Azerbaijan causing (in Granger sense) oil prices. TY shows that exports from Canada also G-cause prices, and model in differences indicated that Kuwait G-cause oil prices.

Coursehaus	Tee	Lun	g-Box	Jarque	e-Bera	Taro-Yamamoto				
Country	Lag	Q-Stat	P-Value	Stat	P-Value	Statistic	P-Value	Decision		
Saudi Arabia	2	26.75	0.32	164.12	0.00	1.47	0.48			
Russia	2	30.14	0.18	75.23	0.00	1.90	0.39			
Iraq	2	28.48	0.24	50.22	0.00	1.28	0.53			
U. Arab Emir.	2	29.43	0.20	31.25	0.00	17.32	0.00	Cause		
Canada	2	26.31	0.34	70.50	0.00	7.30	0.03	Cause		
Nigeria	2	17.33	0.83	13.42	0.01	0.99	0.61			
Kuwait	2	21.64	0.60	23.36	0.00	1.20	0.55			
Angola	4	23.88	0.09	17.30	0.00	7.86	0.10			
Venezuela	2	23.61	0.48	46.25	0.00	5.17	0.08			
Iran	2	27.83	0.27	66.94	0.00	5.00	0.08			
Mexico	2	21.95	0.58	14.50	0.01	4.19	0.12			
Norway	3	18.43	0.56	6.47	0.17	3.45	0.33			
Oman	2	18.92	0.76	4320.42	0.00	9.10	0.01	Cause		
Brasil	7	3.17	0.53	24.80	0.00	16.69	0.02	Cause		
Azerbaijan	2	20.98	0.64	1171.78	0.00	13.11	0.00	Cause		
Uni. Kingdom	2	28.88	0.22	22.93	0.00	0.10	0.95			
Algeria	2	29.15	0.21	12.62	0.01	4.89	0.09			
Qatar	2	20.04	0.69	127.50	0.00	1.84	0.40			
USA	3	21.69	0.36	332.23	0.00	1.19	0.76			
Colombia	3	25.90	0.17	13.44	0.01	0.81	0.85			

Table F1: Taro-Yamamoto test results for series in levels

Country	Lag	Lung-Box		Jarque-Bera		Taro-Yamamoto		
		Q-Stat	P-Value	Stat	P-Value	Statistic	P-Value	Decision
Saudi Arabia	7	6.69	0.15	49.06	0.00	10.77	0.15	
Russia	6	14.45	0.07	132.17	0.00	7.56	0.27	
Iraq	2	34.37	0.08	6.76	0.15	3.41	0.18	
U. Arab Emir	6	9.38	0.31	71.06	0.00	18.78	0.00	Cause
Canada	6	12.82	0.12	5.86	0.21	7.58	0.27	
Nigeria	1	37.67	0.10	25.24	0.00	0.33	0.57	
Kuwait	6	6.57	0.58	14.00	0.01	13.63	0.03	Cause
Angola	6	8.01	0.43	342.62	0.00	10.84	0.09	
Venezuela	1	26.57	0.54	16.27	0.00	2.14	0.14	
Iran	2	34.39	0.08	95.29	0.00	2.96	0.23	
Mexico	2	28.31	0.25	32.99	0.00	2.65	0.27	
Norway	2	32.64	0.11	20.19	0.00	3.26	0.20	
Oman	6	10.13	0.26	13053.21	0.00	26.42	0.00	Cause
Brazil	7	8.94	0.06	265.77	0.00	18.39	0.01	Cause
Azerbaijan	2	32.15	0.12	1029.34	0.00	12.68	0.00	Cause
Uni. Kingdom	6	14.49	0.07	27.07	0.00	5.27	0.51	
Algeria	2	33.76	0.09	7.44	0.11	3.82	0.15	
Qatar	6	7.20	0.51	87.55	0.00	12.24	0.06	
USA	3	35.85	0.02	33.07	0.00	2.56	0.46	
Colombia	2	29.64	0.20	18.90	0.00	1.43	0.49	

Table F2: Granger tets results for series in diferences

G Model Variants under Commitment

We analyze here three variants of the model under the assumption that the planner is committed to repay. The planner's optimization problem is characterized in a generic form that allows us to capture cases in which the planner accesses world financial markets facing with either a given bond pricing function that depends on the planner's debt and reserves) or a constant world real interest rate, and a case in which the planner operates under financial autarky. The latter coincides with the solution of the default payoff if default triggers permanent exclusion from credit markets.

The generic planner's problem in sequential form is the following:

$$\max_{c_t, x_t, b_{t+1}, s_{t+1}} E_t \sum_{t=0}^{\infty} \beta^t u\left(c_t\right) \tag{G1}$$

s.t.

$$c_t + e(x_t, s_t) = y_t + p_t x_t - q(s_{t+1}, b_{t+1}) b_{t+1} + b_t$$
(G2)

$$s_{t+1} = s_t - x_t + \kappa \tag{G3}$$

$$x_t \ge 0 \tag{G4}$$

$$x_t \le s_t + \kappa. \tag{G5}$$

The first constraint is the resource constraint, where $q(s_{t+1}, b_{t+1})$ is an ad-hoc pricing function of bonds that is assumed to be the equilibrium pricing function of the model with default and satisfies the following assumptions: $q(\cdot)$ is continuously differentiable, strictly concave and increasing in b_{t+1} for $b_{t+1} \in [-\overline{b}(s_{t+1}), 0]$, where $-\overline{b}(s_{t+1})$ is the threshold debt above which default is certain for a given s_{t+1} (i.e., $D(\overline{b}(s_{t+1}), s_{t+1})$ includes all (y_{t+1}, p_{t+1}) pairs, which exists because of Proposition 1), with $q(\cdot) = q^*$ for $b_{t+1} \ge 0$ and $q(\cdot) = 0$ for $b_{t+1} \le \overline{b}(s_{t+1})$. $q(\cdot)$ is also increasing and concave in s_{t+1} for $s_{t+1} \in [\overline{s}(b_{t+1}), s_t + \kappa]$, where $\overline{s}(b_{t+1}) = max[s_t + \kappa - s_t(p_t/\psi)^{(1/\gamma)}, \overline{s}(b_{t+1})], s_t + \kappa - s_t(p_t/\psi)^{(1/\gamma)}$ is the minimum s_{t+1} needed for profits to be non-negative, and $\overline{s}(b_{t+1})$ is the threshold oil reserves below which default is certain for a given b_{t+1} (i.e., $D(b_{t+1}, \overline{s}(b_{t+1}))$ includes all (y_{t+1}, p_{t+1}) pairs, which exists because of $\overline{s}(b_{t+1})$ is the threshold oil reserves below which default is certain for a given b_{t+1} (i.e., $D(b_{t+1}, \overline{s}(b_{t+1}))$ includes all (y_{t+1}, p_{t+1}) pairs, which exists because of Proposition 4). We also assume that $\overline{b}(s_{t+1})$ is increasing in s_{t+1} and $\overline{s}(b_{t+1})$ is increasing in b_{t+1} . In addition, we assume shocks are i.i.d so that $q(\cdot)$ is independent of p_t and y_t . The second constraint is the law of motion of reserves. The third and fourth constraints are the feasibility boundaries of oil extraction.

The first-order conditions are:

$$\lambda_t = u'(c_t) \tag{G6}$$

$$\lambda_t \left[p_t - e_x \left(x_t, s_t \right) \right] + \psi_t^l = \mu_t + \psi_t^u \tag{G7}$$

$$u'(c_{t}) \left[p_{t} - e_{x} \left(x_{t}, s_{t} \right) + q_{s} \left(s_{t+1}, b_{t+1} \right) b_{t+1} \right] + \psi_{t}^{l} - \psi_{t}^{u} = \beta E_{t} \left[u'(c_{t+1}) \left(p_{t+1} - e_{x} \left(x_{t+1}, s_{t+1} \right) - e_{s} \left(x_{t+1}, s_{t+1} \right) \right) + \psi_{t+1}^{l} \right]$$
(G8)

$$u'(c_t)\left[q\left(s_{t+1}, b_{t+1}\right) + q_b\left(s_{t+1}, b_{t+1}\right)b_{t+1}\right] = \beta E_t\left[u'(c_{t+1})\right].$$
(G9)

where λ_t is multiplier on the resource constraint, μ_t is the multiplier on the law of motion of reserves, and ψ_t^h and ψ_t^l are the multipliers on the upper and lower feasibility constraints on oil extraction.

Defining the planner's return on bonds as $R^b(s_{t+1}, b_{t+1}) \equiv \frac{1}{q(t+1)+q_b(t+1)b_{t+1}}$, which is decreasing in b_{t+1} (i.e. the planner's real interest rate increases with debt) because of the assumed properties of $q(\cdot)$, the Euler equation for bonds (eq (G9)) implies:⁴

$$u'(c_t) = R^b(s_{t+1}, b_{t+1}) \beta E_t \left[u'(c_{t+1}) \right].$$
(G10)

Notice that, as implied by the definition of R^b , in evaluating the marginal benefit of borrowing in the right-hand-side of this expression, the planner internalizes that borrowing more (i.e. making b_{t+1} "more negative") increases the cost of borrowing.

The rate of return on oil extraction is defined as $R_{t+1}^O \equiv \frac{q_{t+1}^O + d_{t+1}^O}{q_t^O}$, where q_t^O is the asset price of oil defined as $q_t^O \equiv p_t - e_x(t) + \Delta \tilde{\psi}_t$ (where $\Delta \tilde{\psi}_t \equiv \tilde{\psi}_{t+1}^l - \tilde{\psi}_{t+1}^h$ and $\tilde{\psi}_t^i = \psi_t^i / u'(t)$ for i = h, l) and d_{t+1}^O is the dividend from oil extraction at t+1 defined as $d_{t+1}^O \equiv -e_s(t+1) + \tilde{\psi}_{t+1}^h$. Notice that $d_{t+1}^O > 0$ because $e_s(t+1) < 0$ and $\tilde{\psi}_{t+1}^h \ge 0$. The Euler equation for oil reserves (eq. (G8)) can then be rewritten as:

$$u'(c_t) \left[1 + \frac{q_s(s_{t+1}, b_{t+1}) b_{t+1}}{q_t^O} \right] = \beta E_t \left[u'(c_{t+1}) R_{t+1}^O \right].$$
(G11)

The left-hand-side of this expression shows that in evaluating the marginal cost of accumulating additional reserves, the planner internalizes the fact that higher s_{t+1} increases the price of bonds, so that if it plans to issue debt ($b_{t+1} < 0$), the higher price at which it can

⁴The derivative of $R^b(\cdot)$ w.r.t. b_{t+1} is $R^b_b(\cdot) = \frac{-(2q_b(\cdot)+q_b(\cdot)b_{t+1})}{(q(\cdot)+q_b(\cdot)b_{t+1})^2}$, and the properties that $q(s_{t+1}, b_{t+1}) = q^*$ for $b_{t+1} \ge 0$ and $q(s_{t+1}, b_{t+1})$ is strictly concave and increasing in b_{t+1} for $b_{t+1} \in [-\overline{b}(s_{t+1}), 0]$ imply that $-(2q_b(\cdot)+q_{bb}(\cdot)b_{t+1}) > 0$ and hence $R^b_b(\cdot) < 0$ in that same interval.

be sold reduces the marginal cost of building reserves. Hence, we can also express the Euler equation of reserves redefining the rate of return on oil to impute this extra gain:

$$u'(c_t) = \beta E_t \left[u'(c_{t+1}) \,\tilde{R}^O_{t+1} \right], \tag{G12}$$

where $\tilde{R}_{t+1}^O \equiv \frac{q_{t+1}^O + d_{t+1}^O}{\left[q_t^O + q_s(s_{t+1}, b_{t+1})b_{t+1}\right]}$ is the rate of return on oil inclusive of the benefit of higher reserves increasing the price at which newly-issued debt is sold.

The above Euler equation can be used to solve forward for the asset price of oil. To this end, rewrite the equation as follows:

$$q_t^O + z_t = E_t \left[\frac{\beta u'(c_{t+1})}{u'(c_t)} \left(q_{t+1}^O + d_{t+1}^O \right) \right]$$
(G13)

where $z_t \equiv q_s(t) b_{t+1}$ and $q_s(t)$ is the derivative with respect to reserves of the price of bonds sold at date t, which is a function of (b_{t+1}, s_{t+1}) . Notice $z_t \leq 0$ because $q_s(\cdot) > 0$ for $b_{t+1} < 0$ and otherwise $q_s(\cdot) = 0$. Adding and subtracting z_{t+1} to q_{t+1}^O in the right-hand-side of this equation and solving forward yields:

$$q_t^O + z_t = E_t \left[\sum_{s=t+1}^{\infty} \beta^{s-t} \frac{u'(s)}{u'(t)} [d_s^O - z_s] \right] > 0$$
 (G14)

The expression in the right-hand-side is positive because marginal utility is positive, $d_s^0 > 0$ and $z_s \leq 0$. It follows then that $q_t^O + z_t > 0$, and since $z_s \leq 0$ we obtain $q_t^O > -z_t \geq 0$. Thus, the asset price of oil equals the expected present discounted value (discounted with the planner's stochastic discount factors) of the revenue stream composed of oil dividends plus the marginal revenue of selling bonds at a higher price when reserves increase. Or, the asset price of oil with this marginal revenue imputed, \tilde{q}_t^0 equals the expected present discounted value of the stream of oil dividends with the stream of these marginal revenues included $\tilde{q}_t^O = E_t \left[\sum_{s=t+1}^{\infty} \beta^{s-t} \frac{u'(s)}{u'(t)} \tilde{d}_s^O \right]$, where $\tilde{d}_s^O \equiv d_s^O - z_s$.

Combining the Euler equations for bonds and reserves yields the following expression for the excess return on oil (the oil risk premium):

$$E_t \left[R_{t+1}^o \right] - R_{t+1}^b \left(s_{t+1}, b_{t+1} \right) \left[1 + \frac{q_s(t+1)b_{t+1}}{q_t^O} \right] = -\frac{\operatorname{cov}_t \left(u'\left(c_{t+1}\right), R_{t+1}^o \right)}{E_t \left[u'\left(c_{t+1}\right) \right]}.$$
 (G15)

The left-hand-side is the excess return relative to the yield on bonds inclusive of the effect of higher reserves on the resources generated by borrowing. Defined in this way, the excess return takes the standard form of an equity premium determined by the covariance of the planner's marginal utility and the rate of return on oil. Defining the return on oil with the effect of higher reserves increasing bond prices imputed, the excess return is:

$$E_t \left[\tilde{R}_{t+1}^o \right] - R_{t+1}^b \left(s_{t+1}, b_{t+1} \right) = -\frac{\operatorname{cov}_t \left(u'\left(c_{t+1} \right), \tilde{R}_{t+1}^o \right)}{E_t \left[u'\left(c_{t+1} \right) \right]}.$$
 (G16)

We explore next three cases of this generic setup. First, a case in which the economy is in permanent financial autarky but can export oil. Second, a small-open-economy case in which the economy has access to a world credit market at a constant, exogenous price of bonds q^* , which is akin to an RBC model with oil extraction. Third, a case in which the planner faces the exogenous bond pricing function $q(b_{t+1}, s_{t+1})$. In each instance we discuss results with and without uncertainty.

G.1 Financial Autarky

Consider first the case in which the economy is in financial autarky and there is no uncertainty. The Euler equation of reserves implies:

$$\frac{q_{t+1}^{o} + d_{t+1}^{o}}{q_{t}^{o}} = \frac{u'(c_{t})}{\beta u'(c_{t+1})}.$$
(G17)

In turn, solving forward this condition yields a standard asset-pricing condition by which the asset price of oil equals the present discounted value of oil dividends discounted with the intertemporal discount factors:

$$q_t^O = \sum_{s=t+1}^{\infty} \beta^{s-t} \frac{u'(s)}{u'(t)} d_s^O$$
(G18)

Note that since $d_s^0 > 0$ and u'(s), u'(t) > 0, it follows that $q_t^O > 0$.

In this case, the optimal extraction and reserves plans equate R_t^o with the endogenous domestic real interest rate represented by the intertemporal marginal rate of substitution, each represented by the left- and right-hand-side of the reserves Euler equation, respectively. Oil extraction and reserves are used to smooth consumption.

The deterministic steady state is characterized by these two conditions:

$$\beta \left(q^{Oss} + d^{Oss} \right) = q^{Oss} \Rightarrow \frac{d^{Oss}}{q^{Oss}} = \rho,$$
$$x^{ss} = \kappa,$$

where ρ is the rate of time preference. Using the definitions of d^O and q^O and assuming an internal solution for extraction yields the following steady-state equilibrium condition:

$$-e_s(ss) = \rho \left[p^{ss} - e_x(ss) \right]$$

Using the functional form for extraction costs, $e = \psi \left(\frac{x_t}{s_t}\right)^{\gamma} x_t$, the above condition becomes:

$$\gamma \psi \left(\frac{\kappa}{s}\right)^{1+\gamma} = \rho \left[p^{ss} - (1+\gamma)\psi \left(\frac{\kappa}{s}\right)^{\gamma} \right]$$

which can be rewritten as:

$$\psi\left(\frac{\kappa}{s}\right)^{\gamma} \left[\gamma\left(\frac{\kappa}{s}\right) + \rho(1+\gamma)\right] = \rho p^{ss}.$$
(G19)

The steady state oil reserves s^{ss} is the value of s that solves the above equation. Since the left-hand-side is a decreasing, convex function of s, the condition determines a unique value of s^{ss} that rises as p^{ss} falls. Hence, a permanent decline in oil prices causes a permanent increase in oil reserves.

In the stochastic version of this setup, the planner uses oil reserves for self insurance, since there are no state-contingent claims to hedge oil-price shocks and no credit market of nonstate-contingent international bonds. The Euler equation becomes: $u'(c_t) = \beta E_t \left[R_{t+1}^O u'(c_{t+1}) \right]$. The asset price of oil is still positive and given by $q_t^O = E_t \left[\sum_{s=t+1}^{\infty} \beta^{s-t} \frac{u'(s)}{u'(t)} d_s^O \right]$. Because of self insurance, the long-run average of reserves in this economy will be larger than s^{ss} (i.e., the planner builds a buffer stock of precautionary savings in the form of oil reserves).

In Appendix I, we present the recursive formulation of this financial autarky setup and derive key properties of the associated dynamic programming problem. In particular, we show that non-negativity of oil profits and a coefficient ψ in the extraction cost function larger than the largest realization of p guarantee that the decision rule on reserves s'(s, p, y) is increasing is s and that the lower bound on s_{t+1} (i.e., the upper bound on x_t) is never binding.

G.2 Exogenous q

Consider next the small-open-economy case with a constant, world-determined real interest rate such that $R^b(s_{t+1}, b_{t+1}) = R^*$. Without uncertainty, the Euler equations for bonds and reserves yield the following no-arbitrage condition for the real returns on bonds and oil:

$$R_{t+1}^{o} = \frac{u'(c_t)}{\beta u'(c_{t+1})} = R^*.$$
 (G20)

Using the law of motion of reserves and the definitions of the asset price of oil and oil dividends, this no-arbitrage condition yields the following condition (assuming an internal solution for x_t for simplicity):

$$\frac{p_{t+1} - e_x \left(s_{t+1} - s_{t+2}, s_{t+1}\right) - e_s \left(s_{t+1} - s_{t+2}, s_{t+1}\right)}{p_t - e_x \left(s_t - s_{t+1}, s_t\right)} = R^*.$$
 (G21)

This is a second-order difference equation in *s* that pins down the optimal decisions for $\{x_t, s_{t+1}\}_{t=0}^{\infty}$ as functions of oil prices and reserves only (and the parameter values of the extraction cost function and R^*). Hence, this setup is akin to the deterministic small-openeconomy model with capital accumulation in which there is "Fisherian separation" of the investment and production decisions from the consumption and savings plans. Here, the same happens with the optimal plans for oil extraction and accumulation of oil reserves: they are determined independently of those for consumption and debt.

Assuming $\beta R^* = 1$, consumption is perfectly smooth for all t, while reserves and extraction follow the dynamics governed by the above second-order difference equation. The sovereign adjusts bond holdings as necessary so that consumption is perfectly smooth while extraction follows its transitional dynamics towards its steady state. This determines the present value of oil income net of extraction costs, and given that the perfectly smooth level of consumption is determined so as to satisfy the intertemporal resource constraint (i.e. the present value of constant consumption equals the present value of oil plus non-oil GDP plus initial bond holdings).

Since $e(\cdot)$ is increasing in x_t and decreasing in s_t , the above condition implies that, when p_{t+1} rises relative to p_t , the planner reallocates extraction from t to t + 1 (i.e. increases the accumulation of reserves at t). This is a key incentive that is also a work in the model with default risk, but there it interacts with the planner's incentives to default and to affect the price of issuing new debt by adjusting reserves. As we demonstrate in Appendix G, default incentives strengthen when oil prices are low and the set of pairs of income and oil prices at which default is preferable shrinks as reserves grow.

This model's deterministic steady state is analogous to the one of the financial autarky case, except that the net world real interest rate $r^* = R^* - 1$ replaces the rate of time preference. Hence, the condition pinning down the deterministic steady state of reserves becomes:

$$\psi\left(\frac{\kappa}{s}\right)^{\gamma}\left[\gamma\left(\frac{\kappa}{s}\right) + r^*(1+\gamma)\right] = r^*p^{ss}.$$

As in the case of financial autarky, there is a unique deterministic steady state for s^{ss} and it increases as the steady-state price of oil falls.

The stochastic version of the model yields a standard equity-premium expression for the excess return on oil:

$$E_t \left[R_{t+1}^O \right] - R_{t+1}^* = -\frac{\operatorname{cov}_t \left(u'(c_{t+1}), R_{t+1}^O \right)}{E_t \left[u'(c_{t+1}) \right]},$$

This is also analogous to the expression that a standard small-open-economy RBC model would yield. Bonds are ued for self-insurance (i.e., borrowing incentives are weakened by the precautionary savings motive) and extraction and reserves play the role of investment and capital. The asset price of oil is again positive and is now given by $q_t^O = E_t \left[\sum_{s=t+1}^{\infty} (R^*)^{-(s-t)} d_s^O \right]$. Fisherian separation does not hold strictly, because the excess return on oil depends on the marginal utility of consumption, but it holds approximately because equity premia in this class of models are small (as is typical of standard consumption asset pricing models). Hence, the asset price of oil is approximately independent of consumption and savings decisions.

G.3 Endogenous q

The third case takes into account the ad-hoc bond pricing function. Without uncertainty, the Euler equations for bonds and reserves (eqs. (G10) and (G11)) imply the following no-arbitrage condition:

$$R_{t+1}^{O} = R_{t+1}^{b} \left(s_{t+1}, b_{t+1} \right) \left[1 + \frac{q_s \left(s_{t+1}, b_{t+1} \right) b_{t+1}}{q_t^{O}} \right].$$
(G22)

Using the alternative definition of the returns on oil that imputes the effect of reserves on bond prices, and since the planner arbitrages returns on bonds and oils against the intertemporal marginal rate of substitution, we obtain that:

$$\tilde{R}_{t+1}^{O}\left(s_{t+1}, b_{t+1}\right) = \frac{u'(c_t)}{\beta u'(c_{t+1})} = R_{t+1}^{b}\left(s_{t+1}, b_{t+1}\right).$$
(G23)

It follows from these conditions that this model's deterministic steady state is pinned down by a two-equation nonlinear system in (b^{ss}, s^{ss}) formed by $\tilde{R}^O(s^{ss}, b^{ss}) = 1/\beta$ and $R^b(s^{ss}, b^{ss}) = 1/\beta$. The asset price of oil is still positive in this economy, and is simply determined by the deterministic version of eq. (G14).
The conditions that characterize the equilibrium of this economy under uncertainty are the ones provided in the generic characterization of the setup. Equations (G10), (G11), (G14) and (G15) are, respectively, the Euler equations for bonds and reserves, the oil assetpricing equation and the oil risk premium. This economy is akin to the RBC-like case where there is no default risk, except that in this case the interest rate rises as bonds and/or reserves fall, whereas in the RBC case it remains constant. It also differs in that the planner chooses bonds and reserves internalizing how those choices affect the price of bonds and thus the cost of borrowing, but all of this is done under commitment to repay. Intuitively, it is as if the government acts as a monopolist when it sells its debt.

H Theoretical Results on Debt, Reserves & Country Risk

This Section of the Appendix derives theoretical results about how country risk and default incentives are affected by the debt position, oil reserves and the realizations of non-oil GDP and oil prices. These results show the extent to which existing results from the sovereign default literature extend to the model we proposed, and provide insights about how oil reserves and oil prices interact with country risk and default incentives. Extending the analysis of standard default models is not straightforward, because in those models the default payoff is exogenous to the sovereign's actions, whereas in our model it depends on the sovereign's optimal plans for oil reserves. As we explain below, this is particularly important for deriving results related to how default sets respond to oil reserves, what contracts are feasible under repayment when default is possible, and how shocks to y and p affect default incentives.

Since some of the propositions rely on conjectures, impose parameter restrictions (i.i.d shocks, $\lambda = 0$, $\hat{p} = p$), and provide only sufficiency conditions, we evaluated numerically both the conjectures and the propositions in the calibrated model. As reported in Table H1, all the propositions and conjectures hold in 100 percent of the possible model evaluations that apply to each, except for Conjecture 2 which holds in 98 percent of the corresponding evaluations.

Conjecture or	Case	Holds in %	Max. Error
Proposition			
C 1*	Repayment	100	
Conjecture 1	Default	100	
Conjecture 2		98	$\left \tilde{c}^{nd}\left(b,s^{2},p,y\right)-\tilde{c}^{nd}\left(b,s^{1},p,y\right)=-0.2\right $
Conjecture 3		100	
Proposition 1		100	
Dramonition 2	s	100	
Proposition 2	s'	100	
Drangeitian 2	Repayment	100	
Proposition 5	Default	100	
Proposition 4		100	
Proposition 5		100	
Proposition 6		100	

Table H1: Validation of Propositions and Conjectures in the Baseline Model

Note: *This conjecture is evaluated computing oil asset prices as the expected present value of dividends

We also evaluated the non-negativity of profits included in Conjecture 1 and the trade balance conditions that are part of Propositions 5 and 6 (see Table H2).⁵ Profits are strictly positive for all optimal decision rules of s' under repayment and default. The trade balance conditions of Propositions 5 and 6 hold 97 and 100 percent of all model evaluations, respectively. Removing the trade balance conditions, the main results of those propositions, namely that default incentives strengthen at lower y (Proposition 5) or lower p (Proposition 6), both hold 100 percent of the model evaluations. Thus, in our calibrated numerical solution, lower oil prices and lower non-oil GDP *always* strengthen default incentives.

⁵We also checked whether the boundary conditions for x (or s') bind and found that they are never binding.

Condition or Proposition	Case	Validation	Holds in %	Max. Error
Trada balance and dition	Proposition 5	$tb(b^{1}, s^{1}, b) \ge M(s^{1}, s, p) - M(\tilde{s}^{2}, s, p) \text{ for } y_{2} \in D(b, s)$	97	-0.05^{*}
Trade balance condition	Proposition 6	$tb(b^1, s^1, b) \ge M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2) \text{ for } p_2 \in D(b, s)$	100	
Reserves choice condition	Proposition 6	$s^1 \leq \tilde{s}^2$	100	
Proposition 5	Without trade balance	For all $y_1 < y_2$, and $y_2 \in D(b,s)$ then $y_1 \in D(b,s)$	100	
	condition			
Proposition 6	Without trade balance	For all $p_1 < p_2$, and $p_2 \in D(b, s)$ then $p_1 \in D(b, s)$	100	
Proposition 6	condition or $s^1 \leq \tilde{s}^2$			
Due file in antine d de sisteme	Repayment	$M^{nd}\left(s'^{nd}\left(s,p,y\right),s,p,y\right)>0$	100	
Proposition 6WCProfits in optimal decisions s^{nd} (b, s, p, y) boundaries hit	Default	$M^{d}\left(s'^{d}\left(s,p,y\right),s,p,y\right)>0$	100	
	Lower bound	$s^{nd}(b,s,p,y) = (s+\kappa) - s(p/\psi)^{(1/\gamma)}$	0	
$s^{non}(o,s,p,y)$ boundaries nit	Upper bound	$s^{nd}\left(b,s,p,y\right)=s+k$	0	
d () have device hit	Lower bound	$s^d \left(b,s,p,y \right) = (s+\kappa) - s(p/\psi)^{(1/\gamma)}$	0	
$s^{-}(s,p,y)$ boundaries hit	Upper bound	$s^{d}\left(b,s,p,y\right)=s+k$	0	

Table H2: Additional Conditions on the Validation of Propositions and Conjectures in theBaseline Model

Note: *The Max. Error is computed as $tb(b^1, s^1, b) - [M(s^1, s, p) - M(\tilde{s}^2, s, p)]$ **The Max. Error is computed as $tb(b^1, s^1, b) - [M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2)]$

**The Max. Error is computed as $s^1 - \tilde{s}^2$

For the analysis that follows, we define these functions:

(a) Profits from oil extraction under repayment and default (using the law of motion of reserves to express oil extraction as a function $x(s', s) = s - s' + \kappa$):

$$M^{nd}(s',s,p) \equiv px(s',s) - e(x(s',s),s), \quad M^{d}(s',s,p) \equiv h(p)x(s',s) - e(x(s',s),s).$$

(b) Asset prices of oil under repayment and default:⁶

$$q^{Ond}(s',s,p) \equiv p - e_x(x(s',s),s), \quad q^{Od}(s',s,p) \equiv h(p) - e_x(x(s',s),s).$$

(c) Trade balance under repayment:

$$tb(b', s', b, y, p) \equiv q(b', s', y, p)b' - b.$$

(d) Consumption under repayment and default:

$$c^{nd}(b', s', b, s, y, p) \equiv y - A + M^{nd}(s', s, p) - tb(b', s', b, y, p), \quad c^{d}(s', s, y, p) \equiv y - A + M^{d}(s', s, p).$$

Next, we postulate three conjectures that are used later to prove some of of the propositions in this Appendix:

⁶In Appendix F, we showed that in a model without default risk $p - e_x(x(s', s), s)$ is equal to the asset price of oil (i.e., the expected present value of oil dividends discounted with the sovereign's stochastic discount factors) for internal solutions of x and it is always positive.

Conjecture 1. Asset prices of oil are positive under repayment and default.

 $q^{Ond}(s', s, p), q^{Od}(s', s, p) > 0$ for all $p, s \in [\underline{s}, \overline{s}] = \{s : \underline{s} \leq s \leq \overline{s}\}$, and s' in the interval $(s + \kappa) - s(p/\psi)^{(1/\gamma)} \leq s' \leq (s + \kappa)$, where $s' \geq s + \kappa - s(p/\psi)^{(1/\gamma)}$ is implied by the upper bound of x above which profits are negative and $s' \leq s + \kappa$ is the upper bound of reserves if x = 0.

Appendix F shows that this conjecture is an equilibrium outcome for three variants of the model in which the sovereign can commit to repay (i.e., financial autarky and a small open economy facing either a constant real interest rate or an exogenous interest rate function with the qualitative features of the equilibrium interest rate of a model with default). This is because the equilibrium asset price of oil equals the expected present value of the stream of (non-negative) oil dividends discounted with the stochastic discount factor of the sovereign. Assuming $\lambda = 0$, it can also be proven that $q^{Od}(\cdot) > 0$ is an equilibrium outcome in the model with default, because with permanent exclusion the planner's dynamic programming problem is the same as that with commitment to repay under financial autarky.⁷

Conjecture 2. If default is possible for some state (b, \tilde{s}, y, p) , the optimal consumption choice under repayment is nondecreasing in s in the interval $s \le s \le \tilde{s} \le \bar{s}$.

For all $s^1, s^2 \in [\underline{s}, \tilde{s}]$ and $s^1 \leq s^2$, $\hat{c}^{nd}(b, s^2, y, p) \geq \hat{c}^{nd}(b, s^1, y, p)$, where optimal consumption under repayment is: $\hat{c}^{nd}(b, s, y, p) \equiv y - A + M^{nd}(s'(b, s, y, p), s, y, p) - tb(b'(b, s, y, p), s'(b, s, y, p), b, y, p)$, and b'(b, s, y, p), s'(b, s, y, p) are the bonds and reserves decision rules under repayment, respectively.

This conjecture is also an equilibrium outcome if the sovereign is committed to repay. It is a standard result that follows from consumption being increasing in wealth but proving this property is not straightforward in the model with default, because it requires properties of decision rules under repayment that are difficult to establish since the optimization problem under repayment retains the option to default in the future and is not differentiable.

Conjecture 3. If default on outstanding debt is optimal at a given level of existing reserves for some realizations of income and oil prices, all the available contracts for new debt and choices of oil reserves under repayment yield a trade balance at least as large as the difference in oil profits between repayment and default.

If for some (b, s) the default set is non-empty $D(b, s) \neq \emptyset$, then for $(y, p) \in D(b, s)$ there are no contracts $\{q(b', s', y, p), b', s'\}$ available such that $tb(b', s', b, y, p) < M^{nd}(s', s, p) - M^d(s^d(s, y, p), s, p)$,

⁷We showed in Appendix F that under financial autarky and assuming an internal solution for x, $q_t^O = E_t \sum_{j=1}^{\infty} \beta^j u'(t+j)/u'(t)[-e_s(t+j)]$. This corresponds to $q^{Od}(s',s,p)$ if the probability of re-entry is zero.

where $s^d(s, y, p)$ is the optimal choice of reserves under default.

This conjecture is related to Proposition 2 in Arellano (2008). She shows that, assuming i.i.d. shocks, $\lambda = 0$, and no default income costs, if the default set is non-empty for *b* then there are no contracts $\{q(b'), b'\}$ under repayment that can yield more net resources for current consumption than the resources available under default. Under default, resources are determined by the *exogenous* realization of *y*, which is the same under repayment, so this result implies also that there are no contracts that can yield a trade deficit. In our model, however, the debt contracts may need to entail a trade surplus in order to match the property that they cannot generate more net resources for current consumption than what the *endogenous* choice of oil profits generates under default. This is clearer if we consider that Conjecture 3 implies: $tb(b', s', b, y, p) \ge M^{nd}(s', s, p) - M^d(s^d(s, y, p), s, p)$. If profits under repayment are larger than under default (which is the case if a lower *s'* is chosen under repayment, since Proposition 2 below shows that profits are decreasing in *s'*), all available debt contracts generate trade surpluses at least as large as the amount by which oil profits under repayment exceed those under default. A zero trade balance is not sufficient to guarantee that there are fewer net resources for consumption under repayment.⁸

Proposition 1. The repayment payoff is non-decreasing in b and default sets shrink as b rises (i.e. grow as debt rises).

For all $b^1 \leq b^2$, $v^{nd}(b^2, s, y, p) \geq v^{nd}(b^1, s, y, p)$. Moreover, if default is optimal for b^2 $(d(b^2, s, y, p) = 1)$ for some states (s, y, p) then default is optimal for b^1 for the same states (s, y, p) (i.e. $D(b^2, s) \subseteq D(b^1, s)$ and $d(b^1, s, y, p) = 1$)

Proof. This proof follows Arellano (2008).

1. From the definition of $D(\cdot)$ and $d(b^2, s, y, p) = 1$ it follows that $v^d(s, y, p) \ge v^{nd}(b^2, s, y, p)$ $\forall \{y, p\} \in D(b^2, s)$, hence:

$$v^{d}(s, y, p) \ge v^{nd}(b^{2}, s, y, p) \ge u\left(c^{nd}(b', s', b^{2}, s, y, p)\right) + \beta E\left[V(b', s', y', p')\right] \quad \forall (b', s')$$

⁸We can show that Conjecture 3 holds as a proposition under the sufficiency condition that, if the default set is not empty for a pair (b, s), there are no available debt contracts under repayment with associated choices of oil reserves that are smaller than the reserves chosen under default (i.e., the planner cannot generate more resources by setting s' lower in repayment than in default). However, this condition fails in the majority of the state space of the numerical solution with the baseline calibration.

2. It follows that, since $b^1 \leq b^2$ implies $c^{nd}(b', s', b^2, s, y, p) \geq c^{nd}(b', s', b^1, s, y, p)$, the continuation values for $b^1 \leq b^2$ satisfy:

$$u\left(c^{nd}(b', s', b^2, s, y, p)\right) + \beta E\left[V(b', s', y', p')\right] \ge u\left(c^{nd}(b', s', b^1, s, y, p))\right) + \beta E\left[V(b', s', y', p')\right],$$

for all (b', s'), which implies that $v^{nd}(b, s, y, p)$ is nondecreasing in b.

3. It follows from 1. and 2. that $v^{d}(s, y, p) \ge v^{nd}(b^{2}, s, y, p) \ge v^{nd}(b^{1}, s, y, p)$, hence $v^{d}(s, y, p) \ge v^{nd}(b^{1}, s, y, p)$ which implies $\{y, p\} \in D(b^{1}, s)$ and thus $d(b^{1}, s, y, p) = 1$.

Proposition 2. If asset prices of oil are positive, oil profits are increasing in s, for given s', and decreasing in s', for given s.

Given Conjecture 1, oil profits under repayment and default are increasing in $s \in [\underline{s}, \overline{s}]$, namely $M_s^{nd}(\cdot), M_s^d(\cdot) > 0$, and decreasing in $s' \in [s + \kappa - s(p/\psi)^{(1/\gamma)}, s + \kappa]$, namely $M_{s'}^{nd}(\cdot), M_{s'}^d(\cdot) < 0$.

Proof. We show first that profits are increasing in *s*, and then that they are decreasing in *s*'.

- 1. The derivatives of oil profits with respect to *s* under repayment and default are $M_s^{nd}(\cdot) = p e_x(x(s', s), s) e_s(x(s', s), s)$ and $M_s^d(\cdot) = h(p) e_x(x(s', s), s) e_s(x(s', s), s)$.
- 2. Since $q^{Ond}(s', s, p) = p e_x(x(s', s), s)$ and $q^{Od}(s', s, p) = h(p) e_x(x(s', s), s)$, the derivatives can be rewritten as $M_s^{nd}(\cdot) = q^{Ond}(s', s, p) e_s(x(s', s), s)$ and $M_s^d(\cdot) = q^{Od}(s', s, p) e_s(x(s', s), s)$ respectively.
- 3. Since $q^{Ond}(s', s, p), q^{Od}(s', s, p) > 0$ and $e_s(x(s', s), s) < 0$ for $s \in [\underline{s}, \overline{s}]$, it follows that $M_s^{nd}(\cdot) = q^{Ond}(s', s, p) e_s(x(s', s), s) > 0$ and $M_s^d(\cdot) = q^{Od}(s', s, p) e_s(x(s', s), s) > 0$.
- 4. The derivatives of oil profits with respect to s' under repayment and default are $M_{s'}^{nd}(\cdot) = -p + e_x(x(s', s), s))$ and $M_s^d(\cdot) = -h(p) + e_x(x(s', s), s)$.
- 5. Since $q^{Ond}(s', s, p) = p e_x(x(s', s), s)$ and $q^{Od}(s', s, p) = h(p) e_x(x(s', s), s)$, the derivatives can be rewritten as $M_s^{nd}(\cdot) = -q^{Ond}(s', s, p)$ and $M_s^d(\cdot) = -q^{Od}(s', s, p)$ respectively.
- 6. Since $q^{Ond}(s', s, p), q^{Od}(s', s, p) > 0$, it follows that $M^{nd}_{s'}(\cdot) = -q^{Ond}(s', s, p) < 0$ and $M^{d}_{s'}(\cdot) = -q^{Od}(s', s, p) < 0$.

Proposition 3. The default and repayment payoffs are non-decreasing in s.

 $\textit{For all } s^1, s^2 \in [\underline{s}, \overline{s}] \textit{ and } s^1 \leq s^2, v^{nd}(b, s^2, y, p) \geq v^{nd}(b, s^1, y, p) \textit{ and } v^d(s^2, y, p) \geq v^d(s^1, y, p).$

Proof. This proof uses the consumption functions $c^{nd}(b', s', b, s, y, p), c^{d}(s', s, y, p)$.

1. Since $s^1 \leq s^2$, the result that oil profits are increasing in s (Proposition 2) and the definitions of the consumption functions imply that $c^{nd}(b', s', b, s^2, y, p) \geq c^{nd}(b', s', b, s^1, y, p)$ and $c^d(s', s^2, y, p) \geq c^d(s', s^1, y, p)$ for all (b', s'). Hence, the continuation values for $s^1 \leq s^2$ satisfy:

$$v^{nd}(b, s^{2}, y, p) \geq u\left(c^{nd}(b', s', b, s^{2}, y, p)\right) + \beta E\left[V(b', s', y', p')\right]$$
$$\geq u\left(c^{nd}(b', s', b, s^{1}, y, p))\right) + \beta E\left[V(b', s', y', p')\right],$$

for all (b', s'), which implies that $v^{nd}(b, s^2, y, p) \ge v^{nd}(b, s^1, y, p)$. Hence, $v^{nd}(b, s, y, p)$ is nondecreasing in s.

2. Similarly, the default payoffs satisfy:

$$\begin{aligned} v^{d}(s^{2}, y, p) &\geq u\left(c^{d}(s', s^{2}, y, p)\right) + \beta E\left[\lambda V(0, s', y, p) + (1 - \lambda)v^{d}(s', y', p')\right] \\ &\geq u\left(c^{d}(s', s^{1}, y, p))\right) + \beta E\left[\lambda V(0, s', y, p) + (1 - \lambda)v^{d}(s', y', p')\right], \end{aligned}$$

for all s', which implies that $v^d(s^2, y, p) \ge v^d(s^1, y, p)$. Hence, $v^d(s, y, p)$ is nondecreasing in s.

L		
L		
L		

Proposition 4. Default sets shrink as s rises (i.e. grow as reserves fall).

Assume $\hat{p} = p$ and $\lambda = 0$ for simplicity. For all $s^1, s^2 \in [\underline{s}, \overline{s}]$ and $s^1 \leq s^2$, if default is optimal for s^2 $(d(b, s^2, y, p) = 1)$ for some states (b, y, p), then default is optimal for s^1 for the same states (b, y, p) (i.e. $D(b, s^2) \subseteq D(b, s^1)$ and $d(b, s^1, y, p) = 1$).

Proof. We show first that this proposition is valid if the decision rules for oil reserves under default and repayment are such that $s^d(s^2, y, p) \leq s'(b, s^1, y, p)$, and then we show that this

condition holds under Conjecture 2.⁹ The proof also requires Conjectures 1 and 3.

- 1. Since $d(b, s^2, y, p) = 1$ implies $v^d(s^2, y, p) v^{nd}(b, s^2, y, p) \ge 0$ and both $v^{nd}(b, s, y, p)$ and $v^d(s, y, p)$ are nondecreasing in s, in order for $v^d(s^1, y, p) - v^{nd}(b, s^1, y, p) \ge 0$ (i.e. $d(b, s^1, y, p) = 1$), we need to show that when s falls, the default payoff falls as much or less than the repayment payoff: $v^d(s^2, y, p) - v^d(s^1, y, p) \le v^{nd}(b, s^2, y, p) - v^{nd}(b, s^1, y, p)$.
- 2. Using the definition of $v^d(b, s, p)$ and since $s^d(s^2, y, p)$ is the optimal reserves choice under default when $s = s^2$, it follows that the difference $v^d(s^2, y, p) - v^d(s^1, y, p)$ satisfies this condition:

$$\begin{aligned} v^{d}(s^{2}, y, p) - v^{d}(s^{1}, y, p) &\leq \\ u\left(c^{d}(s^{d}(s^{2}, y, p), s^{2}, y, p)\right) + \beta E\left[\lambda V(0, s^{d}(s^{2}, y, p), y', p') + (1 - \lambda)v^{d}(s^{d}(s^{2}, y, p), y', p')\right] \\ - u\left(c^{d}(s^{d}(s^{2}, y, p), s^{1}, y, p)\right) + \beta E\left[\lambda V(0, s^{d}(s^{2}, y, p), y', p') - (1 - \lambda)v^{d}(s^{d}(s^{2}, y, p), y', p')\right] \end{aligned}$$

which reduces to:

$$v^{d}(s^{2}, y, p) - v^{d}(s^{1}, y, p) \le u\left(c^{d}(s^{d}(s^{2}, y, p), s^{2}, y, p)\right) - u\left(c^{d}(s^{d}(s^{2}, y, p), s^{1}, y, p)\right)$$

3. Using the definition of $v^{nd}(b, s, p)$ and since $b'(b, s^1, y, p), s'(b, s^1, y, p)$ are the bonds and reserves decision rules under repayment when reserves are $s = s^1$, respectively, it follows that the difference $v^{nd}(b, s^2, y, p) - v^{nd}(b, s^1, y, p)$ satisfies this condition:

$$\begin{aligned} v^{nd}(b,s^{2},y,p) &- v^{nd}(b,s^{1},y,p) \geq \\ u\left(c^{nd}(b'(b,s^{1},y,p),s'(b,s^{1},y,p),b,s^{2},y,p)\right) + \beta E\left[V(b'(b,s^{1},y,p),s'(b,s^{1},y,p),y',p')\right] \\ &- u\left(c^{nd}(b'(b,s^{1},y,p),s'(b,s^{1},y,p),b,s^{1},y,p)\right) + \beta E\left[V(b'(b,s^{1},y,p),s'(b,s^{1},y,p),y',p')\right] \end{aligned}$$

which reduces to:

$$\begin{array}{l} v^{nd}(b,s^{2},y,p) - v^{nd}(b,s^{1},y,p) \geq \\ \underline{u\left(c^{nd}(b'(b,s^{1},y,p),s'(b,s^{1},y,p),b,s^{2},y,p)\right)} - u\left(c^{nd}(b'(b,s^{1},y,p),s'(b,s^{1},y,p),b,s^{1},y,p)\right) \end{array}$$

⁹Conjecture 2 could be replaced with the assumption that $s^d(s^2, y, p) \leq s'(b, s^1, y, p)$ and the last step of the proof would be unnecessary, but Conjecture 2 is more reasonable because it states a familiar property of consumption decision rules (i.e. that they are increasing in wealth) and only with respect to consumption under repayment, whereas $s^d(s^2, y, p) \leq s'(b, s^1, y, p)$ refers to decision rules for reserves under default with higher *s* v. repayment with lower *s*. 4. The results in 3. and 4. imply the following sufficiency condition for $v^d(s^2, y, p) - v^d(s^1, y, p) \le v^{nd}(b, s^2, y, p) - v^{nd}(b, s^1, y, p)$:

$$\begin{split} & u\left(c^{d}(s^{d}(s^{2},y,p),s^{2},y,p)\right) - u\left(c^{d}(s^{d}(s^{2},y,p),s^{1},y,p)\right) \leq \\ & u\left(c^{nd}(b'(b,s^{1},y,p),s'(b,s^{1},y,p),b,s^{2},y,p)\right) - u\left(c^{nd}(b'(b,s^{1},y,p),s'(b,s^{1},y,p),b,s^{1},y,p)\right), \end{split}$$

which, using the definitions of $c^{nd}(\cdot)$ and $c^{d}(\cdot)$ and noting that since $\hat{p} = p$ we can write the profit functions as $M^{d}(\cdot) = M^{nd}(\cdot) = M(\cdot)$, can be rearranged as follows:

$$\begin{split} u\left(y - A + M(s^{d}(s^{2}, y, p), s^{2}, p)\right) \\ &- u\left(y - A + M(s'(b, s^{1}, y, p), s^{2}, p) - tb(b'(b, s^{1}, y, p), s'(b, s^{1}, y, p), b, y, p)\right) \\ &\leq u\left(y - A + M(s^{d}(s^{2}, y, p), s^{1}, p)\right) \\ &- u\left(y - A + M(s'(b, s^{1}, y, p), s^{1}, p) - tb(b'(b, s^{1}, y, p), s'(b, s^{1}, y, p), b, y, p))\right), \end{split}$$

and using this notation $\tilde{y}^2 \equiv y - A + M(s^d(s^2, y, p), s^2, p), \tilde{y}^1 \equiv y - A + M(s^d(s^2, y, p), s^1, p),$ $z^2 = M(s'(b, s^1, y, p), s^2, p) - tb(b'(b, s^1, y, p), s'(b, s^1, y, p), b, y, p) - M(s^d(s^2, y, p), s^2, p),$ $z^1 = M(s'(b, s^1, y, p), s^1, p) - tb(b'(b, s^1, y, p), s'(b, s^1, y, p), b, y, p)) - M(s^d(s^2, y, p), s^1, p)$ it can be re-written as:

$$u\left(\tilde{y}^{2}\right) - u\left(\tilde{y}^{2} + z^{2}\right) \leq u\left(\tilde{y}^{1}\right) - u\left(\tilde{y}^{1} + z^{1}\right),$$

5. The strict concavity of $u(\cdot)$ implies that the above condition holds if we can show that $\tilde{y}^2 > \tilde{y}^1$ and $z^1 \leq z^2 \leq 0$. Since $M_s(\cdot) > 0$ as shown in Proposition 2, it follows that $\tilde{y}^2 > \tilde{y}^1$. Conjecture 3 implies that if the default set for (b,s) is not empty, then all the contracts available under repayment are such that $M(s',s,p) - tb(b',s',b,y,p) - M(s^d(s,y,p),s,p) \leq 0$, therefore $z^1, z^2 \leq 0$. Hence, $z^1 \leq z^2 \leq 0$ holds if

$$M(s^{d}(s^{2}, y, p), s^{2}, p) - M(s^{d}(s^{2}, y, p), s^{1}, p) \leq M(s'(b, s^{1}, y, p), s^{2}, p) - M(s'(b, s^{1}, y, p), s^{1}, p).$$

Since $M_{ss'}(\cdot) \ge 0$, it follows that the above condition holds if the reserves decision rules under default and repayment are such that $s^d(s^2, y, p) \le s'(b, s^1, y, p)$.¹⁰

¹⁰Given the functional form of e(x, s), it is straightforward to show that $M_{ss'}^{nd}(\cdot) = M_{ss'}^d(\cdot) = e_x(\cdot)\gamma(s' - \kappa)/(xs)$. Moreover, we show in Appendix I that under financial autarky (or under default with permanent exclusion), the optimal reserves decision rule is increasing in reserves if $p^{max} < \psi$ (i.e. if the highest realization of oil prices is smaller than the coefficient ψ of the extraction costs function). Hence, $min(s'-x) = s[1-(p/\psi)^{1/\gamma}]$ and therefore $M_{ss'}^{nd}(\cdot) = M_{ss'}^d(\cdot) > 0$.

6. Finally, we show that a sufficiency condition for $s^d(s^2, y, p) \leq s'(b, s^1, y, p)$ to hold is that $\hat{c}^{nd}(b, s^2, y, p) \geq \hat{c}^{nd}(b, s^1, y, p)$, which holds because of Conjecture 2. To show this, note first that because of Conjecture 3 (if the default set for (b, s^1) is not empty) $tb(b'(b, s^1, y, p), s'(b, s^1, y, p), b, y, p)) \geq M(s'(b, s^1, y, p), s^1, p) - M(s^d(s^1, y, p), s^1, p)$, and hence $M(s^d(s^1, y, p), s^1, p) \geq M(s'(b, s^1, y, p), s^1, p) - tb(b'(b, s^1, y, p), s'(b, s^1, y, p), b, y, p)$. Moreover, in the optimization problem under full financial autarky of Appendix F (which is the same as the default problem since $\lambda = 0$) dM(s', s, p)/ds > 0.¹¹ Hence, these two result imply that:

$$\begin{split} M(s^d(s^2, y, p), s^2, p) &> M(s^d(s^1, y, p), s^1, p) \\ &\geq M(s'(b, s^1, y, p), s^1, p) - tb(b'(b, s^1, y, p), s'(b, s^1, y, p), b, y, p), \end{split}$$

therefore:

$$\begin{aligned} y - A + M(s^d(s^2, y, p), s^2, p) &\geq \\ y - A + M(s'(b, s^1, y, p), s^1, p) - tb(b'(b, s^1, y, p), s'(b, s^1, y, p), b, y, p) \end{aligned}$$

Since u(c) is increasing in c:

$$u\left(y - A + M(s^{d}(s^{2}, y, p), s^{2}, p)\right) \geq u\left(y - A + M(s'(b, s^{1}, y, p), s^{1}, p) - tb(b'(b, s^{1}, y, p), s'(b, s^{1}, y, p), b, y, p)\right)$$

Add $\beta E\left[\lambda V(0, s^d(s^2, y, p), y', p') + (1 - \lambda)v^d(s^d(s^2, y, p), y', p')\right]$ to both sides of the above expression and simplify using the definition of $v^d(s^2, y, p)$:

$$\begin{aligned} v^{d}(s^{2}, y, p) &\geq u\left(y - A + M(s'(b, s^{1}, y, p), s^{1}, p) - tb(b'(b, s^{1}, y, p), s'(b, s^{1}, y, p), b, y, p)\right) \\ &+ \beta E\left[\lambda V(0, s^{d}(s^{2}, y, p), y', p') + (1 - \lambda)v^{d}(s^{d}(s^{2}, y, p), y', p')\right] \end{aligned}$$

Subtracting $v^{nd}(b, s^2, y, p)$ from both sides yields:

$$\begin{split} v^{d}(s^{2}, y, p) &- v^{nd}(b, s^{2}, y, p) \geq \\ & u\left(y - A + M(s'(b, s^{1}, y, p), s^{1}, p) - tb(b'(b, s^{1}, y, p), s'(b, s^{1}, y, p), b, y, p)\right) \\ & - v^{nd}(b, s^{2}, y, p) + \beta E\left[\lambda V(0, s^{d}(s^{2}, p), y', p') + (1 - \lambda)v^{d}(s^{d}(s^{2}, y, p), y', p')\right], \end{split}$$

¹¹From the definition of M(s', s, p) it follows that $dM/ds = q^{Od}(s', s, p)[1 - \partial s^d(\cdot)/\partial s] - e_s(\cdot) > 0$, because $q^Od(s', s, p) > 0$, $e_s(\cdot) < 0$ and we conjecture that $\partial s^d(\cdot)/\delta s < 1$ for local stability (Appendix I proves that $\partial s^d(\cdot)/\delta s > 0$).

which using the definitions of $v^{nd}(b, s^2, y, p)$ and $c^{nd}(b', s', b, s, y, p)$ can be written as:

$$\begin{aligned} v^{d}(s^{2}, y, p) - v^{nd}(b, s^{2}, y, p) &\geq u\left(c^{nd}(b'(b, s^{1}, y, p), s'(b, s^{1}, y, p), b, s^{1}, y, p)\right) \\ &- \left[u\left(c^{nd}(b'(b, s^{2}, y, p), s'(b, s^{2}, y, p), b, s^{2}, y, p)\right) + \beta E\left[V(b'(b, s^{2}, y, p), s'(b, s^{2}, y, p), y', p')\right]\right] \\ &+ \beta E\left[\lambda V(0, s^{d}(s^{2}, y, p), y', p') + (1 - \lambda)v^{d}(s^{d}(s^{2}, y, p), y', p')\right],\end{aligned}$$

and rearranging terms in the above expression yields:

$$\begin{split} u\left(c^{nd}(b'(b,s^{2},y,p),s'(b,s^{2},y,p),b,s^{2},y,p)\right) &- u\left(c^{nd}(b'(b,s^{1},y,p),s'(b,s^{1},y,p),b,s^{1},y,p)\right) \\ + \beta E\left[V(b'(b,s^{2},y,p),s'(b,s^{2},y,p),y',p') - \lambda V(0,s^{d}(s^{2},y,p),y',p') - (1-\lambda)v^{d}(s^{d}(s^{2},y,p),y',p')\right] \\ &\geq v^{nd}(b,s^{2},y,p) - v^{d}(s^{2},y,p) \end{split}$$

Since $\lambda = 0$, and using the definition of the optimal consumption decision rule $\hat{c}^{nd}(b, s, y, p)$, this expression can be written as:

$$\begin{split} u\left(\hat{c}^{nd}(b,s^{2},y,p)\right) &- u\left(\hat{c}^{nd}(b,s^{1},y,p)\right) \\ &+ \beta E\left[V(b'(b,s^{2},y,p),s'(b,s^{2},y,p),y',p') - v^{d}(s^{d}(s^{2},y,p),y',p')\right] \\ &\geq v^{nd}(b,s^{2},y,p) - v^{d}(s^{2},y,p). \end{split}$$

This inequality holds because $d(b, s^2, y, p) = 1$ implies that the right-hand-side of this expression is non-positive $(v^{nd}(b, s^2, y, p) - v^d(s^2, y, p) \le 0)$ while the left-hand-side is non-negative because: (a) Conjecture 2 and the fact that u(c) is increasing in c imply that $u(\hat{c}^{nd}(b, s^2, y, p)) \ge u(\hat{c}^{nd}(b, s^1, y, p))$, and (b) $E[V(b'(b, s^2, y, p), s'(b, s^2, y, p), y', p')] - E[v^d(s^d(s^2, y, p), y', p')] \ge 0$ by the definition of $V(\cdot)$.

Proposition 5. If the trade balance is sufficiently large, default incentives strengthen as nonoil GDP falls.

Assuming i.i.d shocks, $\lambda = 0$ and $\hat{p} = p$, for all $y_1 < y_2$, if $y_2 \in D(b, s)$ and $tb(b^1, s^1, b) \ge M(s^1, s, p) - M(\tilde{s}^2, s, p)$ (where $b^1 \equiv b'(b, s, y_1, p)$, $s^1 \equiv s'(b, s, y_1, p)$ are the optimal choices of bonds and reserves under repayment with y_1 and $\tilde{s}^2 \equiv s^d(s, y_2, p)$ is the optimal reserves choice under default with y_2), then $y_1 \in D(b, s)$.

Proof. This proof aims to extend Proposition 3 in Arellano (2008), but for this model it requires a lower bound condition on the trade balance linked to the optimal decision rules of reserves under repayment with y_1 v. under default with y_2 .

1. If $y_2 \in D(b, s)$ and denoting $b^2 \equiv b'(b, s, y_2, p)$, $s^2 \equiv s'(b, s, y_2, p)$ the optimal choices of bonds and reserves when $y = y_2$ under repayment, it follows that by definition:

$$u\left(y_{2} - A + M^{d}(\tilde{s^{2}}, s, p)\right) + \beta E[v^{d}(\tilde{s^{2}}, y', p')] \geq u\left(y_{2} - A + M^{nd}(s^{2}, s, p) - tb(b^{2}, s^{2}, b)\right) + \beta E[V(b^{2}, s^{2}, y', p')]$$

- 2. To establish that $y_2 \in D(b, s) \Rightarrow y_1 \in D(b, s)$ it is sufficient to show that, denoting \tilde{s}^1 as reserves chosen when $y = y_1$ under default, the following holds: $u(y_2 - A + M^{nd}(s^2, s, p) - tb(b^2, s^2, b)) - \beta E[V(b^2, s^2, y', p')] - [u(y_1 - A + M^{nd}(s^1, s, p) - tb(b^1, s^1, b)) + \beta E[V(b^1, s^1, y', p')]] \ge u(y_2 - A + M^d(\tilde{s}^2, s, p)) + \beta E[v^d(\tilde{s}^2, y', p')] - [u(y_1 - A + M^d(\tilde{s}^1, s, p)) + \beta E[v^d(\tilde{s}^2, y', p')]]$
- 3. Given that (b^2, s^2) maximizes the repayment payoff with y_2 and \tilde{s}^1 maximizes the default payoff with y_1 , the following two conditions hold:

$$u\left(y_{2} - A + M^{nd}(s^{2}, s, p) - tb(b^{2}, s^{2}, b)\right) + \beta E[V(b^{2}, s^{2}, y', p')]$$

$$\geq \left[u\left(y_{2} - A + M^{nd}(s^{1}, s, p) - tb(b^{1}, s^{1}, b)\right) + \beta E[V(b^{1}, s^{1}, y', p')]\right]$$

$$u\left(y_{1} - A + M^{d}(\tilde{s}^{1}, s, p)\right) + \beta E[v^{d}(\tilde{s}^{1}, y', p')] \ge \left[u\left(y_{1} - A + M^{d}(\tilde{s}^{2}, s, p)\right) + \beta E[v^{d}(\tilde{s}^{2}, y', p')]\right]$$

4. Using the results in 3., the condition in 2. holds if:

$$\left[u \left(y_2 - A + M^{nd}(s^1, s, p) - tb(b^1, s^1, b) \right) + \beta E[V(b^1, s^1, y', p')] \right] - \left[u \left(y_1 - A + M^{nd}(s^1, s, p) - tb(b^1, s^1, b) \right) + \beta E[V(b^1, s^1, y', p')] \right] \ge u \left(y_2 - A + M^d(\tilde{s}^2, s, p) \right) + \beta E[v^d(\tilde{s}^2, y', p')] - \left[u \left(y_1 - A + M^d(\tilde{s}^2, s, p) \right) + \beta E[v^d(\tilde{s}^2, y', p')] \right]$$

5. The above expression simplifies to:

$$u\left(y_{2} - A + M^{nd}(s^{1}, s, p) - tb(b^{1}, s^{1}, b)\right) - u\left(y_{1} - A + M^{nd}(s^{1}, s, p) - tb(b^{1}, s^{1}, b)\right)$$

$$\geq u\left(y_{2} - A + M^{d}(\tilde{s}^{2}, s, p)\right) - u\left(y_{1} - A + M^{d}(\tilde{s}^{2}, s, p)\right),$$

which adding and subtracting $M^d(\tilde{s}^2, s, p)$ inside the argument of the repayment utilities and rearranging yields:

$$u\left(y_{2} - A + M^{d}(\tilde{s}^{2}, s, p)\right) - u\left(y_{2} - A + M^{d}(\tilde{s}^{2}, s, p) + z(y_{1})\right)$$

$$\leq u\left(y_{1} - A + M^{d}(\tilde{s}^{2}, s, p)\right) - u\left(y_{1} - A + M^{d}(\tilde{s}^{2}, s, p) + z(y_{1})\right),$$

where $z(y_1) \equiv M^{nd}(s^1, s, p) - tb(b^1, s^1, b) - M^d(\tilde{s}^2, s, p)$. The above inequality holds because: (a) the utility function is increasing and strictly concave, (b) $y_2 > y_1$ and (c) $z(y_1) < 0$ because of the assumption that $tb(b^1, s^1, b) \ge M^{nd}(s^1, s, p) - M^d(\tilde{s}^2, s, p)$.

Proposition 6. If the trade balance is sufficiently large and reserves chosen under default at high oil prices exceed those chosen under repayment at low prices, default incentives strengthen as oil prices fall.

Assuming i.i.d shocks, $\lambda = 0$ and $\hat{p} = p$, for all $p_1 < p_2$ and $p_2 \in D(b,s)$, if $tb(b^1, s^1, b) \ge M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2)$ and $s^1 \le \tilde{s}^2$ (where b^1, s^1 are the optimal bonds and reserves choices under repayment in state (b, s, y, p_1) and \tilde{s}^2 is the optimal reserves choice under default in state (s, y, p_2) , then $p_1 \in D(b, s)$.

Proof. This proof follows a similar strategy as that of Proposition 5. Again it requires a lower bound condition on the trade balance, but now linked to the optimal decision rules of reserves under repayment with p_1 v. under default with p_2 , and it also requires optimal reserves under default with p_2 to exceed those under repayment with p_1 .

1. If $p_2 \in D(b, s)$ and denoting (b^2, s^2) and \tilde{s}^2 as the optimal choices of bonds and reserves when $p = p_2$ under repayment and default, respectively, it follows that by definition::

$$u(y - A + M(\tilde{s}^2, s, p_2)) + \beta E[v^d(\tilde{s}^2, y', p')] \ge u(y - A + M(s^2, s, p_2) - tb(b^2, s^2, b)) + \beta E[V(b^2, s^2, y', p')],$$

where the profit functions under default and repayment are the same because $\hat{p} = p$.

2. To establish that $p_2 \in D(b,s) \Rightarrow p_1 \in D(b,s)$ it is sufficient to show that, denoting (b^1, s^1) and \tilde{s}^1 as the bonds and reserves chosen when $p = p_1$ under repayment and default, respectively, the following holds:

$$u\left(y - A + M(s^{2}, s, p_{2}) - tb(b^{2}, s^{2}, b)\right) + \beta E[V(b^{2}, s^{2}, y', p')] - \left[u\left(y - A + M(s^{1}, s, p_{1}) - tb(b^{1}, s^{1}, b)\right) + \beta E[V(b^{1}, s^{1}, y', p')]\right] \ge u\left(y - A + M(\tilde{s}^{2}, s, p_{2})\right) + \beta E[v^{d}(\tilde{s}^{2}, y', p')] - \left[u\left(y - A + M(\tilde{s}^{1}, s, p_{1})\right) + \beta E[v^{d}(\tilde{s}^{1}, y', p')]\right]$$

3. Given that (b^2, s^2) maximizes the repayment payoff with p_2 and \tilde{s}^1 maximizes the default payoff with p_1 , the following two conditions hold:

$$u(y - A + M(s^2, s, p_2) - tb(b^2, s^2, b)) + \beta E[V(b^2, s^2, y', p')]$$

$$\geq [u(y - A + M(s^1, s, p_2) - tb(b^1, s^1, b)) + \beta E[V(b^1, s^1, y', p')]]$$

$$u\left(y - A + M(\tilde{s}^{1}, s, p_{1})\right) + \beta E[v^{d}(\tilde{s}^{1}, y', p')] \ge \left[u\left(y - A + M(\tilde{s}^{2}, s, p_{1})\right) + \beta E[v^{d}(\tilde{s}^{2}, y', p')]\right]$$

4. Using the results in 3., the condition in 2. holds if:

$$\begin{bmatrix} u (y - A + M(s^{1}, s, p_{2}) - tb(b^{1}, s^{1}, b)) + \beta E[V(b^{1}, s^{1}, y', p')] \end{bmatrix} - \\ \begin{bmatrix} u (y - A + M(s^{1}, s, p_{1}) - tb(b^{1}, s^{1}, b)) + \beta E[V(b^{1}, s^{1}, y', p')] \end{bmatrix} \ge \\ u (y - A + M(\tilde{s}^{2}, s, p_{2})) + \beta E[v^{d}(\tilde{s}^{2}, y', p')] - \begin{bmatrix} u (y - A + M(\tilde{s}^{2}, s, p_{1})) + \beta E[v^{d}(\tilde{s}^{2}, y', p')] \end{bmatrix} \end{bmatrix}$$

5. The above expression simplifies to:

$$u(y - A + M(s^{1}, s, p_{2}) - tb(b^{1}, s^{1}, b)) - u(y - A + M(s^{1}, s, p_{1}) - tb(b^{1}, s^{1}, b))$$

$$\geq u(y - A + M(\tilde{s}^{2}, s, p_{2})) - u(y - A + M(\tilde{s}^{2}, s, p_{1})),$$

which adding and subtracting $M(\tilde{s}^2, s, p_2)$ and $M(\tilde{s}^2, s, p_1)$ to the arguments of the repayment utility in the left- and right-hand-sides, respectively, and rearranging yields:

$$u(y - A + M(\tilde{s}^2, s, p_2)) - u(y - A + M(\tilde{s}^2, s, p_2) + z(p_2))$$

$$\leq u(y - A + M(\tilde{s}^2, s, p_1)) - u(y - A + M(\tilde{s}^2, s, p_1) + z(p_1))$$

where: $z(p_1) = M(s^1, s, p_1) - tb(b^1, s^1, b) - M(\tilde{s}^2, s, p_1)$ and $z(p_2) = M(s^1, s, p_2) - tb(b^1, s^1, b) - M(\tilde{s}^2, s, p_2)$. The above inequality holds because: (a) the utility function is increasing and strictly concave, (b) $M(\tilde{s}^2, s, p_2) > M(\tilde{s}^2, s, p_1)$ since profits are increasing in p, (c) $z(p_2) \leq 0$ because of the assumption that $tb(b^1, s^1, b) \geq M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2)$, and (d) $z(p_1) \leq z(p_2)$ because $s^1 \leq \tilde{s}^2$ (note that $z(p_1) \leq z(p_2) \Leftrightarrow M(s^1, s, p_1) - M(\tilde{s}^2, s, p_1) \leq M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2) - M(\tilde{s}^2, s, p_1) \leq M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2) - M(\tilde{s}^2, s, p_2) - M(\tilde{s}^2, s, p_1) \leq M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2)$ or $M(\tilde{s}^2, s, p_2) - M(\tilde{s}^2, s, p_1) \leq M(s^1, s, p_2) - M(\tilde{s}^2, s, p_2) - M(\tilde{s}^2, s, p_2) - M(\tilde{s}^2, s, p_2) - M(\tilde{s}^2, s, p_2) = M(s^1, s, p_1)$ and using the functional form of M(.) this yields $(p_2 - p_1)(s - \tilde{s}^2 + \kappa) \leq (s - s^1 + \kappa)(p_2 - p_1)$, which implies that $s^1 \leq \tilde{s}^2$).

I Dynamic Programming Problem under Financial Autarky

The dynamic programming problem of the planner under financial autarky, which corresponds also to the default payoff and decision rules when $\lambda = 0$, can be written as follows:

$$V^{d}(s, p, y) = \max_{s' \in \Gamma(s)} \left\{ F\left(s, s', p, y\right) + \beta E\left[V^{d}\left(s', p', y'\right)\right] \right\}$$
$$F\left(s, s', p, y\right) \equiv u\left(y - A + p(s - s' + \kappa) - e\left(s - s' + \kappa, s\right)\right)$$
$$\Gamma\left(s\right) \equiv \left\{s' : 0 \le s' \le s + \kappa\right\},$$

with first-order condition:

$$[s']: u_c(t)(p - e_x(\cdot)) = \beta V_{s'}^d(s', p', y')$$

or

$$-F_{s'}\left(s, s', p, y\right) = \beta V_{s'}^d\left(s', p', y'\right).$$

This Appendix shows that the period-payoff F(s, s', p, y) of the above problem satisfies standard properties analogous to those of the textbook neoclassical Ramsey model, with oil reserves taking the place of the capital stock. In particular, we show that F(s, s', p, y) is continuously differentiable in (s, s'), strictly increasing (decreasing) in s(s'), and strictly concave in (s, s'). We also show that the optimal decision rule s'(s, p, y) is increasing in s. These properties, together with the assumptions that $F(\cdot)$ is bounded and $\Gamma(s)$ is a nonempty, compact-valued, monotone, and continuous correspondence with a convex graph, ensure that the value function $V^d(\cdot)$ that solves the above Bellman equation exists and the solution is unique, and that $V^d(\cdot)$ is strictly concave, strictly increasing and continuously differentiable.¹² The proofs of these properties are analogous to those of the textbook Ramsey model and therefore are omitted here. Existence and uniqueness follow from the contraction mapping theorem. The proof that $V^d(\cdot)$ is concave requires $F(\cdot)$ to be increasing and $\Gamma(s)$ to be monotone, the proof that $V^d(\cdot)$ is concave requires $F(\cdot)$ to be concave, and proving the differentiability of $V^d(\cdot)$ requires $F(\cdot)$ to be continuously differentiable and concave.

¹²We also assume a standard, twice-continuously-differentiable, increasing and concave utility function. The CRRA utility function that defines $F(\cdot)$ in the numerical solution satisfies these properties but is unbounded. It can be transformed into a bounded function with a piece-wise truncation at an arbitrary small but positive consumption level (see Suen (2009). "Bounding the CRRA Utility Functions," Working Papers 200902, University of California at Riverside, Department of Economics).

1. $F(\cdot)$ is strictly increasing in s ($F_s(\cdot) > 0$) and decreasing in s' ($F'_s(\cdot) < 0$).

To prove these two properties, recall that $e_s(\cdot) < 0$ and that we showed in the sequential solution of the autarky model of Appendix F that the asset price of oil is positive for internal solutions of x, hence $p - e_x(\cdot) > 0$. By differentiating $F(\cdot)$ with respect to s and s' we obtain:

$$F_{s}(\cdot) = u_{c}(\cdot) \left(p - e_{x}(\cdot) - e_{s}(\cdot)\right) > 0,$$

$$F_{s'}(\cdot) = u_{c}(\cdot) \left(-p + e_{x}(\cdot)\right) = -u_{c}(\cdot) \left(p - e_{x}(\cdot)\right) < 0$$

2. $F(\cdot)$ is continuously differentiable.

To prove that $F(\cdot)$ is continuously differentiable, we need to show that: (a) $F(\cdot)$ is continuous in its domain and (b) $F_s(\cdot)$ and $F_{s'}(\cdot)$ exist and are continuous in their domain. For this proof, consider the above expressions for $F_s(\cdot)$ and $F_{s'}(\cdot)$ and express the extraction cost and its derivatives as functions of s and s' using the law of motion $x = s - s' + \kappa$ as follows:

$$e(s',s) = \psi \frac{(s-s'+\kappa)^{1+\gamma}}{s^{\gamma}}$$

$$e_x\left(s',s\right) = (1+\gamma)\psi\left(\frac{s-s'+\kappa}{s}\right)^{\gamma} = (1+\gamma)\psi\left(1-\frac{(s'-k)}{s}\right)^{\gamma}$$
$$e_s\left(s',s\right) = -\gamma\psi\left(\frac{s-s'+\kappa}{s}\right)^{1+\gamma} = -\gamma\psi\left(1-\frac{(s'-k)}{s}\right)^{1+\gamma},$$

where $e_x(\cdot)$ and $e_s(\cdot)$ are continuous in the domain given by $0 \le s' \le s + k$ and s > 0 with the following upper and lower bounds:

$$e_x (0, s) = 0, \quad e_s (0, s) = 0$$
$$e_x (s+k, s) = (1+\gamma) \psi \left(\frac{s+k}{s}\right)^{\gamma}, \quad e_s (s+k, s) = -\gamma \psi \left(\frac{s+k}{s}\right)^{1+\gamma}$$

If in addition, oil profits are required to be non-negative, which is analogous to the nonnegativity constraint on consumption (or the Inada condition in u(c)) in the texbook Ramsey model, the domain of the cost function and its derivatives requires $px \ge e(\cdot)$. Moreover, if oil revenue is the only income or $y - A \le 0$, the Inada condition would imply that negative profits are never optimal and profits must always be sufficient to sustain c > 0. Using again the law of motion $x = s - s' + \kappa$, we obtain that with non-negative profits the lower bound of s' becomes $s' \ge \kappa + s \left[1 - \left(\frac{p}{\psi} \right)^{\frac{1}{\gamma}} \right]$ instead of s' > 0. Hence, the domain of s' becomes $\kappa + s \left[1 - \left(\frac{p}{\psi} \right)^{\frac{1}{\gamma}} \right] \le s' \le s + \kappa$.

The functions:

$$F(\cdot) = u\left(y - A + p(s - s' + \kappa) - e\left(s - s' + \kappa, s\right)\right)$$

$$F_{s}(\cdot) = u_{c}\left(y - A + p(s - s' + \kappa) - e\left(s - s' + \kappa, s\right)\right) \\ \times \left[p - (1 + \gamma)\psi\left(1 - \frac{(s' - \kappa)}{s}\right)^{\gamma} + \gamma\psi\left(1 - \frac{(s' - \kappa)}{s}\right)^{1+\gamma}\right],$$

$$F_{s'}(\cdot) = -u_{c}\left(y - A + p(s - s' + \kappa) - e\left(s - s' + \kappa, s\right)\right)\left[p - (1 + \gamma)\psi\left(1 - \frac{(s' - \kappa)}{s}\right)^{\gamma}\right],$$
are continuous and exist in the domain defined by $\kappa + s\left[1 - \left(\frac{p}{\psi}\right)^{\frac{1}{\gamma}}\right] \le s' \le s + \kappa$ and $s > 0$
3. $s'(s, p, y)$ is increasing in s .

From the first-order condition for s', this property requires that $-F_{s'}(\cdot) = u_c(\cdot)(p - e_x(\cdot))$ be decreasing in s, since $V_{s'}^d(\cdot)$ is independent of s. Thus, we need to show that $\frac{\partial -F_{s'}(\cdot)}{\partial s} < 0$.

$$\frac{\partial - F_{s'}\left(\cdot\right)}{\partial s} = \left[p - e_x\left(\cdot\right)\right] \left[u_{cc}\left(\cdot\right) \left\{p - e_x\left(\cdot\right) - e_s\left(\cdot\right)\right\}\right] + u_c\left(t\right) \left\{-\left[e_{xx}\left(\cdot\right) + e_{xs}\left(\cdot\right)\right]\right\}.$$

Since $e_s(\cdot) < 0$, $p - e_x(\cdot) > 0$, $u_c(\cdot) > 0$ $u_{cc}(\cdot) < 0$, the above expression is negative if $\{-[e_{xx}(\cdot) + e_{xs}(\cdot)]\} < 0$. To determine the sign of this expression, use the functional form $e(x,s) = \psi \frac{x^{1+\gamma}}{s^{\gamma}}$ to show that the derivatives $e_{xx}(\cdot)$ and $e_{xx}(\cdot)$ can be expressed as follows:

$$e_{xx}(x,s) = \gamma (1+\gamma) \psi \frac{x^{\gamma}}{s^{\gamma}} x^{-1} = e_x(\cdot) \gamma x^{-1} > 0,$$
$$e_{xs}(x,s) = -\gamma (1+\gamma) \psi \frac{x^{\gamma}}{s^{\gamma}} s^{-1} = -e_x(\cdot) \gamma s^{-1} < 0.$$

Using these expressions, we obtain:

$$\{-[e_{xx}(t) + e_{xs}(t)]\} = \{-[e_x(\cdot)\gamma(x^{-1} - s^{-1})]\} < 0 \text{ if } x < s,$$

and using $x = s - s' + \kappa$, the condition x < s implies $s - s' + \kappa < s$ which reduces to:

 $s' > \kappa$.

Hence, s'(s, p, y) is increasing in s if the choice of reserves always exceeds oil discoveries. Since the non-negativity of profits requires $s' \ge \kappa + s \left[1 - \left(\frac{p}{\psi}\right)^{\frac{1}{\gamma}}\right]$ and existing reserves satisfy s > 0, the condition $s' > \kappa$ is implied by the non-negativity of profits if $p^{max} < \psi$ (i.e., ψ is larger than the largest realization of oil prices so that p/ψ is always less than 1). This result also implies that the upper bound on x never binds (since s' is always strictly positive because $s' > \kappa > 0$).

4. $F(\cdot)$ is strictly concave

To show that $F(\cdot)$ is strictly concave, let $H(\cdot)$ be the Hessian matrix of $F(\cdot)$ defined as

$$H\left(\cdot\right) = \left[\begin{array}{cc} F_{ss}\left(\cdot\right) & F_{ss'}\left(\cdot\right) \\ F_{s's}\left(\cdot\right) & F_{s's'}\left(\cdot\right) \end{array} \right]$$

 $F(\cdot)$ is strict concave if $H(\cdot)$ is negative definite. That is

- $F_{ss}(\cdot) < 0$
- $F_{ss}\left(\cdot\right)F_{s's'}\left(\cdot\right)-F_{ss'}\left(\cdot\right)F_{s's}\left(\cdot\right)>0$

 $F_{ss}\left(\cdot\right) = \left[p - e_x\left(\cdot\right) - e_s\left(\cdot\right)\right] u_{cc}\left(\cdot\right) \left[p - e_x\left(\cdot\right) - e_s\left(\cdot\right)\right] + u_c\left(\cdot\right) \left[-e_{xx}\left(\cdot\right) - e_{sx}\left(\cdot\right) - e_{xs}\left(\cdot\right) - e_{ss}\left(\cdot\right)\right] + u_{c}\left(\cdot\right) \left[-e_{xx}\left(\cdot\right) - e_{xs}\left(\cdot\right) - e_{xs}\left(\cdot\right) - e_{xs}\left(\cdot\right)\right] + u_{c}\left(\cdot\right) \left[-e_{xx}\left(\cdot\right) - e_{xs}\left(\cdot\right) + e_{xs}\left(\cdot\right) - e_{xs}\left(\cdot\right)$

Recall

$$e(x,s) = \psi \frac{x^{1+\gamma}}{s^{\gamma}} e_x(x,s) = (1+\gamma) \psi \left(\frac{x}{s}\right)^{\gamma} e_s(x,s) = -\gamma \psi \left(\frac{x}{s}\right)^{1+\gamma}$$

Where

1.
$$e_{xx}(x,s) = \gamma (1+\gamma) \psi \frac{x^{\gamma}}{s^{\gamma}} x^{-1} = e_x(\cdot) \gamma x^{-1} > 0$$

2. $e_{xs}(x,s) = -\gamma (1+\gamma) \psi \frac{x^{\gamma}}{s^{\gamma}} s^{-1} = -e_x(\cdot) \gamma s^{-1} < 0$
3. $e_{sx}(x,s) = -\gamma (1+\gamma) \psi \left(\frac{x}{s}\right)^{1+\gamma} x^{-1} = e_s(\cdot) (1+\gamma) x^{-1}$
4. $e_{ss}(x,s) = \gamma (1+\gamma) \psi \left(\frac{x}{s}\right)^{1+\gamma} s^{-1} = -e_s(\cdot) (1+\gamma) s^{-1}$

Additionally, from 3. we can obtain:

$$e_{sx}(x,s) = -\gamma \left(1+\gamma\right) \psi \left(\frac{x}{s}\right)^{1+\gamma} x^{-1} = -e_x\left(\cdot\right) \gamma s^{-1}$$

Using $-e_{x}\left(\cdot\right)\gamma s^{-1}=e_{s}\left(\cdot\right)\left(1+\gamma\right)x^{-1}$,

$$e_{x}(\cdot) = -e_{s}(\cdot) \frac{(1+\gamma)}{\gamma} x^{-1}s,$$
1. $e_{xx}(x,s) = e_{x}(\cdot) \gamma x^{-1} = -e_{s}(\cdot) (1+\gamma) x^{-2}s$
2. $e_{xs}(x,s) = -e_{x}(\cdot) \gamma s^{-1} = e_{s}(\cdot) (1+\gamma) x^{-1}$
3. $e_{sx}(x,s) = e_{s}(\cdot) (1+\gamma) x^{-1} = e_{xs}(x,s)$
4. $e_{ss}(x,s) = -e_{s}(\cdot) (1+\gamma) s^{-1}$

Then

$$F_{ss}(\cdot) = [p - e_x(\cdot) - e_s(\cdot)] u_{cc}(\cdot) [p - e_x(\cdot) - e_s(\cdot)] + u_c(\cdot) \{-[e_{xx}(\cdot) + 2e_{xs}(\cdot) + e_{ss}(\cdot)]\}$$

$$F_{ss}(\cdot) = [p - e_x(\cdot) - e_s(\cdot)] u_{cc}(\cdot) [p - e_x(\cdot) - e_s(\cdot)] + u_c(\cdot) \left\{ - \left[\left\{ -e_s(\cdot) (1 + \gamma) x^{-2} s \right\} + 2 \left\{ e_s(\cdot) (1 + \gamma) x^{-1} \right\} + \left\{ -e_s(\cdot) (1 + \gamma) s^{-1} \right\} \right] \right\}$$

$$F_{ss}\left(\cdot\right) = u_{cc}^{\ominus}\left(\cdot\right)\left[p - e_{x}\left(\cdot\right) - e_{s}\left(\cdot\right)\right]^{2} + u_{c}^{\ominus}\left(\cdot\right)\left\{e_{s}\left(\cdot\right)\left(1 + \gamma\right)\left[x^{-2}s - 2x^{-1} + s^{-1}\right]\right\}$$

For $F_{ss}\left(\cdot\right) < 0$ to hold, $\left[x^{-2}s - 2x^{-1} + s^{-1}\right]$ must be positive

$$x^{-2}s - 2x^{-1} + s^{-1} > 0$$
$$\frac{1}{x}\left(\frac{s}{x} - 2\right) + \frac{1}{s} > 0$$
$$\frac{1}{x}\left(\frac{s}{x} - 2\right) > -\frac{1}{s}$$
$$\left(\frac{s}{x} - 2\right) > -\frac{x}{s}$$
$$\left(\frac{s}{x} - 2\right) > -\frac{x}{s}$$
$$\left(\frac{s}{x} + \frac{x}{s}\right) > 2$$
$$s^{2} + x^{2} - 2sx > 0$$

$$(s-x)^2 > 0$$

 $(s'-k)^2 > 0$

Which holds in domain of

$$k + s \left[1 - \left(\frac{p}{\psi}\right)^{\frac{1}{\gamma}} \right] \le s' \le s + k$$
$$s > 0$$

Finally for $F_{ss}\left(\cdot\right)F_{s's'}\left(\cdot\right)-F_{ss'}\left(\cdot\right)F_{s's}\left(\cdot\right)>0$

$$F_{s'}\left(\cdot\right) = -u_c\left(\cdot\right)\left(p - e_x\left(\cdot\right)\right)$$

$$F_{s's'}\left(\cdot\right) = -\left(-p + e_x\left(\cdot\right)\right)u_{cc}\left(\cdot\right)\left(p - e_x\left(\cdot\right)\right) + \left\{-u_c\left(\cdot\right)\left[-e_{xs'}\left(\cdot\right)\right]\right\}$$

$$F_{s's'}(\cdot) = -(-p + e_x(\cdot)) u_{cc}(\cdot) (p - e_x(\cdot)) + \{u_c(\cdot) [e_{xs'}(\cdot)]\}$$

$$e_x(x,s) = (1+\gamma)\psi\left(\frac{s-s'+k}{s}\right)^{\gamma}$$

$$e_{xs'}\left(\cdot\right) = -\gamma\left(1+\gamma\right)\psi\left(\frac{x}{s}\right)^{\gamma}x^{-1} = -\gamma e_x\left(\cdot\right)x^{-1} = -e_{xx}\left(\cdot\right) < 0$$

$$F_{s's'}(\cdot) = u_{cc}(\cdot) (p - e_x(\cdot))^2 - \{u_c(\cdot) [e_{xx}(\cdot)]\}$$

And

$$F_{s}(\cdot) = u_{c}(\cdot) \left(p - e_{x}(\cdot) - e_{s}(\cdot)\right)$$

$$F_{ss'}\left(\cdot\right) = \left[\left(-p + e_x\left(\cdot\right)\right)u_{cc}\left(\cdot\right)\left(p - e_x\left(\cdot\right) - e_s\left(\cdot\right)\right)\right] + \left[u_c\left(\cdot\right)\left(-e_{xs'}\left(\cdot\right) - e_{ss'}\left(\cdot\right)\right)\right]$$

$$F_{ss'}(\cdot) = [(-p + e_x(\cdot)) u_{cc}(\cdot) (p - e_x(\cdot) - e_s(\cdot))] - [u_c(\cdot) (e_{xs'}(\cdot) + e_{ss'}(\cdot))]$$
$$F_{ss'}(\cdot) = [(-p + e_x(\cdot)) u_{cc}(\cdot) (p - e_x(\cdot) - e_s(\cdot))] - [u_c(\cdot) (-e_{xx}(\cdot) - e_{sx}(\cdot))]$$

$$F_{ss'}(\cdot) = \left[-\left(p - e_x(\cdot)\right)u_{cc}(\cdot)\left(p - e_x(\cdot) - e_s(\cdot)\right)\right] + \left[u_c(\cdot)\left(e_{xx}(\cdot) + e_{sx}(\cdot)\right)\right]$$

And

$$F_{s's}\left(\cdot\right) = -\left(p - e_x\left(\cdot\right) - e_s\left(\cdot\right)\right)u_{cc}\left(\cdot\right)\left(p - e_x\left(\cdot\right)\right) - u_c\left(\cdot\right)\left(-e_{xx}\left(\cdot\right) - e_{xs}\left(\cdot\right)\right)$$

$$F_{s's}\left(\cdot\right) = -\left(p - e_x\left(\cdot\right) - e_s\left(\cdot\right)\right)u_{cc}\left(\cdot\right)\left(p - e_x\left(\cdot\right)\right) + u_c\left(\cdot\right)\left(e_{xx}\left(\cdot\right) + e_{xs}\left(\cdot\right)\right)$$

Let

$$M \equiv [p - e_x(\cdot) - e_s(\cdot)]$$
$$q^o \equiv [p - e_x(\cdot)]$$
$$A \equiv [e_{xx}(\cdot) + 2e_{xs}(\cdot) + e_{ss}(\cdot)]$$
$$B \equiv [e_{xx}(\cdot)]$$

$$C \equiv \left(e_{xx}\left(\cdot\right) + e_{sx}\left(\cdot\right)\right)$$

Rewriting the system

$$F_{ss}\left(\cdot\right) = u_{cc}\left(\cdot\right)M^2 - u_c\left(\cdot\right)A$$

$$F_{s's'}(\cdot) = u_{cc}(\cdot) (q^o)^2 - u_c(\cdot) B$$
$$F_{ss'}(\cdot) = -u_{cc}(\cdot) Mq^o + u_c(\cdot) C$$

$$F_{s's}\left(\cdot\right) = -u_{cc}\left(\cdot\right)Mq^{o} + u_{c}\left(\cdot\right)C$$

Operating $F_{ss}\left(\cdot\right)F_{s's'}\left(\cdot\right)$

$$F_{ss}(\cdot) F_{s's'}(\cdot) = \left\{ u_{cc}(\cdot) M^2 - u_{c}(\cdot) A \right\} \left\{ u_{cc}(\cdot) (q^o)^2 - u_{c}(\cdot) B \right\}$$

$$F_{ss}(\cdot) F_{s's'}(\cdot) = [u_{cc}(\cdot)]^2 [Mq^o]^2 - u_{cc}(\cdot) u_c(\cdot) BM^2 - u_{cc}(\cdot) u_c(\cdot) A [q^o]^2 + [u_c(\cdot)]^2 AB$$

And $F_{ss'}\left(\cdot\right)F_{s's}\left(\cdot\right)$

$$F_{s's}\left(\cdot\right)F_{ss'}\left(\cdot\right) = \left\{-u_{cc}\left(\cdot\right)Mq^{o} + u_{c}\left(\cdot\right)C\right\}\left\{-u_{cc}\left(\cdot\right)Mq^{o} + u_{c}\left(\cdot\right)C\right\}$$

$$F_{s's}(\cdot) F_{ss'}(\cdot) = [u_{cc}(\cdot)]^2 [Mq^o]^2 - 2u_{cc}(\cdot) u_c(\cdot) CMq^o + [u_c(\cdot)]^2 C^2$$

So $F_{ss}(\cdot) F_{s's'}(\cdot) - [F_{ss'}(\cdot)]^2 > 0$

$$F_{ss}(\cdot) F_{s's'}(\cdot) - F_{ss'}(\cdot) F_{s's}(\cdot) = [u_{cc}(\cdot)]^2 [Mq^o]^2 - u_{cc}(\cdot) u_c(\cdot) BM^2 - u_{cc}(\cdot) u_c(\cdot) A [q^o]^2 + [u_c(\cdot)]^2 AB - [u_{cc}(\cdot)]^2 [Mq^o]^2 + 2u_{cc}(\cdot) u_c(\cdot) CMq^o - [u_c(\cdot)]^2 C^2 > 0$$

$$F_{ss}\left(\cdot\right)F_{s's'}\left(\cdot\right) - F_{ss'}\left(\cdot\right)F_{s's}\left(\cdot\right) = -u_{cc}\left(\cdot\right)u_{c}\left(\cdot\right)\left[BM^{2} - 2CMq^{o} + A\left(q^{o}\right)^{2}\right] + \left[u_{c}\left(\cdot\right)\right]^{2}\left[AB - C^{2}\right]$$
Replacing $\left[AB - C^{2}\right]$

Replacing $\left[AB - C^2\right]$

$$AB = \left[e_{xx}\left(\cdot\right)\right]^{2} + 2e_{xs}\left(\cdot\right)e_{xx}\left(\cdot\right) + e_{ss}\left(\cdot\right)e_{xx}\left(\cdot\right)$$

$$C^{2} = [e_{xx}(\cdot)]^{2} + 2e_{xx}(\cdot)e_{sx}(\cdot) + [e_{sx}(\cdot)]^{2}$$

$$[AB - C^{2}] = [e_{xx}(\cdot)]^{2} + 2e_{xs}(\cdot) e_{xx}(\cdot) + e_{ss}(\cdot) e_{xx}(\cdot) - [e_{xx}(\cdot)]^{2} - 2e_{xx}(\cdot) e_{sx}(\cdot) - [e_{sx}(\cdot)]^{2}$$

$$\left[AB - C^{2}\right] = e_{ss}\left(\cdot\right)e_{xx}\left(\cdot\right) - \left[e_{sx}\left(\cdot\right)\right]^{2}$$

Recall

1.
$$e_{xx}(x,s) = e_x(\cdot)\gamma x^{-1} = -e_s(\cdot)(1+\gamma)x^{-2}s$$

2. $e_{xs}(x,s) = -e_x(\cdot)\gamma s^{-1} = e_s(\cdot)(1+\gamma)x^{-1}$
3. $e_{sx}(x,s) = e_s(\cdot)(1+\gamma)x^{-1} = e_{xs}(x,s)$
4. $e_{ss}(x,s) = -e_s(\cdot)(1+\gamma)s^{-1}$
 $[AB - C^2] = \{-e_s(\cdot)(1+\gamma)s^{-1}\}\{-e_s(\cdot)(1+\gamma)x^{-2}s\} - [e_s(\cdot)(1+\gamma)x^{-1}]^2$
 $[AB - C^2] = \{[e_s(\cdot)]^2(1+\gamma)^2x^{-2}\} - [e_s(\cdot)(1+\gamma)x^{-1}]^2$
 $[AB - C^2] = \{[e_s(\cdot)]^2(1+\gamma)^2x^{-2}\} - [e_s(\cdot)(1+\gamma)x^{-1}]^2$
 $[AB - C^2] = \{[e_s(\cdot)]^2(1+\gamma)^2x^{-2}\} - [e_s(\cdot)(1+\gamma)x^{-2}x^{-2}\}$

So the expression $F_{ss}\left(\cdot\right)F_{s's'}\left(\cdot\right)-F_{ss'}\left(\cdot\right)F_{s's}\left(\cdot\right)$ is redefined as,

$$F_{ss}(\cdot) F_{s's'}(\cdot) - F_{ss'}(\cdot) F_{s's}(\cdot) = -u_{cc}(\cdot) u_{c}(\cdot) \left[BM^{2} - 2CMq^{o} + A(q^{o})^{2} \right]$$

Then, since $-u_{cc}(\cdot) u_{c}(\cdot) > 0$, $F_{ss}(\cdot) F_{s's'}(\cdot) - F_{ss'}(\cdot) F_{s's}(\cdot) > 0$ holds if,

$$\left[BM^2 - 2CMq^o + A\left(q^o\right)^2\right] > 0$$

Let

$$Z \equiv \frac{M}{q^o}$$

$$\left[BZ^2 - 2CZ + A\right] > 0$$

Solving the inequality

$$Z > \frac{2C \pm \sqrt{4C^2 - 4AB}}{2B}$$
$$Z > \frac{C \pm 2\sqrt{C^2 - AB}}{B}$$

As we show $AB - C^2 = 0$

$$Z > \frac{C}{B}$$

Replacing $Z \equiv \frac{M}{q^o}$

$$\frac{M}{q^o} > \frac{C}{B}$$

Since $M = q^{o} - e_{s}\left(\cdot\right)$

$$\frac{q^{o} - e_{s}\left(\cdot\right)}{q^{o}} > \frac{C}{B}$$
$$1 - \frac{e_{s}\left(\cdot\right)}{q^{o}} > \frac{C}{B}$$

$$1 - \frac{C}{B} > \frac{e_s\left(\cdot\right)}{q^o}$$

$$\frac{B-C}{B} > \frac{e_{s}\left(\cdot\right)}{q^{o}}$$

Since $\frac{e_s(\cdot)}{q^o} < 0$ it is sufficient to show B-C>0 Recall

$$B \equiv [e_{xx} (\cdot)]$$
$$C \equiv (e_{xx} (\cdot) + e_{sx} (\cdot))$$

$$B - C > 0$$
$$e_{xx}(\cdot) - e_{xx}(\cdot) - e_{sx}(\cdot) > 0$$

 $-e_{sx}\left(\cdot\right)>0$

Recall $e_{sx}(\cdot) = e_s(\cdot)(1+\gamma)x^{-1}$

 $-e_{s}\left(\cdot\right)\left(1+\gamma\right)x^{-1}>0$

Since $e_{s}\left(\cdot\right)<0$, the condition holds in domain of

$$k + s \left[1 - \left(\frac{p}{\psi}\right)^{\frac{1}{\gamma}} \right] \le s' \le s + k$$

J Business Cycle Moments by Country

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
			Defaulters				
1. Algeria							
Oil price	0	0.18202	0.12147	1	0.60593	0.86634	0.84749
Non-oil GDP	0	0.049395	0.47551	-0.23628	-0.094443	0.11386	0.52334
GDP	0	0.024752	1	0.12147	0.15821	0.34198	0.73414
Oil production	0	0.053372	0.3074	0.18849	0.25201	0.14864	0.63562
Consumption	0	0.033709	0.50335	0.030535	0.026005	0.21056	0.56724
Gross oil output	0	0.20108	0.2301	0.42278	0.23747	0.19343	0.25491
Trade balance to GDP	0.051308	0.094454	0.096215	0.26867	0.47205	0.0025333	0.74715
Institutional Investor Index	42.7099	12.2003	0.34198	0.86634	0.38626	1	0.93769
Debt to GDP	0.32898	0.22219	-0.39214	-0.76632	-0.79507	-0.73833	0.92074
Reserves	9.9381	1.471	0.15821	0.60593	1	0.38626	0.89187
Total Debt	51.4296	28.23	-0.3002	-0.82656	-0.82417	-0.72306	0.91817
2. Angola							
Oil price	0	0.18202	0.1278	1	0.43503	0.77286	0.84749
Non-oil GDP	0	0.14135	0.5386	-0.13	-0.00055829	0.025451	0.29789
GDP	0	0.077409	1	0.1278	0.076171	0.093347	0.65645
Oil production	0	0.12037	0.63629	0.047291	0.10218	0.11615	0.6129
Consumption	0	0.029976	-0.13614	0.018858	0.057124	-0.054983	0.29984
Gross oil output	0	0.22578	0.45932	0.3572	0.075461	0.13198	0.33259
Trade balance to GDP	0.16158	0.10714	0.18158	0.21714	-0.00080032	0.030024	0.1676
Institutional Investor Index	19.1445	9.5761	0.093347	0.77286	0.80215	1	0.91153
Debt to GDP	0.73997	0.64742	-0.53112	-0.69736	-0.51013	-0.64947	0.83586
Reserves	4.6649	3.0696	0.076171	0.43503	1	0.80215	0.90737
Total Debt	72.7056	59.0513	-0.19186	-0.66452	-0.28245	-0.60741	0.70937
3. Argentina							
Oil price	0	0.18202	0.034086	1	0.31432	0.26231	0.84749
Non-oil GDP	0	0.064923	0.99358	0.0042762	-0.30157	0.56915	0.60668
GDP	0	0.061199	1	0.034086	-0.31465	0.5831	0.6004
Oil production	0	0.051743	0.30411	-0.091604	0.18964	0.50553	0.78416
Consumption	0	0.067635	0.95562	0.017355	-0.35319	0.61901	0.59212
Gross oil output	0	0.17838	0.13156	0.39824	-0.077621	0.27276	0.17326
Trade balance to GDP	0.023568	0.039506	-0.72317	0.14959	0.45455	-0.56829	0.67007
Institutional Investor Index	32.8994	11.0973	0.5831	0.26231	0.035197	1	0.71106
Debt to GDP	0.3049	0.18544	-0.64625	-0.37286	0.28406	-0.59689	0.64215
Reserves	2.4436	0.35208	-0.31465	0.31432	1	0.035197	0.80351
Total Debt	51.6696	28.6498	-0.6713	-0.15385	0.41493	-0.63168	0.67686

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
4. Brazil							
Oil price	0	0.18202	-0.024834	1	0.49806	0.79039	0.84749
Non-oil GDP	0	0.031904	0.995	-0.049718	-0.005606	0.13673	0.53178
GDP	0	0.030964	1	-0.024834	-0.00017989	0.12743	0.51617
Oil production	0	0.098616	-0.042723	-0.049722	0.043541	-0.17762	0.74246
Consumption	0	0.023024	0.68973	-0.050018	-0.016978	0.15284	0.62325
Gross oil output	0	0.19681	-0.14609	0.36011	0.066779	0.007495	0.19901
Trade balance to GDP	0.0062973	0.02584	-0.14629	-0.072047	-0.34401	-0.46856	0.77803
Institutional Investor Index	44.1188	14.4936	0.12743	0.79039	0.7969	1	0.91109
Debt to GDP	0.17167	0.098496	-0.18291	-0.39401	-0.81942	-0.78011	0.92278
Reserves	6.4396	4.5441	-0.00017989	0.49806	1	0.7969	0.91461
Total Debt	60.4659	16.342	-0.16848	-0.19718	0.28742	-0.12239	0.61726
5. Ecuador							
Oil price	0	0.18202	0.051057	1	0.58312	0.5854	0.84749
Non-oil GDP	0	0.037235	0.54629	-0.21933	0.017453	0.14004	0.25751
GDP	0	0.020902	1	0.051057	0.056465	0.28225	0.45286
Oil production	0	0.097024	0.39881	0.033802	0.050543	0.052916	-0.046454
Consumption	0	0.028389	0.77422	0.023455	0.02264	0.22543	0.32885
Gross oil output	0	0.20848	0.24602	0.37527	0.037589	0.11712	0.34209
Trade balance to GDP	-0.013223	0.029856	-0.094194	0.21103	-0.067087	0.045609	0.24675
Institutional Investor Index	27.7376	9.1089	0.28225	0.5854	-0.022518	1	0.79698
Debt to GDP	0.42338	0.21561	-0.22603	-0.88703	-0.6235	-0.57583	0.89807
Reserves	3.0755	2.1566	0.056465	0.58312	1	-0.022518	0.8648
Total Debt	54.1452	27.8287	-0.18635	-0.80185	-0.62826	-0.58214	0.89795
6. Gabon							
Oil price	0	0.18202	-0.042988	1	0.07798	0.63564	0.84749
Non-oil GDP	0	0.12207	0.48721	-0.23237	-0.053168	0.067017	0.14097
GDP	0	0.049374	1	-0.042988	-0.0037056	-0.026527	0.42249
Oil production	0	0.10043	0.44186	0.047309	0.009268	-0.12596	0.64414
Consumption	0	0.059532	0.34465	-0.032275	-0.011857	0.1533	0.15307
Gross oil output	0	0.2277	0.17888	0.35005	-0.057871	-0.10572	0.31161
Trade balance to GDP	0.19825	0.12625	0.070059	0.47261	0.48684	-0.21946	0.65996
Institutional Investor Index	30.9989	6.8734	-0.026527	0.63564	-0.36294	1	0.87933
Debt to GDP	0.46043	0.22137	-0.019771	-0.87982	0.035243	-0.71143	0.88292
Reserves	1.4738	0.82694	-0.0037056	0.07798	1	-0.36294	0.93084
		0.0407 1	0.000,000	0.01170	-	0.002/1	0.2001

		Standard Dev.	Corr(1,GDP)	Corr(1,Oil Price)	Corr(1,Reserves)	Corr(1,III)	Acorr
7. Indonesia							
Oil price	0	0.18202	0.053508	1	-0.11502	0.45531	0.84749
Non-oil GDP	0	0.046084	0.89693	-0.034757	-0.070217	0.54932	0.57237
GDP	0	0.03981	1	0.053508	-0.083444	0.59106	0.65606
Oil production	0	0.042957	0.20162	-0.09781	-0.012229	0.081818	0.46736
Consumption	0	0.033207	0.75728	0.022585	-0.04999	0.3798	0.51527
Gross oil output	0	0.18137	0.31897	0.39463	0.064644	0.22136	0.16729
Trade balance to GDP	0.029811	0.034131	-0.59189	-0.25534	-0.1687	-0.73348	0.57345
Institutional Investor Index	46.395	10.1564	0.59106	0.45531	0.22458	1	0.89033
Debt to GDP	0.31423	0.13998	-0.45537	-0.80597	0.2782	-0.50932	0.74508
Reserves	6.2538	2.2037	-0.083444	-0.11502	1	0.22458	0.85514
Total Debt	39.2984	19.4416	-0.62056	-0.59725	-0.21956	-0.86968	0.82975
8. Iran							
Oil price	0	0.18202	0.15857	1	0.40507	0.054683	0.84749
Non-oil GDP	0	0.073453	0.60377	-0.050171	-0.10405	-0.015032	0.3807
GDP	0	0.073615	1	0.15857	0.098755	0.35133	0.28258
Oil production	0	0.12585	0.86464	0.095334	0.19691	0.40041	0.07954
Consumption	0	0.060214	0.73043	0.21046	0.030794	0.28754	0.61748
Gross oil output	0	0.24475	0.69768	0.35528	0.18975	0.30947	0.17973
Trade balance to GDP	-0.0076219	0.078019	0.29908	0.097042	0.50352	0.55082	0.5453
Institutional Investor Index	27.2039	7.7952	0.35133	0.054683	0.68527	1	0.83778
Debt to GDP	0.042387	0.04314	0.038605	-0.49961	-0.11957	0.1153	0.77461
Reserves	97.671	32.9913	0.098755	0.40507	1	0.68527	0.8819
Total Debt	25.8154	14.863	-0.38321	-0.37097	-0.52886	-0.62742	0.74972
9. Iraq							
Oil price	0	0.18202	-0.010138	1	-0.019418	0.68839	0.84749
Non-oil GDP	0	0.17174	0.26918	-0.047664	-0.097586	0.085655	0.029526
GDP	0	0.18404	1	-0.010138	-0.029922	0.080636	0.16095
Oil production	0	0.45619	0.71465	-0.061324	0.13592	0.079961	0.58805
Consumption	0	NaN	NaN	NaN	NaN	NaN	NaN
Gross oil output	0	0.45053	0.70353	0.10428	0.13296	0.11704	0.44848
Trade balance to GDP	0.045435	0.15317	0.11515	0.091827	0.50183	-0.00022145	0.46848
Institutional Investor Index	18.662	13.346	0.080636	0.68839	-0.44838	1	0.80853
Debt to GDP	NaN	NaN	NaN	NaN	NaN	- NaN	NaN
	95 4903	33 2975	-0 029922	-0 019418	1	-0 44838	0.86665
Keserves	·· · · · · · · · · · · · · · · · · · ·	00.2710	0.04//44	0.01/110	+	0.11000	0.00000

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
10. Mexico							
Oil price	0	0.18202	0.092198	1	-0.60096	0.72544	0.84749
Non-oil GDP	0	0.032551	0.92799	-0.011324	0.02944	0.24804	0.3285
GDP	0	0.030111	1	0.092198	0.017065	0.20485	0.34012
Oil production	0	0.077306	0.55276	0.0087796	0.033767	-0.090297	0.5015
Consumption	0	0.031051	0.93123	0.12556	-0.056781	0.27185	0.4196
Gross oil output	0	0.19909	0.45499	0.3799	-0.048464	0.10932	0.2138
Trade balance to GDP	-0.0022552	0.03185	-0.22031	0.030631	0.38487	-0.47624	0.7678
Institutional Investor Index	52.5603	14.5972	0.20485	0.72544	-0.80462	1	0.8892
Debt to GDP	0.22286	0.12516	-0.35314	-0.209	0.60275	-0.72996	0.8757
Reserves	34.5215	18.1988	0.017065	-0.60096	1	-0.80462	0.9166
Total Debt	46.7147	11.6141	-0.4022	-0.22242	0.38067	-0.61867	0.7258
11. Nigeria							
Oil price	0	0.18202	0.17039	1	0.63731	0.87623	0.8474
Non-oil GDP	0	0.069396	0.32629	-0.037719	-0.055911	0.1627	0.1686
GDP	0	0.055495	1	0.17039	0.10299	0.19702	0.7015
Oil production	0	0.089818	0.62918	0.07489	0.091378	0.0054419	0.4872
Consumption	0	0.11459	0.5226	0.088171	0.05639	0.13622	0.2597
Gross oil output	0	0.21086	0.43751	0.38738	0.18211	0.15793	0.2788
Trade balance to GDP	0.071467	0.05457	0.20338	0.096052	0.24205	-0.19605	0.1464
Institutional Investor Index	28.5439	12.419	0.19702	0.87623	0.35007	1	0.8869
Debt to GDP	0.29304	0.26822	0.070585	-0.84592	-0.64236	-0.75736	0.8984
Reserves	23.6913	8.6542	0.10299	0.63731	1	0.35007	0.9206
Total Debt	66.8785	54.7299	-0.045511	-0.78722	-0.71858	-0.65879	0.8799
12. Russia							
Oil price	0	0.18202	0.2719	1	0.55311	0.80289	0.8474
Non-oil GDP	0	0.062358	0.94979	0.23707	0.2257	0.30558	0.6328
GDP	0	0.067967	1	0.2719	0.19922	0.27066	0.6156
Oil production	0	0.062511	0.88223	0.1946	0.22979	0.26284	0.6484
Consumption	0	0.048853	0.76437	0.27278	0.23107	0.32728	0.7311
Gross oil output	0	0.21767	0.81236	0.3303	0.13583	0.22346	0.32
Trade balance to GDP	0.09276	0.044501	0.26678	-0.043356	-0.33218	-0.078509	0.6427
Institutional Investor Index	44.0281	20.5408	0.27066	0.80289	0.59573	1	0.925
Debt to GDP	0.20467	0.13006	-0.59291	-0.66382	-0.60589	-0.76039	0.7778
Reserves	58.4132	9.512	0.19922	0.55311	1	0.59573	0.644
Total Debt	38.8104	31.7584	-0.016431	-0.69739	-0.45332	-0.86177	0.7734

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
- Cumun							_
13. JUDAN	0	0 18202	0 10260	1	0 74125	0 54717	0 84740
	0	0.18202	0.10269	1	0.74135	0.34/1/	0.84749
Non-oll GDP	0	0.058045	0.52293	-0.13108	0.059501	0.4291	0.25786
GDr Oʻlaring davati or	0	0.031155	1	0.10269	0.14085	0.4361	0.37464
	0	0.72661	0.36305	-0.0084862	-0.082255	0.16519	0.49178
Consumption	0	0.051675	0.79625	0.07848	0.11023	0.34266	0.55617
Gross oil output	0	0.76737	0.40793	0.069806	-0.052558	0.20926	0.38924
Trade balance to GDP	-0.033098	0.036949	0.21206	0.45423	0.52063	0.41664	0.33045
Institutional Investor Index	9.435	2.4371	0.4381	0.54717	0.46449	1	0.78572
Debt to GDP	0.57049	0.30479	-0.25856	-0.68829	-0.71035	-0.82402	0.75686
Reserves	1.9854	2.2537	0.14085	0.74135	1	0.46449	0.85812
Total Debt	151.2396	97.4567	-0.13478	-0.57317	-0.58696	-0.77624	0.59737
14. Venezuela							
Oil price	0	0.18202	0.10281	1	0.43225	0.50023	0.84749
Non-oil GDP	0	0.091015	0.66055	-0.12132	-0.056011	0.15224	0.35908
GDP	0	0.058581	1	0.10281	-0.024891	0.33555	0.53322
Oil production	0	0.06455	0.59643	-0.011309	0.13291	0.28042	0.55666
Consumption	0	0.061368	0.85383	0.15415	-0.12276	0.32052	0.59518
Gross oil output	0	0.19167	0.41066	0.38726	-0.005015	0.25628	0.23017
Trade balance to GDP	0.058102	0.077381	-0.32614	-0.037448	-0.32518	-0.12908	0.36541
Institutional Investor Index	40.0426	11.0146	0.33555	0.50023	-0.30061	1	0.79414
Debt to GDP	0.30327	0.12997	-0.21128	-0.81101	-0.38869	-0.43579	0.85081
Reserves	81.6334	68.6858	-0.024891	0.43225	1	-0.30061	0.7755
Total Debt	38.5001	16.0959	-0.41222	-0.15469	0.58401	-0.69161	0.75068
15. Vietnam							
Oil price	0	0.18202	-0.063041	1	0.46626	0.73752	0.84749
Non-oil GDP	0	0.024728	0.84349	-0.18059	-0.066845	0.13148	0.66492
GDP	0	0.016654	1	-0.063041	-0.13467	0.18874	0.6636
Oil production	0	0.34284	-0.7322	0.0038434	0.0055359	-0.16185	0.35955
Consumption	0	0.023801	0.54768	0.11043	-0.19696	0.33064	0.67519
Gross oil output	0	0.41887	-0.64234	0.15838	-0.03544	-0.032436	0.34928
Trade balance to GDP	-0.068455	0.047577	-0.2561	0.30688	0.67755	0.04364	0.55626
Institutional Investor Index	35.8785	9.7368	0.18874	0.73752	0.35861	1	0.84578
Debt to GDP	0.76606	0.89076	-0.44188	-0.32025	-0.17845	-0.43097	0.73128
Reserves	1.05	1.2941	-0.13467	0.46626	1	0.35861	0.66284
		40.407/	0.1610	0.001/1	-	0.50001	0.50201

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
16. Yemen							
Oil price	0	0.18202	-0.0444	1	-0.12154	-0.13002	0.84749
Non-oil GDP	0	0.094879	0.31162	-0.14784	-0.045711	-0.13788	0.29921
GDP	0	0.027804	1	-0.0444	-0.025765	0.46008	0.17201
Oil production	0	0.3665	0.057148	-0.0039444	0.35407	0.063962	0.33813
Consumption	0	NaN	NaN	NaN	NaN	NaN	NaN
Gross oil output	0	0.42209	0.011548	0.15062	0.33423	0.1877	0.41198
Trade balance to GDP	-0.06614	0.035184	0.23654	-0.021483	-7.29e-17	0.2341	-0.11407
Institutional Investor Index	26.062	4.6396	0.46008	-0.13002	0.11777	1	0.804
Debt to GDP	0.533	0.36362	-0.026591	-0.67409	0.25251	0.059943	0.84729
Reserves	3.3666	1.1196	-0.025765	-0.12154	1	0.11777	0.62868
Total Debt	76.747	47.0205	-0.031907	-0.57385	0.19513	-0.042079	0.6939
			Non-Defaulters				
17. Azerbaijan							
Oil price	0	0.18202	0.21181	1	0.62293	0.42364	0.84749
Non-oil GDP	0	0.14018	0.87752	0.084549	0.16139	0.16346	0.46703
GDP	0	0.14569	1	0.21181	0.28169	0.17802	0.61574
Oil production	0	0.16765	0.84413	0.13629	0.088299	0.30632	0.65709
Consumption	0	0.15356	0.86902	0.17327	0.13545	0.10888	0.46498
Gross oil output	0	0.28027	0.78874	0.29466	0.27724	0.29143	0.52646
Trade balance to GDP	0.051233	0.25159	0.66768	0.69511	0.53064	0.51948	0.75444
Institutional Investor Index	43.047	8.9829	0.17802	0.42364	0.27873	1	0.74146
Debt to GDP	0.097518	0.039908	-0.37481	-0.13065	-0.2358	-0.62979	0.71651
Reserves	5.0593	2.8241	0.28169	0.62293	1	0.27873	0.80556
Total Debt	15.5461	5.9003	-0.2411	-0.47873	-0.59967	-0.4971	0.77035
18. China							
Oil price	0	0.18202	-0.036086	1	-0.47398	0.84405	0.84749
Non-oil GDP	0	0.032768	0.96633	-0.10071	-0.28496	0.28244	0.67975
GDP	0	0.030865	1	-0.036086	-0.27416	0.3101	0.68824
Oil production	0	0.027673	0.57384	-0.060982	-0.072393	0.19003	0.57637
Consumption	0	0.017956	0.16566	0.061627	0.10645	0.047153	0.41269
Gross oil output	0	0.17455	-0.030224	0.41976	-0.12395	0.09737	0.11062
Trade balance to GDP	0.020206	0.027838	-0.096362	0.21084	-0.21181	0.19404	0.75323
Institutional Investor Index	65.2294	8.445	0.3101	0.84405	-0.55666	1	0.90512
Debt to GDP	0.066389	0.046554	0.05866	-0.78616	0.61028	-0.79031	0.9377
Reserves	21.1141	2.8723	-0.27416	-0.47398	1	-0.55666	0.80603
Total Debt	19.4289	11.9003	-0.082252	0.52356	-0.098074	0.57411	0.87207

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
19. Colombia							
Oil price	0	0.18202	0.023415	1	-0.47787	0.77307	0.84749
Non-oil GDP	0	0.027483	0.93808	-0.048825	0.29114	0.33976	0.69423
GDP	0	0.025402	1	0.023415	0.34775	0.32465	0.72272
Oil production	0	0.12805	0.13207	-0.22519	0.38682	0.0021588	0.63081
Consumption	0	0.026964	0.87274	-0.016224	0.40004	0.40695	0.79227
Gross oil output	0	0.17366	0.2131	0.27031	0.1534	0.10656	0.08262
Trade balance to GDP	-0.017071	0.034053	-0.36393	-0.028673	-0.29959	-0.35708	0.73896
Institutional Investor Index	47.6329	9.3616	0.32465	0.77307	-0.1543	1	0.86378
Debt to GDP	0.20429	0.076394	-0.35729	-0.51183	-0.079178	-0.76895	0.88924
Reserves	1.7719	0.74994	0.34775	-0.47787	1	-0.1543	0.8471
Total Debt	33.028	8.3529	-0.42967	-0.18933	0.44906	-0.26016	0.78438
20. Едурт							
Oil price	0	0.18202	0.00098939	1	-0.18737	0.28561	0.84749
Non-oil GDP	0	0.04091	0.69954	-0.2254	-0.20686	0.14379	0.56325
GDP	0	0.021784	1	0.00098939	-0.29075	0.23407	0.65191
Oil production	0	0.042294	0.3223	-0.1803	-0.032266	-0.14919	0.42761
Consumption	0	0.014297	0.44185	-0.047312	-0.018467	-0.05899	0.33011
Gross oil output	0	0.17533	0.14789	0.38401	-0.051724	0.056272	0.030664
Trade balance to GDP	-0.076504	0.041234	-0.15671	-0.094604	0.11054	0.52514	0.75274
Institutional Investor Index	37.2455	9.2005	0.23407	0.28561	-0.43256	1	0.92446
Debt to GDP	0.4809	0.27319	0.040232	-0.30082	0.035121	-0.74259	0.9244
Reserves	3.8619	0.78127	-0.29075	-0.18737	1	-0.43256	0.60942
Total Debt	96.6575	22.9784	-0.28934	0.0050562	0.072672	-0.59136	0.85361
21. India							
Oil price	0	0.18202	0.11474	1	-0.12386	0.74406	0.84749
Non-oil GDP	0	0.014836	0.98202	0.063684	-0.013067	0.22294	0.31528
GDP	0	0.015102	1	0.11474	0.022112	0.22986	0.3558
Oil production	0	0.10639	0.2196	-0.071514	-0.038504	0.088205	0.32216
Consumption	0	0.013859	0.69138	0.021225	-0.12051	0.1975	0.50988
Gross oil output	0	0.20193	0.26979	0.33757	0.18667	0.158	0.1558
Trade balance to GDP	-0.022496	0.017243	-0.2384	-0.75674	0.029634	-0.88982	0.83753
Institutional Investor Index	50.6239	7.5071	0.22986	0.74406	0.083211	1	0.92655
Debt to GDP	0.14051	0.070829	-0.15753	-0.80208	0.3202	-0.85013	0.94031
Reserves	5.0273	1.269	0.022112	-0.12386	1	0.083211	0.81426
Total Debt	65.0445	15.2329	-0.26017	-0.078496	0.51251	0.10151	0.8038

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
22. Kazakhstan							
Oil price	0	0.18202	0.23532	1	0.64444	0.78508	0.84749
Non-oil GDP	0	0.072999	0.86562	0.14236	0.30521	0.13985	0.50661
GDP	0	0.07723	1	0.23532	0.23419	0.18287	0.67725
Oil production	0	0.074574	0.82865	0.13551	-0.10057	0.1705	0.5863
Consumption	0	0.094576	0.93877	0.24272	0.3022	0.1595	0.65169
Gross oil output	0	0.22091	0.69801	0.31615	0.15733	0.18155	0.29574
Trade balance to GDP	0.051226	0.085722	0.095318	0.77938	0.56057	0.88558	0.7302
Institutional Investor Index	39.8525	16.1737	0.18287	0.78508	0.56789	1	0.90127
Debt to GDP	0.080684	0.059606	-0.70165	-0.59714	-0.70868	-0.56454	0.82654
Reserves	17.139	11.913	0.23419	0.64444	1	0.56789	0.84319
Total Debt	15.7604	8.0704	-0.21697	-0.60581	-0.42935	-0.75388	0.6264
23. Kuwait							
Oil price	0	0.18202	0.095057	1	-0.15293	0.84603	0.84749
Non-oil GDP	0	0.09616	0.36697	-0.14248	0.0068189	0.012673	0.1878
GDP	0	0.074964	1	0.095057	0.04395	0.059636	0.46165
Oil production	0	0.36662	0.21689	-0.047836	0.11408	0.23503	0.20665
Consumption	0	NaN	NaN	NaN	NaN	NaN	NaN
Gross oil output	0	0.37911	0.3281	0.15145	0.093032	0.27573	0.055362
Trade balance to GDP	0.16462	0.27861	0.14304	0.60546	0.054319	0.79931	0.55377
Institutional Investor Index	64.7681	9.8694	0.059636	0.84603	-0.014489	1	0.8388
Debt to GDP	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Reserves	93.5138	11.0614	0.04395	-0.15293	1	-0.014489	0.83333
Total Debt	37.5747	43.8855	-0.012044	-0.64745	0.18429	-0.88504	0.70237
24. Lівча							
Oil price	0	0.18202	0.024853	1	0.5899	0.76233	0.84749
Non-oil GDP	0	0.20823	0.76677	-0.077611	0.0064743	0.097558	-0.017665
GDP	0	0.21593	1	0.024853	0.021208	0.16785	-0.21674
Oil production	0	0.21329	0.88271	0.084693	0.064272	0.26356	-0.12773
Consumption	0	NaN	NaN	NaN	NaN	NaN	NaN
Gross oil output	0	0.29694	0.64816	0.31326	0.098807	0.32712	0.14199
Trade balance to GDP	0.13715	0.19328	0.39705	0.29135	0.18841	0.38285	0.484
Institutional Investor Index	35.8695	9.8611	0.16785	0.76233	0.44969	1	0.83257
Debt to GDP	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Reserves	30.4673	9.4812	0.021208	0.5899	1	0.44969	0.91999
Total Daht	33 4442	25 0854	-0 24876	-0 78284	-0 55695	-0 71205	0.88186

	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
Oil price	0	0.18202	0.11833	1	-0.050013	0.72303	0.84749
Non-oil GDP	0	0.039384	0.93874	0.015836	0.43921	0.50438	0.65475
GDP	0	0.037482	1	0.11833	0.36499	0.53318	0.61325
Oil production	0	0.048213	-0.078619	-0.12784	-0.25106	-0.15053	0.34382
Consumption	0	0.051255	0.89881	0.22268	0.24793	0.60973	0.67068
Gross oil output	0	0.1813	0.44124	0.38397	-0.1751	0.28339	0.21367
Trade balance to GDP	0.094175	0.099975	-0.43144	0.069919	0.11728	-0.22257	0.8577
Institutional Investor Index	65.5677	6.4491	0.53318	0.72303	0.24617	1	0.84407
Debt to GDP	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Reserves	3.4504	0.54123	0.36499	-0.050013	1	0.24617	0.79896
Total Debt	54.9042	21.0568	-0.48645	0.0056616	-0.49443	-0.21253	0.91002
26. Oman							
Oil price	0	0.18202	-0.14766	1	-0.082668	0.55695	0.84749
Non-oil GDP	0	0.11348	0.64532	-0.24098	0.0098537	0.0078003	0.27049
GDP	0	0.045174	1	-0.14766	0.042412	0.038155	0.57016
Oil production	0	0.051852	0.49367	-0.29461	0.1083	-0.070816	0.68927
Consumption	0	0.029801	0.16066	-0.074973	-0.024208	0.009143	0.22586
Gross oil output	0	0.16562	-0.0034674	0.36529	-0.045746	0.050327	-0.0084406
Trade balance to GDP	0.15867	0.082516	-0.30959	0.65739	0.090286	0.38578	0.38047
Institutional Investor Index	56.5927	8.4563	0.038155	0.55695	0.70443	1	0.90708
Debt to GDP	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Reserves	4.6242	1.0347	0.042412	-0.082668	1	0.70443	0.91068
Total Debt	19.1806	11.3073	0.21107	-0.91822	-0.037765	-0.6253	0.8681
27. Qatar							
Oil price	0	0.18202	0.093372	1	0.61133	0.77492	0.84749
Non-oil GDP	0	0.085857	0.79249	-0.019189	-0.023466	0.023461	0.5578
GDP	0	0.07296	1	0.093372	-0.044694	0.068474	0.51897
Oil production	0	0.084106	0.21994	0.1162	0.005421	0.095879	0.26424
Consumption	0	NaN	NaN	NaN	NaN	NaN	NaN
Gross oil output	0	0.20399	0.29474	0.41535	0.03571	0.18514	0.26541
Trade balance to GDP	0.29213	0.13982	0.091686	0.52198	0.55354	0.46285	0.74384
Institutional Investor Index	61.4436	10.2191	0.068474	0.77492	0.90632	1	0.92607
Debt to GDP	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Reserves	9.6466	8.1516	-0.044694	0.61133	1	0.90632	0.89421
Total Debt	35.9414	17.3465	0.14565	-0.45207	-0.1992	-0.37198	0.77213
	Mean	Standard Dev.	Corr(i,GDP)	Corr(i,Oil Price)	Corr(i,Reserves)	Corr(i,III)	Acorr
------------------------------	-----------	---------------	-------------	-------------------	------------------	-------------	---------
28. Saudi Arabia							
Oil price	0	0.18202	0.093562	1	-0.076044	0.88576	0.84749
Non-oil GDP	0	0.17502	0.13306	-0.15895	-0.20685	-0.11394	0.20709
GDP	0	0.082459	1	0.093562	0.29007	-0.0019226	0.64228
Oil production	0	0.14206	0.97993	0.066585	0.31121	-0.037623	0.5881
Consumption	0	0.030485	0.050334	0.08688	0.0092598	0.14608	0.47002
Gross oil output	0	0.23984	0.69878	0.35196	0.2622	0.090359	0.48944
Trade balance to GDP	0.12552	0.13254	0.5343	0.51524	0.4465	0.223	0.79947
Institutional Investor Index	64.7	8.7672	-0.0019226	0.88576	-0.30642	1	0.84223
Debt to GDP	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Reserves	235.7527	42.8149	0.29007	-0.076044	1	-0.30642	0.89578
Total Debt	51.7547	36.5915	-0.060756	-0.80723	-0.025926	-0.70775	0.91232
29. Syria							
Oil price	0	0.18202	0.084082	1	0.18712	0.26454	0.84749
Non-oil GDP	0	0.081494	0.36677	-0.11875	0.090388	-0.002332	0.29537
GDP	0	0.10387	1	0.084082	0.094381	0.57556	0.55672
Oil production	0	0.27056	0.81357	0.085588	0.041599	0.58598	0.53976
Consumption	0	0.10915	0.86763	0.10062	0.040483	0.57075	0.4668
Gross oil output	0	0.36232	0.67032	0.27306	0.029237	0.55464	0.43158
Trade balance to GDP	-0.069884	0.10411	0.2943	-0.37683	0.30248	0.41571	0.72445
Institutional Investor Index	23.5469	5.1509	0.57556	0.26454	0.45601	1	0.70706
Debt to GDP	0.082614	0.07366	-0.76169	0.063321	6.1314e-17	-0.56729	0.61438
Reserves	2.1469	0.43027	0.094381	0.18712	1	0.45601	0.91607
Total Debt	118.7856	51.1906	-0.35132	-0.66738	-0.33057	-0.63724	0.84869
30. United Arab Emirates							
Oil price	0	0.18202	0.23249	1	-0.21656	0.64213	0.84749
Non-oil GDP	0	0.11159	0.65725	-0.017325	-0.36335	-0.023349	0.4086
GDP	0	0.063566	1	0.23249	-0.14334	0.089487	0.44501
Oil production	0	0.097505	0.10854	0.095805	0.38152	-0.016545	0.67709
Consumption	0	0.12904	0.29147	0.10815	-6.4027e-17	0.25673	0.50686
Gross oil output	0	0.22406	0.4791	0.37622	0.18714	0.14032	0.30607
Trade balance to GDP	0.17334	0.11149	-0.034899	0.35753	3.8804e-17	0.080296	0.7576
Institutional Investor Index	64.8673	7.2239	0.089487	0.64213	0.3734	1	0.89042
Debt to GDP	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Reserves	82.8153	28.1244	-0.14334	-0.21656	1	0.3734	0.86403
Total Debt	8.6445	5.2709	-0.23925	0.3964	0.2324	0.51979	0.83988

K VAR

K.1 Reduced-Structural-IRFS

To identify the conditional long-run effects of today's reserves on the long-run bond's price, we estimate a Vector Autoregressive Model (VAR) with the model generated data. Specifically, we estimate the response of long-run the bond's to a shock on the oil price on price using the linearized version of the model's decision rules and dynamics of the exogenous processes.

we aim to estimate the structural VAR model described by,

$$p_{t} = a_{1}p_{t-1} + a_{2}y_{t-1} + c_{1} + \epsilon_{t}^{p}$$

$$y_{t} = a_{3}p_{t-1} + a_{4}y_{t-1} + c_{2} + \epsilon_{t}^{y}$$

$$b_{t+1} = a_{5}s_{t} + a_{6}b_{t} + a_{7}p_{t} + a_{8}y_{t} + c_{3} + \Phi_{1}history_{t} + \psi_{1}transition_{t} + \gamma_{1}redemption_{t}$$

$$s_{t+1} = a_{9}s_{t} + a_{10}b_{t} + a_{11}p_{t} + a_{12}y_{t} + c_{4} + \Phi_{2}history_{t} + \psi_{2}transition_{t} + \gamma_{2}redemption_{t},$$

and, independently, the linearized rule for the bond's price, q_t ,

$$q_t = a_{13}s_t + a_{14}b_t + a_{15}p_t + a_{16}y_t + c_5 + \Phi_3 history_t + \psi_3 transition_t + \gamma_3 redemption_t.$$

where b_{t+1} and s_{t+1} refer to the decisions on debt and reserves at time t for time t + 1, (b_t, s_t, p_t, y_t) are the state variables at time t, c_i are constant terms and three dummy variables to control for the default and exclusion periods $(history_t)$, the transition towards a default $(transition_t)$, and the Sovereign's redemption to the financial markets $(redemption_t)$.

The treatment of the dummy variables is as follows: $history_t$ takes value of one when the Sovereign optimally decides to default and when is excluded of the financial markets without the exogenous signal of redemption and zero otherwise. During these periods, bond's price, q_t , debt at time t, b_t , and decision of debt for t + 1, b_{t+1} , take value of zero. $transition_t$ takes value of one when the Sovereign's bond's price fall below a threshold and is typically associated to periods prior to a default event and zero otherwise. During these periods, bond's price, q_t fall between 0.8 and 0.9, but the Sovereign holds debt t, b_t , and is still able to issue new debt, b_{t+1} . Finally, dummy variable $redemption_t$ takes value of one when the Sovereign is excluded from the financial markets but receives the signal of redemption for the next period. During these periods, bond's price takes a positive value, but the Sovereign does not hold debt, $b_t = 0$ and starts the next period with zero debt, $b_{t+1} = 0$

$$\begin{aligned} history_t &= \begin{cases} 1 & q_t = 0, \quad b_t = 0, \quad b_{t+1} = 0\\ 0 & otherwise, \end{cases} \\ transition_t &= \begin{cases} 1 & q_t \in (0.8, 0.9), \quad b_t \leq 0, \quad b_{t+1} \leq 0\\ 0 & otherwise, \end{cases} \\ redemption_t &= \begin{cases} 1 & q_t \geq 0.9, \quad b_t = 0, \quad b_{t+1} = 0\\ 0 & otherwise, \end{cases} \end{aligned}$$

As we know the VAR of the exogenous variables, oil price (p_t) and non-oil GDP (y_t) introduced in section (x),

$$p_{t} = a_{1}p_{t-1} + a_{2}y_{t-1} + c_{1} + \epsilon_{t}^{p}$$
$$y_{t} = a_{3}p_{t-1} + a_{4}y_{t-1} + c_{2} + \epsilon_{t}^{y},$$

We can replace it on the structural VAR (ennumerate) and obtain a reduced-form VAR as,

$$\begin{split} b_{t+1} &= a_5 s_t + a_6 b_t + a_7 \left(a_1 p_{t-1} + a_2 y_{t-1} + c_1 + \epsilon_t^p \right) + a_8 \left(a_3 p_{t-1} + a_4 y_{t-1} + c_2 + \epsilon_t^y \right) \\ &+ c_3 + \Phi_1 history_t + \psi_1 transition_t + \gamma_1 redemption_t \\ s_{t+1} &= a_9 s_t + a_{10} b_t + a_{11} \left(a_1 p_{t-1} + a_2 y_{t-1} + c_1 + \epsilon_t^p \right) + a_{12} \left(a_3 p_{t-1} + a_4 y_{t-1} + c_2 + \epsilon_t^y \right) \\ &+ c_4 + \Phi_2 history_t + \psi_2 transition_t + \gamma_2 redemption_t, \end{split}$$

and for the single bond's price equation,

$$q_{t} = a_{13}s_{t} + a_{14}b_{t} + a_{15}\left(a_{1}p_{t-1} + a_{2}y_{t-1} + c_{1} + \epsilon_{t}^{p}\right) + a_{16}\left(a_{3}p_{t-1} + a_{4}y_{t-1} + c_{2} + \epsilon_{t}^{y}\right) + c_{5} + \Phi_{3}history_{t} + \psi_{3}transition_{t} + \gamma_{3}redemption_{t},$$

grouping and simplifying similar terms, we can rewrite the reduced-form VAR as,

$$b_{t+1} = a_5 s_t + a_6 b_t + A_1 p_{t-1} + B_1 y_{t-1} + C_1 + \Phi_1 history_t + \psi_1 transition_t + \gamma_1 redemption_t + \xi_t^b$$

$$s_{t+1} = a_9 s_t + a_{10} b_t + A_2 p_{t-1} + B_2 y_{t-1} + C_2 + \Phi_2 history_t + \psi_2 transition_t + \gamma_2 redemption_t + \xi_t^s$$

and the bond's price pricing rule,

$$q_t = a_{13}s_t + a_{14}b_t + A_3p_{t-1} + B_3y_{t-1} + C_3 + \Phi_3history_t + \psi_3transition_t + \gamma_3redemption_t + \xi_t^q,$$

where, $A_1 = (a_7a_1 + a_8a_3)$, $A_2 = (a_{11}a_1 + a_{12}a_3)$, $A_3 = (a_{15}a_1 + a_{16}a_3)$, $B_1 = (a_7a_2 + a_8a_4)$, $B_2 = (a_{11}a_2 + a_{12}a_4)$, $B_3 = (a_{15}a_2 + a_{16}a_4)$, $C_1 = (a_7c_1 + a_8c_2 + c_3)$, $C_2 = (a_{11}c_1 + a_{12}c_2 + c_4)$, $C_3 = (a_{15}c_1 + a_{16}c_2 + c_5)$, $\xi_t^b = (a_7\epsilon_t^p + a_8\epsilon_t^y)$, $\xi_t^s = (a_{11}\epsilon_t^p + a_{12}\epsilon_t^y)$, $\xi_t^q = (a_{15}\epsilon_t^p + a_{16}\epsilon_t^y)$.

By estimating the reduced-form VAR and the single equation for the bond's price, we obtain,

	Debt (t+1)	Reserves (t+1)
Reserves (t)	-0.005***	0.981***
	(0.000)	(0.000)
Debt (t)	0.460***	-0.074***
	(0.014)	(0.008)
Oil Price (t-1)	-0.245***	-0.191***
	(0.008)	(0.005)
Non-Oil GDP (t-1)	0.051***	0.024***
	(0.007)	(0.004)
History	0.103***	0.020***
	(0.002)	(0.001)
Transition	-0.000***	0.005***
	(0.002)	(0.001)
Redemption	0.039***	-0.006***
	(0.004)	(0.002)
Constant	0.147***	0.419***
	(0.013)	(0.008)
Observations	8999	8999
R-squared	0.850	0.998

Table K1: Reduced-Form VAR for (b_{t+1}, s_{t+1})

* p < 0.1, ** p < 0.05, *** p < 0.01

Bond's Price (t)
0.001***
(0.0000)
0.037***
(0.0015)
0.009***
(0.0009)
0.007***
(0.0008)
-0.992***
(0.0003)
-0.146***
(0.0003)
-0.000
(0.0005)
0.969***
(0.0015)
8999
0.999

Table K2: Single equation for q_t

* p < 0.1, ** p < 0.05, *** p < 0.01

To obtain the structural parameters a_7 , a_8 , $a_{11}a_{12}$, a_{15} , a_{16} , we use the known parameters of the exogenous variables VAR, a_1 , a_2 , a_3 , a_4 and solve the system of equations (A_1, B_1) , (A_2, B_2) , (A_3, B_3) , obtaining,

	Debt (t+1)	Reserves (t+1)
Reserves (t)	-0.005	0.981
Debt (t)	0.460	-0.074
Oil Price (t)	-0.282	-0.217
Non-Oil GDP (t)	0.170	0.088
History	0.103	0.020
Transition	-0.000	0.005
Redemption	0.039	-0.006
Constant	0.147	0.419
Observations	8999	8999

Table K3: Structural VAR for (b_{t+1}, s_{t+1})

Table K4: Structural Single equation for q_t

	Bond's Price (t)
Reserves (t)	0.001
Debt (t)	0.037
Oil Price (t)	0.009
Non-Oil GDP (t)	0.018
History	-0.992
Transition	-0.146
Redemption	-0.000
Constant	0.969
Observations	8999

Figure K1: SVAR non-cumulative Response to a shock in oil price

a) Response of exogenous variables in the baseline model

-6 L 0

Note:

Figure K2: SVAR cumulative Response to a shock in oil price

a) Response of exogenous variables in the baseline model

K.2 Reduced-IRFS

To identify the conditional long-run effects of today's reserves on the long-run bond's price, we estimate a Vector Autoregressive Model (VAR) with the model generated data. Specifically, we estimate the response of long-run the bond's to a shock on the oil price on price using the linearized version of the model's decision rules and dynamics of the exogenous processes.

We estimate the response of the decision variables (b_{t+1}, s_{t+1}) , and the bond's price, q_t , to a shock on the oil price, ϵ_t^p , in the system of linear-equations,

$$p_{t} = a_{1}p_{t-1} + a_{2}y_{t-1} + c_{1} + \epsilon_{t}^{p}$$

$$y_{t} = a_{3}p_{t-1} + a_{4}y_{t-1} + c_{2} + \epsilon_{t}^{y}$$

$$b_{t+1} = a_{5}s_{t} + a_{6}b_{t} + a_{7}p_{t} + a_{8}y_{t}$$

$$s_{t+1} = a_{9}s_{t} + a_{10}b_{t} + a_{11}p_{t} + a_{12}y_{t},$$

$$q_{t} = a_{13}s_{t} + a_{14}b_{t} + a_{15}p_{t} + a_{16}y_{t},$$

Since we know the VAR of the exogenous variables, oil price (p_t) and non-oil GDP (y_t) introduced in section (x),

$$p_t = a_1 p_{t-1} + a_2 y_{t-1} + c_1 + \epsilon_t^p$$
$$y_t = a_3 p_{t-1} + a_4 y_{t-1} + c_2 + \epsilon_t^y,$$

we only have to find the coefficients a_5 to a_{16} . To do so, we estimate a reduced-form VAR model,

$$b_{t+1} = a_5 s_t + a_6 b_t + a_7 p_t + a_8 y_t + c_3 + \Phi_1 history_t + \psi_1 transition_t + \gamma_1 redemption_t + \epsilon_t^b$$

$$s_{t+1} = a_9 s_t + a_{10} b_t + a_{11} p_t + a_{12} y_t + c_4 + \Phi_2 history_t + \psi_2 transition_t + \gamma_2 redemption_t + \epsilon_t^s,$$

and, independently, the linearized rule for the bond's price, q_t ,

 $q_t = a_{13}s_t + a_{14}b_t + a_{15}p_t + a_{16}y_t + c_5 + \Phi_3 history_t + \psi_3 transition_t + \gamma_3 redemption_t + \epsilon_t^q,$

where b_{t+1} and s_{t+1} refer to the decisions on debt and reserves at time t for time t + 1, (b_t, s_t, p_t, y_t) are the state variables at time t, c_i are constant terms and three dummy variables to control for the default and exclusion periods $(history_t)$, the transition towards a default $(transition_t)$, and the Sovereign's redemption to the financial markets $(redemption_t)$. The innovations terms, $(\epsilon_t^b, \epsilon_t^s, \epsilon_t^q)$, could be interpreted as linearization errors since we are estimating the linear version of a non-linear model.

The treatment of the dummy variables is as follows: $history_t$ takes value of one when the Sovereign optimally decides to default and when is excluded of the financial markets without the exogenous signal of redemption and zero otherwise. During these periods, bond's price, q_t , debt at time t, b_t , and decision of debt for t + 1, b_{t+1} , take value of zero. $transition_t$ takes value of one when the Sovereign's bond's price fall below a threshold and is typically associated to periods prior to a default event and zero otherwise. During these periods, bond's price, q_t falls between 0.8 and 0.9, but the Sovereign holds debt t, b_t , and is still able to issue new debt, b_{t+1} . Finally, dummy variable $redemption_t$ takes value of one when the Sovereign is excluded from the financial markets but receives the signal of redemption for the next period. During these periods, bond's price takes a positive value, but the Sovereign does not hold debt, $b_t = 0$ and starts the next period with zero debt, $b_{t+1} = 0$

$$\begin{aligned} history_t &= \begin{cases} 1 & q_t = 0, \quad b_t = 0, \quad b_{t+1} = 0\\ 0 & otherwise, \end{cases} \\ transition_t &= \begin{cases} 1 & q_t \in (0.8, 0.9), \quad b_t \leq 0, \quad b_{t+1} \leq 0\\ 0 & otherwise, \end{cases} \\ redemption_t &= \begin{cases} 1 & q_t \geq 0.9, \quad b_t = 0, \quad b_{t+1} = 0\\ 0 & otherwise, \end{cases} \end{aligned}$$

By estimating the reduced-form VAR (ennumerate) and the single equation for the bond's price, we obtain,

	Debt (t+1)	Reserves (t+1)
Reserves (t)	-0.008***	0.981***
	(0.000)	(0.000)
Debt (t)	0.350***	-0.016***
	(0.003)	(0.003)
Oil Price (t)	-0.386***	-0.189***
	(0.002)	(0.002)
Non-Oil GDP (t)	0.207***	0.030***
	(0.003)	(0.003)
History	0.041***	-0.009***
	(0.001)	(0.001)
Transition	-0.024***	-0.009***
	(0.001)	(0.001)
Redemption	0.008***	-0.021***
	(0.002)	(0.002)
Constant	0.189***	0.427***
	(0.006)	(0.006)
Observations	8999	8999
R-squared	0.960	0.998

Table K5: Reduced-Form VAR for (b_{t+1}, s_{t+1})

* p < 0.1 , ** p < 0.05 , *** p < 0.01

	Bond's Price (t)
Reserves (t)	0.001***
	(0.0000)
Debt (t)	0.031***
	(0.0009)
Oil Price (t)	0.005***
	(0.0005)
Non-Oil GDP (t)	0.025***
	(0.0008)
History	-0.991***
	(0.0003)
Transition	-0.144***
	(0.0003)
Redemption	0.000
	(0.0005)
Constant	0.969***
	(0.0015)
Observations	8999
R-squared	0.999

Table K6: Single equation for q_t

* p < 0.1, ** p < 0.05, *** p < 0.01

And generating the IRFs using the system of equations (ennumerate), we obtain,

Figure K3: Non-cumulative Response to a shock in oil price

a) Response of exogenous variables in the baseline model

b) Response of endogenous variables in the baseline model

Figure K4: C umulative Response to a shock in oil price

a) Response of exogenous variables in the baseline model

References

- Arellano, C. (2008). Default Risk and Income Fluctuations in Emerging Economies. *American Economic Review*, *98*(3), 690-712.
- Banerjee, A. (1999). Panel Data Unit Roots and Cointegration: An Overview. *Oxford Bulletin of Economics and Statistics*, *61*, 607-629.
- Borensztein, E., & Panizza, U. (2009). The costs of sovereign default. *IMF Staff Papers*, 56(5), 683-741.
- Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1996). Expected Returns and Volatility in 135 Countries. *The Journal of Portfolio Management*, 22(3), 46-58.
- Im, K. S., Pesaran, M., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. *Journal of Econometrics*, 115(1), 53-74.
- Lane, P. R., & Milesi-Ferretti, G. M. (2007). The external wealth of nations mark II: Revised and extended estimates of foreign assets and liabilities, 1970–2004. *Journal of International Economics*, 73(2), 223-250.
- Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. *Journal of American Statistical Association*, 94, 621-634.
- Pesaran, M. H., Shin, Y., & Smith, R. P. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of Applied Econometrics*, 16, 289-326.
- Pesaran, M. H., & Smith, R. P. (1995). Estimating long-run relationships from dynamic heterogeneous panels. *Journal of Econometrics*, *68*, 79-113.
- Reinhart, C. M., & Rogoff, K. S. (2010). Growth in a time of debt. *American Economic Review*, 100(2), 573-78. doi: 10.1257/aer.100.2.573
- Suen, R. M. H. (2009). Bounding the CRRA Utility Functions [Working Papers]. *University* of California at Riverside, Department of Economics(200902).
- Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. *Journal of Econometrics*, *66*(1-2), 225-250.
- Wolde-Rufael, Y. (2005). Energy demand and economic growth: The African experience. *Journal of Policy Modeling*, 27(8), 891–903.